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ABSTRACT

In large-scale discrete-event simulations the size of a com
puter’s physical memory limits the size of system system
be simulated. Demand paging policies that support virtu
memory are generally ineffective. Use of parallel proces
sors to execute the simulation compounds the problems,
memory can be tied down due to synchronization need
We show that by taking more direct control of disks it is
possible to break through the memory bottleneck, withou
significantly increasing overall execution time. We mode
one approach to conducting out-of-core parallel simulatio
identifying relationships between execution, memory, an
I/O costs that admit good performance.

1 INTRODUCTION

Large scale simulations are limited not only by computa
tional requirements (for which parallelism can be a solution
but also by memory requirements. Demand paged virtu
memory systems are unable toefficientlyprovide the virtual
memory space needed, because discrete-event simulati
typically lack locality of reference. The problem is real
because interest in simulating very large models is grow
ing. For instance, there is significant interest in simulatin
large portions of the internet (Cowie, Nicol and Ogielsk
1999; Paxson and Floyd 1997). Application interest cal
for an investigation of parallel simulations which do not fi
in physical memory, referred to asout-of-coresimulations.
To our knowledge this paper is the first to consider solution
to this problem.

Unlike demand paging, out-of-core computations tak
direct charge of generating disk transfer requests. Su
techniques have been developed in the context ofcontinu-
oussimulations such as the N-body problem (Salmon an
Warren 1997). Data-parallel languages (Colvin and Co
men 1998; Thakur, Bordawekar and Choudhary 1994) ha
been developed to support scheduling disk accesses. Ho
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ever, data access patterns are significantly more random
discrete-event simulations, as is advancement of simulati
time. These differences matter when considering a solutio

We describe one approach that is suitable in the conte
of large-scale network simulations. We identify some syste
issues that arise—temporal synchronization, pre-fetchin
strategies, allocation of memory and disk, scheduling—
offer preliminary solutions, andmodel(using simulation, of
course) the behavior of a parallel out-of-core simulation tha
uses these solutions. Exploring this model we discover th
achieving high performance is entirely possible, dependin
on the nature of the network, the computational load, th
memory demands, and the I/O system performance. O
work is preliminary, being best understood as a proof-o
concept.

The remainder of the paper is organized as follows
Section 2 describes our assumptions about the computat
and the computer system upon which it is executed. Secti
3 describes the various system design policies we mod
Section 4 describes our experiments, and Section 5 prese
the results. Section 6 contains our conclusions and futu
directions.

2 SYSTEM MODEL ASSUMPTIONS

We consider a model of a communication network in term
of a graph. Nodes represent networkentitiessuch as com-
puters and routers. An edge—a communicationchannel—is
weighted by the minimal latency of a message transferre
across it. We assume that the memory demands of a n
work entity are small relative to the size of main memory
Entities are gathered together intoclusters, using any one of
a number of standard clustering algorithms. A cluster wi
be our minimal schedulable unit of work and I/O transfer
Latencies on channels between clusters play an importa
role in our synchronization algorithms.

We model the behavior of traffic by assuming tha
each node generates out-going events in accordance wit
4



Poplawski and Nicol

n
th

d
c
in
t
t

t
e
in

o

t

a

a

r
a

m

a
p
s

g
s

e
t
e

e

e
r
in
o
i

g
u

,

r,
l

d

t

e
e

y

-
n,

n

Poisson process. A node’s generation rate is proportio
to the number edges at the node. A destination for
event is chosen uniformly at random from among the nod
that are adjacent to the source; the event is considere
have “arrived” at the destination after incurring the laten
delay associated with the affiliated channel. A process
cost is associated with the event at the source, and ano
processing cost is associated with the target. The execu
cost of a node is the sum of all such costs.

This model does not directly describe the flow of even
across a network, but instead attempts to capture the eff
of such flows. We adopted this higher level of model
order to benefit from significant computational efficiencie
that it makes possible. Under these modeling assumpti
the “work process” at a node is Poisson, with a rate th
can be determined from topology. Rather than direc
simulate event movement, we cansampleworkload and
communication distributions from the appropriate prob
bility distributions. The solution is not exact, because w
assume independence between adjacent nodes’ worklo
and they are clearly correlated.

We take the computer system hosting the simulation
be a shared-memory multiprocessor with uniform memo
access times (although almost all memory references
local). We assume each processor has one disk, that
be accessed independently of all the other disks.

