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ABSTRACT

In this paper, we consider the allocation of a fixed to
number of simulation replications among competing des
alternatives in order to (i) identify the best simulate
design, (ii) intelligently determine the best simulation ru
lengths for all simulation experiments, and (iii
significantly reduce the total computation cost.  A
asymptotically optimal allocation rule for maximizing 
lower bound of the probability of correct selection 
presented.  Moreover, we illustrate the efficiency of o
method with a series of generic numerical experimen
The simulation cost is significantly reduced with ou
sequential approach.

1 INTRODUCTION

In order to appropriately design large man-made syste
such as communication networks, traffic systems, a
automated manufacturing facilities, it is often necessary
apply extensive simulation to study their performance sin
no closed-form analytical solutions exist for these compl
models.  Unfortunately, using simulation to solve su
problems can be both computationally expensive and ti
consuming due to their massive search space, evolutio
time according to complex man-made rules, and t
influence of random occurrences.   Suppose we wan
compare k different designs based on the data obtain
when random samples are drawn from each of thek
designs.  If the performance of each system is comple
unknown, we would conduct N simulation replications for
each of the k designs.  Therefore, we need a total of kN
simulation replications.  If the accuracy requirement is hi
(N is not small), and if the total number of designs in t
selection problem is not small (k is large), the total
simulation cost might become extremely high, therefo
precluding the feasibility of simulation.  The effectiv
reduction of computation cost while obtaining a goo
decision is therefore a very important topic in simulation.
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In general, there are two principal approaches i
solving the ranking and selection problem:

(a) Specify the number of simulation replications
first and hope that the resulting precision is
satisfactory, or

(b) Specify the desired precision first and hope
that the number of replications required to
achieve this precision is not unacceptably
large.

The well-known two-stage sampling procedure develope
by Stein (1945) exemplifies the first approach.  Bechhofe
et al. (1954) prove that Stein’s procedure satisfies a use
defined requirement for correct selection.  Dunnett an
Sobel (1954) develop an exact analysis for the probabili
of correct selection. Dudewicz and Dalal (1975) addres
the problem of selecting the normal population with the
largest (mean) performance with unknown variances th
are not necessarily common.  They develop a two-stag
procedure for selecting the best design, or a design that
very close to the best.  At the first stage, all designs a
simulated for n0 replications.  If the evidence is
insufficient, based on the results obtained from the firs
stage, additional simulation replications are prescribed fo
each design in order to reach the desired confidence lev
Rinott (1978) presents an alternative way to estimate th
number of simulation replications required at the secon
stage.

As examples of the second approach, Tong an
Wetzell (1984) and Futschik and Pflug (1997) develop
adaptive procedures for sequentially allocating a fixe
simulation budget.  Tong and Wetzell use the results 
Bechhofer (1969) to ensure that the best design obtains
desired proportion of the total number of replications
while developing a new rule to allocate the remaining
replications to the other designs. Futschik and Pflu
(1997), on the other hand, formulate a specific closed-for
expression for an expected loss function.  Therefore, a
approximate solution for the objective function is given by



H. Chen, C. Chen, Lin, and Yücesan

n

ne
w
s
l
t

n
u
in

e
e
i
r
 
th
 

io
 

re
 i
s
to
to
s
i
n
g

 t

c
t
h
io
e
n
g
s
s

d
c

on
r
t
n

n
n
n
 o
io
 t

se
cal
r.

er
t”
an
ns
n.
ed
y

n

is
lly

ign
is

est
an
g,

ing
applying nonlinear programming and a regularizatio
technique.

These approaches have been extended to more ge
ranking and selection problems in conjunction with ne
developments.  Chiu (1974), Gupta and Panchapake
(1979), Matejcik and Nelson (1995), Bechhofer et a
(1995), and Hsu (1996) present methods based on 
classical statistical model adopting a frequentist view.  O
the other hand, Berger and Deely (1994), Bernardo a
Smith (1994), Chick (1997a, 1997b), and Chick and Ino
(1998) use a Bayesian framework for constructing rank
and selection procedures.

