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ABSTRACT

This paper describes a networked simulation applicat
using HLA (The High Level Architecture) and MODSIM
III, a commercial off-the-shelf (COTS) object-oriente
simulation language.

The Department of Defense (DoD) developed HL
for training simulation exercises, but HLA is applicable 
a wide range of simulation work far beyond wargame
HLA is documented in terms of C++ and Java wh
Discrete-Event Simulations are often developed in
simulation language such as MODSIM III, SIMSCRIP
II.5, or SLX, or by using a graphical, domain-specif
simulator such as COMNET III, SIMPROCESS o
ProModel.

The requirement addressed by this paper is to interf
an existing Discrete-Event Simulation model to the HL
in order to evaluate that task and to set directions for fut
work.  To further direct focus on interfaces between HL
and a Discrete-Event Simulation, we deliberately chos
small simulation application developed in MODSIM III
Real simulations are, of course, more detailed, but will s
use the same interfaces.

1 INTRODUCTION

The way that computing is done has changed.  The indu
has moved from an application-centered style of comput
into networked computing.  There are many protoc
available for networked computing and it is even possi
to invent a new protocol for each new application.

At the same time, the DoD has made significa
investment of research effort in the area of distribut
simulation.  The current evolution of this work is the HLA
This supports a vision that simulations can be construc
from reusable components that inter-operate through
open systems’ architecture.  There is a policy mandate 
encourages the use of HLA for all DoD simulations, a
the HLA is going through the standardization processes.

The HLA is described quite well in the literatur
(Dahmann 1998).  Terms such as Federation, Fede
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FOM, SOM, and RTI will not be defined yet again he
Readers unfamiliar with these terms may find them on
following Web page: http://hla.dmso.mil.

Developing a new protocol for each application is 
longer necessary.  Using a standard such as H
encourages interoperability and should simplify 
development process.

CACI Products Company's vision is to ma
simulation models operate together through comp
networks, enabling simulation analysts to easily 
networks. The High Level Architecture was investigated
one of the vehicles that could make this happen.

To do this, CACI built MODSIM III language
bindings to the HLA standard. In order to provide the b
possible support for HLA, the MODSIM III interface 
integrated with other parts of the MODSIM system such
SimGraphics and provides a level above the HLA to be
support message pumping, exceptions, and callbacks.

MODSIM III with HLA support also provides
universal data value representation so that data ca
seamlessly transported "on the wire" between diffe
computers and operating environments.  Since MODS
III with SimGraphics is available on Windows 95/98/NT 
well as on all popular Unix Systems, it is easy to lo
balance a simulation model through a network or to dis
the user interface and animated graphical output
different or remote computers.

2 DISCRETE-EVENT SIMULATION

Discrete-Event Simulation is significantly different fro
other computer applications.  Typically, simulation is us
to explore possible outcomes. A simulation model is o
a prototype that evolves as more is learned about
system being studied.  The insight gained from mode
can be just as important as the results of running the m

Effective Discrete-Event Simulation incorporat
detailed knowledge of the area being simulated.  S
knowledge is the province of people who have inves
much of their career mastering the subject area; they
often not expert in computer programming.  In order
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make the simulation technique even more accessible, 
computer scientists should focus on providing tools to 
used by experts in the subject area.

Most Discrete-Event Simulations include queuing, a
studying queue behavior is often the primary objective 
the simulation.  Statistics collection is important, wheth
the results are displayed as tables of numbers or
graphical form. A good reference on Discrete-Eve
Simulation is (Marti 1999).

Random number generators are often used to simu
behavior that is "outside" the area being modeled.  Rand
number generators are also used to model processes w
detailed behavior is not relevant to the study or who
details are at too low a level to contribute to understand
overall system behavior.  Monte Carlo techniques are
very useful way to abstract real-world behavior in
simulated behavior.

We want to carefully distinguish between a Discret
Event Simulation and an Emulation.  Too often, simulati
studies get bogged down by attempts to provide mot
picture quality graphical detail.  And too often, studie
attempt to model irrelevant detail.  Deciding which deta
to model can be made much more scientific by stati
explicit objectives.  The specific question to be answer
dictates the required details.  The need for judgement a
which details to model means that simulation is as much
art as a science. For further information, refer to (Pa
1998).

Discrete-Event Simulations are time-based, and
queue of pending and future events is the nucleus of 
simulation.  Rules for breaking ties, when two things cou
happen at the same precise moment of simulated time
often very important to the simulation scientist.

In a Discrete-Event Simulation, when any event run
it has visibility and access to much, if not all,  of th
system state.  And the change in state that an ev
provides is assumed to happen all at once.  This ins
visibility simplifies the simulation.

Simulation languages have invested much effort 
efficient event management.  Much of the data for queu
and an event loops is cached by a modern single proce
computer and this further enhances event selection 
dispatching performance.