Finally, we assume that clusters are permanently
signed to processors, and that the shared memory is
titioned evenly among the processors for their private u
(with the exception of some data-exchange areas).

3 SYSTEM ISSUES

When designing an out-of-core application, the primary go
is usually to minimize the total execution time while usin
only the available memory. A second goal is to not u
more disk space than necessary. Our design focuses
the first goal. High performance is achieved if the pr
fetching is so successful that the CPUs rarely wait for da
Consequently, our focus will be on minimizing the tim
spent by processors blocked for data.

Next we consider some of the system issues involv
in realizing high performance.

3.1 Synchronization

Processors in a parallel simulation must synchronize to
sure temporal consistency of the result. Of the gene
approaches (conservative or optimistic), we are pursu
a conservative one, largely because conservative meth
are simpler, and have proven themselves in the network
problem domain. In an out-of-core context the synchroniz
tion requirements are intimately tied up with pre-fetchin
strategies, for a processor may have to block on the res
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of simulating some portion of the model that has yet to be
brought into memory. We have developed an approach to
synchronization that gives us some predictability for pre-
fetching, and at the same time gives us the flexibility in
scheduling that is needed when some workload is blocked
but other workload is not.

An entity cluster is our unit of schedulable work. In
parallel simulation parlance it is a “logical process”, meaning
that it has its own simulation clock. Entities in the cluster
are simulated in monotone non-decreasing time-stamp orde
and the cluster engages in some synchronization protoco
with other clusters to establish when it is safe to execute, an
how far into simulation time it may execute. For each cluster
i, let li be the smallest latency on channels connectingi with
other clusters. Since channels are bidirectional,li is both
the incoming and outgoinglookaheadfor clusteri, meaning
that it takes at leastli time for an event elsewhere to affect
the cluster, and vice-versa. We will advance clusteri in
time-steps of lengthli—once it is determined that the cluster
may execute at time(k−1)·li , the cluster is simulated across
the window of simulation time [(k − 1) · li , k · li ) without
further synchronization. This represents a scheduling burs
for i, at the end of which its simulation clock is taken to
be k · li . To determine whether it is safe to execute this
burst, we check whether for every adjacent clusterj , its
clock is at least as large as(k · li − lj ). For, if clusterj
has simulated at least this far, then all future events fromj

to i will have time-stamps at least as largek · li . When all
suchj satisfy this condition, clusteri must have received
all external events that can affect its computation in its next
burst. This is a variant of the synchronization method used
with Ising spin models (Lubachevsky 1987).

3.2 Pre-fetching

To intelligently schedule memory resources we must be able
to estimate memory requirements. In this study we assum
that the memory requirements of the largest cluster can b
determined prior to running the simulation, and used to
estimate the number of clusters that can reside in memor
concurrently. Letm denote the number of clustersper
processorthat can be co-resident. In our study we tended
to be overly conservative; this is an area where improved
policies are desirable.

Our pre-fetching strategy is understood in the con-
text of the synchronization strategy. Clusteri executes
in bursts that begin at timestamps of the formk · li , for
k = 0, 1, 2, · · ·. A processor builds a “schedule” by merging
these sequences from all clusters assigned to it into a mono
tone non-decreasing sequence. For the sake of discussio
suppose the time-stamps of that schedule ares0, s1, s2, · · ·,
that for eachj we denote the cluster whose burst starts at
sj by cj ; suppose also thatsk is the smallest element of the
sequence for which the associated burst has not yet bee
5
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executed. Stated simply, the pre-fetching policy is to kee
“the next” m unique clusters of the remaining sequence
in memory. Stated more formally, at any time there i
defined a “window” on the remaining schedule, beginnin
at sk and extending to themth unique cluster in the se-
quenceck, ck+1, . . .. Let us suppose the window contains
ck throughck+n. Every cluster represented in this window
is either resident in the memory or has been targeted
be brought into memory—once a cluster is executed, th
burst is removed from the schedule. Completion of a clu
ter’s execution may change the window. The lower edg
always advances when the burst scheduled atsk completes,
moving forward to the next unexecuted burst (which nee
not besk+1 because of the way we schedule). Whenev
any cluster burst finishes, the upper edge of the windo
changes if and only if the cluster just executed (saycj ) has
no un-executed burst in the current window. In this cas
it moves to the first element inck+n+1, ck+n+2, . . . that is
not in the current window. If the new upper edge points t
a clustercu 6= cj , cj is scheduled to be written to disk and
cu is scheduled to be loaded in its place.