To further reduce the overall computation cost, Ch
(1995) formulates the procedure for selecting the b
design as another optimization problem.  The idea 
Chen’s formulation is as follows: Intuitively, some inferio
designs can be discarded during the early stages
simulation.  As the simulation proceeds, on the basis of 
estimated values of the parameters, a decision is made
which designs can be eliminated from further considerat
as higher simulation accuracy for the remaining designs
obtained.  This procedure is repeated until a desi
assurance of correct selection is obtained.  Little effort
therefore expanded on simulating inferior design
reducing the overall simulation time.  Ideally, we want 
optimally allocate the number of simulation replications 
each design in order to minimize the total simulation co
while obtaining the desired confidence level.  In fact, th
question is equivalent to optimally decide which desig
will receive an additional computing budget for continuin
the simulation or to find an optimal selection procedure
identify the best design.

Chen et al. (1996) provide an approach to solve su
an optimization problem.  They use Chernoff bounds 
estimate the gradient information and then apply t
modified steepest ascent method to solve this optimizat
problem. In a follow-up work, Chen et al. (1997) obtain th
gradient information through finite differencing and the
apply the steepest-ascent method to solve the bud
allocation problem.  Numerical results show that the
approaches significantly reduce the overall simulation co
while achieving the desired confidence level.

Instead of using the nonlinear programming metho
described above, we opt for a decision-theoretic approa
Thus, we propose an asymptotically optimal allocati
rule, Optimal Computing Budget Allocation (OCBA), fo
maximizing the lower bound of the probability of correc
selection subject to a fixed total number of simulatio
replications.

The paper is organized as follows: In the next sectio
we formulate the optimal computing budget allocatio
(OCBA) problem and discuss the major issues in solvi
this optimization problem.  Since our approach is based
the Bayesian framework, we also provide a brief discuss
of that framework for completeness.  Section 3 presents
360
ral

an
.
he
n
d
e
g

n
st
n

of
e
on
n
is
d
s
,

t
s
s

o

h
o
e
n

et
e
t,

s
h.

,

g
n
n

he

techniques for solving OCBA.  The performance of the
techniques is illustrated with a series of generic numeri
experiments in Section 4.   Section 5 concludes the pape

2 FORMAL STATEMENT OF THE PROBLEM

The principle goal is to select the best of k alternative
system designs.  Without loss of generality, we consid
minimization problems in this paper; thus, the “bes
design means the design with the smallest me
performance, µi.  We assume that the competing desig
have known variances that are not necessarily commo
We further assume that the computing budget is limit
and the number of competing designs is large.  Denote b

 k : the total number of designs,
Xij: the j-th i.i.d. sample of the performance

measure from design i,
X i : the vector representing the simulation output

for design i; X i = {Xij : j=1,2,..,Ni },
Ni : the number of simulation replications for

design i,

iµ : the sample mean performance measure for

design i, i.e., iµ  = ∑
=

iN

j
ij

i

X
N 1

1
,

µi: the mean performance measure; µi = E(Xij),
2
iσ :the variance for design i,

 b: the design having the smallest sample mean
performance measure, i.e., bµ  ≤ i

i
µmin ,

s: the design having the second smallest sample
mean performance measure
i.e., bµ  ≤ sµ  ≤ i

bi
µ

≠
min ,

δj,i ≡ jµ  - iµ .

Note that when Ni’s are large, iµ  can be a good

approximation for µi, since, according to the law of large
numbers, 1}{lim ==∞→ iiNi

P µµ .  However, given the

fact that we can conduct only a finite number of simulatio
replications, iµ  is simply an approximation to µi.  Since an

approximation is used to select the best design, it 
desirable to state the confidence in our decision, typica
expressed as the probability of correct selection.  In this
paper, we define correct selection as the event that a design
with the smallest sample performance measure (i.e., des
b) is actually the best design.  In the remainder of th
paper, we let “CS” denote “correct selection.”

There exists a large literature on selecting the b
design based on the classical statistical model. Goldsm
and Nelson (1994) provide an excellent survey of rankin
selection, and multiple comparison techniques for select
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the best system (e.g., Gupta and Panchapakesan 1
Kleijnen 1987, Goldsman, Nelson, and Schmeiser 19
and Law and Kelton 1991).  In addition, Bechhofe
Santner, and Goldsman (1995) give a systematic and m
detailed discussion on this issue. These approaches
mainly suitable for problems having a small number 
competing designs.  However, for large-scale industr
problems, the number of designs can rapidly gro
extremely large.