However, modern computing is now done acro
networks rather than on isolated single processo
Research work into techniques for Parallel and Distribu
Simulation, represented by the HLA, can be us
immediately in Discrete-Event Simulation, even thoug
networks are usually much slower than comput
processors.

The most obvious targets are simulations requiri
multiple replications for statistical reliability.  These can b
done in parallel.  Other models may explore multiple branc
in parallel, playing what-if scenarios to find the optimum pat
1066
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Some models are best operated in a distributed w
They may contain interactions with physical components
data sources that are not all at the same place, and o
may be required in distant locations. For these models,
can talk about "peel-off" inputs and outputs, the notion be
that the model may run separately from its user interface.

New models can always be developed in t
traditional way.  But simulation models can also be built
components that can inter-operate through networks.

3 METHODOLOGY

Discrete-Event Simulation projects often use a rap
methodology, starting with a rough model and addi
refinements and improvements as results unfold.  H
documentation suggests a methodology that seems m
suited to interfacing between projects being developed
cooperating agencies, but may be too cumbersome 
experimental Discrete-Event Simulation work.

Methodology is important.  But, for Discrete-Even
Simulation, results can often be obtained quicker and m
cheaply by deferring or omitting many of the form
documents.  Early results often are enough to dec
whether an approach should be pursued, abandoned
substantially modified.

A valid HLA Federation has an HLA FOM File and 
is a set of federate programs that exchange data throug
RTI. For a federate to be reusable as part of ot
federations, there must also be a SOM File and 
documentation provided by the HLA OMT.

The information in the SOM file and the HLA OMT
documentation is repeated in MODSIM III Definitio
Modules.  As an aid to maintaining the match between 
information, the language tools may, in the future, 
extended to generate one from the other.

For exploratory work, the HLA interface can b
developed by drawing an Abstract Model (Figure 1) on
whiteboard and then manually deriving the FOM from t
whiteboard.  At a later stage, the model can be formali
with tools such as the HLA OMT.  If the Abstract Model 
too large for the whiteboard a higher level of abstract
may be most appropriate.

Once there is an abstract model, it can be partitio
into Federates and the code for the simulation model 
its interfaces can be provided.

The material needed for the HLA FOM is a stat
snapshot of the data world of the simulation, it is n
enough to completely capture the behavior of a syst
Other tools, such as State Transition Diagrams or diagr
from the Universal Modeling Language (UML) (Booc
1999) will be needed if the intent is to communicate t
design to team members, customers, or model users. 
details of the approach always depend on the sk
experience, and desire of the simulation modelers, thi
another part of the art of simulation.
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Figure 1: Abstract Model

4 MODSIM'S HLA INTERFACE

4.1 Data Interfaces

The DataSupport module provides the ValueObj, whic
allows representing any atomic data value or structur
This object can handle data sizes and data types found
C++, Java, SIMSCRIPT II.5, and MODSIM III
applications. This object also takes care of byte ord
sequences (endian issues) found when moving betwe
Intel X86 and various RISC-based computers such as t
SPARC, MIPS, and Hewlett-Packard.

4.2 RTI Function Support

The MODSIM HLA interface provides an API
corresponding to IEEE P1516.1, the current IEEE Dra
Specification for HLA.  At the current time, the
implementation uses the C++ bindings to RTI 1.3V6 an
accompanying documentation.

4.3 Exception Mapping

The RTI uses the exception feature of C++ to
communicate return status information.  The MODSIM
III interface to HLA maps these to and from enumerate
return codes.
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4.4 Representing Time Values

Simulated time is handled in MODSIM III as a unitles
REAL value stored in 64-bit double precision floatin
point format.  Typically the value is in seconds, thoug
other units are possible.  The same notation is used for b
simulated time values and time intervals.

The RTI::FedTime class of the HLA RTI 1.3
represents time as a set of pure virtual operations wrap
around a federation-specified byte sequence. RTI 1
provides one concrete realization of this clas
RTIfedTime, that represents time values in C++ doub
floating-point.  RTI::FedTime objects can represent eith
logical time values or time intervals.

The interpretation of time values is the
responsibility of the Federation. One federation cou
represent its time as a 32-bit integer while some oth
federation could represent its time as a coded GM
character string.  Yet a third federation could represe
time values as a record where one field might serve a
priority value.

4.5 Representing Federation Time

The MODSIM III binding to the RTI represents, by
default, time values as MODSIM REAL values.  These a
the natural notations for a MODSIM simulation.

4.6 Passage of Time in MODSIM

A MODSIM simulation model has a single clock; this
clock sequences operation of the entire simulation mod
The clock starts at 0.0 and runs forward for the duration
the simulation.  Future activities are kept in a queu
ordered by absolute time.  Activities that are waiting fo
resources are kept in separate queues.