3.3 Scheduling

Cluster execution bursts are independently schedulable un
of work. Since up tom clusters may be resident in a processo
concurrently, we have scheduling options to consider. W
do not insist that the clusters in a pre-fetch window b
simulated in monotone non-decreasing order. For examp
a cluster may be memory-resident but prohibited from bein
executed owing to synchronization constraints with cluste
on other processors. When a scheduling decision must
made, among all clusterscj that are memory-resident and
can be safely executed, the one with least burst timesj is
chosen. If no such cluster exists, the processor blocks un
one does. The set of clusters eligible for execution chang
dynamically as scheduled I/O operations complete, and
clusters on other processors complete execution bursts
relax synchronization constraints.

3.4 Other Issues

The allocation of disks and disk locations must also b
considered in an out-of-core simulation. Our model assum
one disk-per-processor (although our techniques are in
way limited by that assumption), and that a disk is controlle
solely by its processor, containing only model state and eve
lists for clusters assigned to that processor.

We allocate a fixed block of disk space for each cluste
sized to accommodate estimated maximal cluster-state
quirementsand maximal event-list space requirements. A
cluster’s state and event list are moved together in all disk I
operations. We note in passing that our out-of-core conte
impacts the event-list data structure implementation—w
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must avoid implementations that rely on absolute memo
pointers.

Most of the events created by a cluster’s execution a
for the cluster’s own entities, and go immediately into th
cluster’s own event list. Events targeting entities in differen
clusters are stored in main memory until the target clust
is next executed, at which point they are merged into th
target cluster’s event list.

Problems we’ve not addressed in this paper includ
general clustering methods, and dynamic load balancin
The networks we consider have “natural” clusters that w
exploit; in general clustering is an important problem. W
use a simple list-scheduling heuristic to assign clusters
processors; the networks studied are homogeneous eno
for this technique to work well, and the workload is stati
enough (statistically) so that dynamic remapping is n
needed. These all are areas of our future consideration

4 EXPERIMENTAL MODEL
ASSUMPTIONS

We consider a model of the internet, using topologies ge
erated by the Georgia Tech Internetwork Topology Mode
package (Thomas and Zegura 1994), and parameters ba
on actual systems. Network graphs reflect a 3-level hier
chy used to define clusters. Network nodes are associa
with spatial locations; communication latencies betwee
nodes are based on Euclidean distances between them.
graphs are generated randomly. A cluster has, on avera
500 nodes, and an average of 7.5 channels connected
nodes in other clusters, referred to as inter-cluster cha
nels. The minimal latency between two clusters is 10 mse
whereas the average latency between clusters is 100 m
Intra-cluster latencies are much smaller, with an average
msec and minimum of 100µsec.

Our baseline assumptions concerning the simulati
representation of this model is that an entity requires 1KB
state, and an event requires 100 bytes. The generation rate
an entity is proportional to the number of channels connect
to that entity, with an average of 0.01 events per msec. T
processing cost of an event (either generated or received
50 µsec. The network studied has 5,000,000 entities. W
explore the sensitivity of performance to changes in the
baseline parameters.

We assume that execution overhead (when amortize
due to synchronization and scheduling is negligible com
pared to event processing costs. We do explicitly accou
for the cost of blocking due to synchronization constraint

The baseline model is not especially large, relative
memory capacities of modern multiprocessors; less th
450MB of simulated physical memory is required for a
scenerios simulated. Most require less than 125MB. T
entire model state, excluding event-lists, requires 5GB
simulated storage space. However, our results show t
6
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model size is not as important as theratio of problem
size to physical memory size. We can study smaller-tha
realistic models and argue that the performance-degrad
overhead to actual work ratio is no better than it would b
for realistic sized models, thereby making our performanc
indices meaningful. The advantage of studying small
models is that the computational effort needed to evalua
them is smaller, enabling us to explore more of the desig
space.

Finally, we presume the parallel system of interest ha
10 processors, with one dedicated disk for each process
We model disk behavior with the very accurate DiskSim too
(Ganger, Worthington and Patt 1998). The DiskSim mode
we use have been validated against actual behavior. Ho
ever, the validated disks are older, and hence slower, th
current disks. Our studies would show better performan
were we to model faster disks.

5 EXPERIMENTAL RESULTS

The space of possible systems includes ones where go
performance is impossible, and others where good perf
mance is trivially achieved. In order to assess the potent
for out-of-core parallel simulation, we need to assess ho
realistic are the regimes where good performance is pos
ble. We do this by selecting a baseline system which h
good performance but which is on a cusp of the performan
surface, and then examine the sensitivity of performance
changes in those model assumptions.

We characterize performance using the standard noti
of “utilization”, or fraction of overall time spent in a specified
activity. CPU utilization is the fraction of time a CPU
spends executing useful work; I/O utilization is the fractio
of time a disk spends servicing requests. Both of the
are computed as the average CPU (respectively, disk) ra
of time spent executing (respectively, servicing I/O) to th
longest overall finishing time among all processors. W
also compute “Wait Time” utilization to gauge the fraction
of time a CPU spends blocked on either synchronizatio
constraints, or I/O. It turns out to be tricky to separat
contributions to wait time due to synchronization from tha
due to I/O, and so we don’t. However, we can measure t
wait time of separate experiments where it is assumed th
the entire model is always memory-resident. Our grap
will refer to this as the “Sync Time” utilization. In all
the data shown, this utilization is negligible, meaning tha
synchronization is not a problem inherent to our model.
doesnotmean necessarily that the waiting time utilization in
the out-of-core setting does not have a significant compone
due to synchronization. Introduction of I/O delay affect
synchronization behavior.

The baseline system enjoys a CPU utilization of almo
90%, while at the same time I/O utilization is just under 75%
at this point we’re very successful at overlapping CPU an
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I/O, but also vulnerable to increases in I/O demand (becaus
there is very little “slack” capacity in the I/O system at this
point), or to decreases in CPU demand.

Figure 1 supports our claim, made in the previous
section, that the size of the model is not as important as th
ratio of problem size to memory size. The default size of
5,000,000 entities is shown in the center of the graph. While
the problem size is varied, the size ratio, the number o
entities per cluster, and the average and minimum chann
delays remain constant. Increasing the number of cluster
in memory allows more flexibility in scheduling executions.
Thus, even though the amount of I/O and CPU work increas
at the same rate, the performance improves slightly as lon
as the disks do not become saturated with requests.

One experiment simply increases the size of an entity
This has no effect on the computational requirement, bu
increases the I/O bandwidth requirement. The effect o
this (not shown) is to degrade CPU utilization, linearly in
entity size. When using a model size of 2,500,000 entities
tripling entity size reduces CPU utilization from 80% to
30%, simply because the I/O bandwidth requirements ar
increasing and the CPUs increasingly wait for I/O. Another
way of increasing I/O transfer overhead is to increase th
eventstate size, the effects of which are plotted in Figure 2
Now the volume of events transferred to disk depends o
link latency, for an event is “in the system” for as long as it is
actively being communicated. In order to observe this effec
without changing the synchronization, for each event size
considered in Figure 2 we varied the intra-cluster latency
between the baseline value of 1 msec, and 10 times that (w
multiplied each intra-cluster latency by 10). Considering
sensitivity, for the baseline case the CPU utilization is not
much affected by increasing event size by a factor of 10
Likewise, leaving the event size fixed at 100 bytes and
increasing latency by a factor of 10 does not significantly
impact performance. However, when larger latenciesand
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larger event sizes are assumed, CPU utilization decreas
significantly. Consider: intra-cluster events that go to dis
are those generated in one cluster burst and received
another. For the baseline latency only 1% (1 msec intra
cluster latency relative to 100 msec inter-cluster latency) o
the events of interest go to disk. Increasing the event si
by a factor of 10 increases the bandwidth requirements b
a factor of 10, just as does increasing latency by a factor
10 for 100 byte events. However, increasing both increas
the contribution of these events to I/O bandwidth deman
by a factor of 100. The fact that performance drops by onl
a factor of 2 in the face of such increases means that t
inter-cluster cluster events simply don’t contribute much t
the I/O demand.