SimGraphics provides animation features.  MODSIM
supports this by using the value of variable Timescale 
the number of wall clock seconds per simulated unit.  re
time animation is optionally supported by skippin
graphical updates.

4.7 Time Management and the HLA

HLA Provides general interfaces between a variety 
schemes for managing simulated time.

The major issues in time management are netwo
latency and the actual wall clock time it takes t
synchronize clocks across a network.

Discrete-Event Simulation typically has performe
best when simulation interactions happen within the sa
thread.  Crossing threads takes at least 10 times as lo
and changing address spaces, to a different process
processor) is yet another 10 times slower.  Simulati
interactions across a network will add another order 
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magnitude to this, meaning that the interaction betwe
two simulated processes across a network may take 1
times as long as entirely local interactions.

It is tempting to levy the developer of the simulatio
application with responsibility for synchronizing time
across a network, under the view that a serious tim
aberration is a flaw in the modeling.  Since the develop
of a simulation already has a daunting task, it is possib
that this new responsibility will not be welcomed.

5 JOB SHOP CASE STUDY

For the proof of principle, the MODSIM III
implementation of the Classic Job Shop model (Figure 
was chosen.  This consists of one main module, with 3
lines of code and comments.  The model demonstrates 
use of ResourceObj and QueueObj, and uses a TE
method and the WAIT statement to perform a proces
based simulation.  Statistics are collected using features
MODSIM's StatMod.

P roduct
1

P roduct
2

La the D rill

W e lde r M ill

Job  1
  La the  1 .0
  M ill  2 .0
  D rill  0 .5

Job  2
  W e ld   1 .0
  D rill  2 .5
  La the  1 .5
  M ill  0 .5

Figure 2: The Job Shop Model

A Job Shop is a system that contains a number 
machines arranged in groups of identical machines.  Jo
are orders that come into the shop. Each job is modeled
a sequence of tasks that must be performed sequentia
and each task may require a different machine and ha
separate duration.  During the run there may be tim
where there are not enough machines for the workload,
jobs are queued as necessary.  The simulation mo
produces periodic reports on job and queue statistics.  T
reports allow the simulation modeler to experiment wit
system configurations to evaluate system performan
Simulation of this model is described in (Russell 1983).

The Classic Job Shop represents a large class
Discrete-Event Simulation Models. By changing the inp
data, it can become a communication model, 
transportation model, or a supply model.  However, ev
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though this Job Shop is a complete simulation applicatio
the Classic version does not use a network.

In order to develop an interface between the Job Sh
and HLA, the simulation model was extended with th
concept of field sales offices.  Orders generated by Fi
Sales Offices come in to the Front Office of the simulatio
and are processed as jobs.  The periodic reports 
returned to the field sales offices.

To support the extensions, the implementation of t
Job Shop was restructured into an HQ module, a Sa
module, and a minimal MAIN module. The HLA interfac
was implemented in a Common module and a Network
module.  This program is small enough that the sa
executable can be used for all federates, with its prec
function being set by a run-time parameter.

Adding the Front Office and the Field Sales Offic
code, and adding the associated definition modules brou
the application to 760 lines of code and comments.  W
the HLA interfaces, this increased to 2889 lines, includi
trace and debugging code.

The Job Shop case study is being used to demonst
and test the MODSIM III interface to the RTI, on bot
Windows and UNIX, and to evaluate improvements. W
are moving the HLA interface code into the MODSIM
HLA support library, using mix-in inheritance to reduc
the amount of code that needs to be written by t
application developer.

6 RUNNING THE CASE STUDY

The case study was first run on Pentium-class compu
running Windows NT 4.0, with RTI 1.3V5.  The sam
executable can support both the Front Office federate a
any Field Sales Office federates, and several windows w
started in close succession to establish a federation.  
federation was also run across the local TCP/IP netwo
running one federate on Windows 95 and another 
Windows NT systems, and at this time we upgraded to R
1.3V6.  The mode of operation of this case study is that, 
each federate, the StartSimulation call is issued as soo
initialization completes.  Simulation time starts advancin
at this point.

Other studies were run on networks of Sun Sparc, H
Unix, and X86 NT computers, to verify portability and dat
exchange.  Since the MODSIM III language provide
extreme portability, these compiled and ran witho
modifications to any application code.

In these experiments, the Rtiexec program was star
first, then, one-by-one, the federates were started.  T
Rtiexec started a Fedex process, whose window opened
seconds after createFederationExecution was called.  
calls on joinFederationExecution, repeated until a positi
response, typically took 5-6 seconds.  This appeared
create a 7-9 second period during which all the initi
federates must be started.
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Discrete-Event Simulations typically accept inputs a
absolute simulation times.  This assumption create
problems with late joining federates, as might arise whe
the start of a federate is delayed beyond the initial 7
second starting period.  It would be useful for th
federation to not start until the essential members a
present.