This experiment leads us to another, that examine
sensitivity to changes ininter-cluster latencies. These la-
tencies directly affect the frequency (in simulation time) with
which clusters are written to and read from disk. Halving
the inter-cluster latencies doubles the I/O demand, but do
not change the computational workload. Figure 3 illus
trates the point (note the that baseline point of 100 mse
is in the middle of the graph). CPU utilization is essen
tially a linear function of inter-channel latency between 10
msec (where utilization is 10%) and 100 msec (where it i
90%). However, changes in I/O utilization are significantly
smaller over this range. This is because the overall fin
ishing time is dominated by I/O; increasing inter-channe
latency increases I/O cost and the overall execution tim
by essentially the same amount, hence the ratio of the tw
is relatively unaffected. However, increasing inter-cluste
latency also proportionally increases the computation p
execution burst, the net effect of which is to better mas
the delays associated with pre-fetching clusters. The stro
message delivered by this data is that clustering to maximi
inter-cluster channel latencies is extremely important.

Next we consider sensitivity to changes in computationa
demand. The assumed computational time per event refle
52
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the granularity of an event; simulations with significant
detail require more work per event. On today’s computer
100 µsec per event represents coarse granularity, where
10 µsec per event represents fine granularity. Figure
shows the effect of varying granularity from 10µsec to 100
µsec with the baseline value of 50µsec (20,000 events per
second per processor) near the left edge of the graph, f
two different entity sizes (1KB and 0.5KB). Clearly these
changes strike at the heart of the baseline system’s (1 K
entity) precarious balance of CPU and I/O costs. Doublin
the event processing rate cuts the CPU demand in half, a
the CPU utilization effectively drops by a factor of 2 in
response in the portion of the graph where the I/O utilizatio
remains constant. The CPU utilization curve for the 0.5KB
entities mitigates this somewhat, by reducing I/O deman
by a factor of two, but this really is just a horizontal shift
in essentially the same curve.

Another way to change the computational demand i
to change entity event generation rates, which changes t
volume of events executed per unit simulation time. For
fixed set of channel latencies changing the generation ra
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will also change I/O demands (which are proportional to t
product of inter-channel latency and event generation ra
Figure 5 plots the response of performance to variations
entity event rate; the baseline value of 0.01 events/mse
in the middle of the graph. The general shape of the gra
is similar to that of Figure 3, because the same phenom
is occurring. In both cases the changing parameter prop
tionally affects the number of events executed per clus
burst (which affects the effectiveness of pre-fetching) a
affects the I/O demand.

Figure 6 shows the effects on the CPU usage when b
the inter-cluster channel delay and the event generation
are changing. These are the two most significant parame
to the simulation system which are expressed in terms
simulation time. This graph demonstrates the need
simulations which can be broken into clusters such that
inter-cluster channel delays are high relative, primarily,
the rate are which the entities are generating events. M
work needs to be done to improve the results for simulatio
which cannot meet these characteristics.
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6 CONCLUSION AND FUTURE WORK

Although the size of physical memory has long been con
sidered an upper limit on the size of a system which can b
simulated, we have shown that this is not necessarily th
case. We present a model of a simulator which compute
the I/O time, CPU time, and time during which the CPU
is blocked. Using this, we can determine under what con
ditions running a simulation outside the limits of physica
memory is feasible. We have also proposed the use of a r
atively simple conservative synchronization method whic
minimizes the time spent by the disk. We have shown tha
in a configuration where less than 10% of the simulatio
data fits in physical memory, the CPU can be utilized ove
90% of the time given simulation characteristics which fal
in the proper ranges.

We have also identified the features of the model t
be simulated which are significant for obtaining good per
formance out-of-core. First, the graph of entities in the
model must be able to be divided into clusters such that th
average of the minimum inter-cluster delays over all edge
connected to a cluster is as large as possible. Second
combination of a reasonably small entity size, a modera
event rate caused by a somewhat detailed simulation, a
a high workload must exist in the simulation so that the
CPU has enough work to do to offset the cost of I/O. Othe
details of the model to be simulated, such as the size
the model, the number of nodes in a cluster, the delay o
edges within a single cluster, and the size of an event a
less significant in most cases.

There is a great deal which remains to be studied i
the area of out-of-core parallel discrete-event simulation
Many of the issues, some of which are new to the PDE
community, have been identified in this paper. By exploring
these issues farther we hope to be able to reduce the I
overhead farther for the sets of parameters which give poor
performance using our current design. We also must explo
in more detail the effects of heterogeneity in the system to b
simulated. We plan to eventually implement our design a
an actual simulator which we hope will be used in practica
applications where such a tool is needed.
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