Peculiar behavior was encountered when a federa
was abruptly terminated or crashed.  Typically the othe
federates would hang up.  This meant that the enti
federation would have to be manually removed.

7 LESSONS LEARNED FROM
JOB SHOP CASE STUDY

Lessons once learned become obvious, and are pain
when made again. From the first case study we discover
some of these, and then found that we were not the first
learn them.

It has been proven that no protocol can exist such th
two processes on a non-error-free network can each 
aware of the precise state of the other.  This is the "tw
army problem" (Tanenbaum 1996, pp. 498-502), als
described as the “coordinated attack problem” (Lync
1996, pp 82-86).

Also, computer networks typically respond to
overloads by dropping messages, and network protoco
typically respond to messages that are lost by timing o
and retrying.  Due to this, most computer networks do n
guarantee that separate messages will be received in 
same order as they are sent (Tanenbaum 199
Sequencing of messages is the province of higher-lev
protocols.

In practice, these limitations can be overcome
otherwise humanity would not be able to use ATM
machines.  Practical solutions such as the two-pha
commit (Date 1986) are commonly used for this
However, these facts create considerable difficulty i
initializing and starting a federation, for example, federate
may not receive all object discovery messages before t
attribute updates (Nielsen 1999).  The best approach see
to be careful federate startup that may include a delay 
perhaps 10 wall-clock seconds during federation startup.

It is unfortunate that an application must be so deep
concerned with details that should be handled by 
communication protocol.  The lesson that the first cas
study provides is that there is an opportunity for th
programming tools to do a better job of providing
repeatable initialization.

A related issue is that there is likely to be som
difficulty with other features, such as object transfer, tha
require two federates to synchronize part of their stat
The literature does describe this problem (Myjak 1999
His work describes some possible application workaroun
1069
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but also proposes amending the architecture of the HLA 
include additional services in this area.

The lesson from this is that the HLA will probably
evolve, but the programming tools may be asked to provi
practical solutions to problems that are impossible to sol
in the theoretical general case.

The MODSIM III interface to the HLA was started
with RTI 1.3V3.  During the course of the developmen
the RTI was revised every few months, so we are curren
demonstrating with RTI 1.3V6.  These changes seem
evolutionary in nature, but they presumably affecte
performance or message traffic.

As other RTI versions are developed, the lesson here
that federates that pass tests on one version of the RTI m
operate differently on other versions of the RTI.  Whe
network traffic is heavy, the differences will probably
increase.  Developers of large applications may need to 
very aware of this.

A related lesson, sure to come back later, is that
small exercise may operate properly with the in-place loc
network or the internet, even while standard backgroun
traffic occurs.  Large exercises may need to use dedica
networks or else they may malfunction, due solely to 
different character of background traffic.  This is unsettlin
to members of the Discrete-Event Simulation communit
because replicability is often expected and assumed.

Another lesson concerns difficulties with simultaneou
events.  Proper handling of simultaneity has always be
important to people doing Discrete-Event Simulation
Simulated events access and modify shared data, so 
way that ties are managed has global effects.  CAC
Products handle this by giving the simulation develope
precise control.  The SIMSCRIPT II.5 language offers th
Simulation Modeler a rich set of tie breaking rules, an
much the same tools are part of in MODSIM III.
Developers of other Discrete-Event Simulation tools see
to find the need to provide similar capabilities.  Thes
difficulties are most recently described in (Wieland 1999).

Event times are often uncertain, especially whe
arrivals and service times are based on rando
distributions.  It has been suggested that such a time va
be represented as a range, with the simulation system f
to handle events with overlapping time ranges as if the
were concurrent events (Fujimoto 1999).

Object-oriented programming techniques can improv
productivity by inserting common reusable code in bas
classes.  However, design of base classes that are eas
use and understand is something of a black art.  We like
measure reuse by counting lines of code or by counti
keystrokes, then claiming that the smaller program 
simpler and better.

The lesson that the Job Shop case study provides
that there are still some opportunities to improve cod
reuse.
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8 CONCLUSIONS

What we learned from this research and developm
activity can be summarized in two parts:

1) Even though the HLA RTI 1.3 is a suitable
data model for networked real-time training
exercises, it falls short of addressing some
key technical issues such as behavior
modeling for networked Discrete-Event
Simulation.

2) Use of the MODSIM III Discrete-Event
Simulation language can save significant time
and risk in building HLA-compliant
simulation model federates.

These points help to set a direction for future work on to
to support networking of Discrete-Event Simulatio
models.

Further progress on our part will be posted on t
following Web page:  http://www.modsim.com.
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