We adopt the Bayesian framework for constructing 
efficient approach to ranking and selection problems (Ch
1996, Chick and Inoue 1998). Under a Bayesian model,

assume that the simulation output,ijX , has a normal

distribution with mean µi and known variance 2
iσ .  After

the simulation is performed, a posterior distribution of µi,
P{ µi | Xij, j = 1, ..., Ni }, can be constructed based on tw
pieces of information: (i) the prior knowledge on th
system’s performance, and (ii) the simulation output. Th
the probability of correctly selecting the best design can
defined by

P{CS} =  P{design b is actually the best design}
               = P{ µb < µi, i ≠ b  X i, i=1,2,..,k }.     (1)

To simplify the notation used, we rewrite Eq. (1) a
{ }biP ib ≠< ,ˆˆ µµ , where iµ̂  denotes the random variable

whose probability distribution is the posterior distributio
for design i.

As indicated earlier, we consider the case where 

variance 2
iσ  is known.  Under this assumption, th

unknown mean µi has the conjugate normal prio
distribution ( )00,νµN .  Furthermore, the posterior

distribution of any simulation output still follows the norma
distribution.  Thus, the posterior distribution of µi  is












++
+

2
0

2

2
0

2

2
0

2

2
00

2

,~ˆ
νσ

νσ
νσ

µνµσ
µ

ii

i

ii

iii
i

NN

N
N

for i  = 1,2,... ,k

Suppose that the performance of any design 
completely unknown before conducting the simulation.  
that case, De Groot (1970) suggests a procedure where
prior distribution is found by taking the parameter of th
conjugate prior distribution to some limiting value.  I
particular, we can consider 0ν  as an extremely large

number.  Chen et al. (1999a) then show that the poste
distribution of µi is given by

∑
=

iN

j i

i
ij

i
i N

X
N

N
1

2

),
1

(~ˆ
σ

µ .
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After the simulation is performed, 2
iσ  can be

approximated by 2
iS , the sample variance.  We further

estimate P{CS} using Monte Carlo simulation.
The goal is to maximize P{CS}, with a given number

of simulation replications, T.  Since the simulation budget
is restricted, it is necessary to develop an allocation rule f
Ni in such a way that the information about the best desig
is maximized.  In other words, simulation replications
should be allocated in a way that provides as muc
information as possible for the identification of the bes
design.

If simulations are performed on a sequential compute
with the assumption that the simulation cost for eac
replication is roughly the same across different designs, t
total computation cost can be approximated b

kNNN +++ ê21 .  In the case where the simulation cos

depends on the particular designs under consideration, o
approach can be appropriately modified to handle such
case (Chen et al. 1998).  Thus, under this environment, o
problem can be formulated as

kNN ,,1

max
ê

 P{CS}

                        s.t. kNNN +++ ê21  = T.     (2)

The solution to (2) is complicated by the following
restrictions:

1. N1, N2,,..., kN  are integers and the number of

combinations for N1, N2, ..., kN   is large even

for moderate k.
2. There is no closed-form expression for the

confidence level, P{CS}.
3. Since the optimal allocation depends on

uncertain parameters, P{CS} can be
computed only after exhausting the total
simulation budget.

Due to these difficulties, obtaining an exact solution
for (2) becomes virtually impossible, especially when k is
extremely large.  Since the purpose of solving (2) is simp
to enhance P{CS}, we should not expand too much effort
solving (2) during the overall ranking and selection
process.  Otherwise, the additional cost of solving (2) ma
overwhelm the benefits of optimal computing budge
allocation.  Hence, we need to find an inexpensive metho
that can solve (2) efficiently, even if this means obtaining 
sub-optimal solution. In other words, efficiency is more
crucial than optimality in this setting. In the next section
an asymptotic allocation rule with respect to the number 
simulation replications, Ni, is presented.
1
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3 OPTIMAL COMPUTING BUDGET
ALLOCATION (OCBA)

The problem is the optimal allocation of the simulatio
replications to each competing design to maximize P{CS}.
As discussed in the previous section, this allocati
problem is difficult, since a change in any one of the Ni’s
always modulates the correlation structure of th
underlying multivariate normal distribution, making i
virtually impossible to compute P{CS} exactly.

Let Yi be a random variable (i = 1,2,…k). According

to the Bonferroni inequality, })0({
1
ì
k

i
iYP

=
< ≥

{ }[ ]∑
=

<−−
k

i
iYP

1

)0(11 . We replace Yi by the random

variable )ˆˆ( ib µµ −  to provide a lower bound for the

probability of correct selection. That is,

P{CS}

= )}0ˆˆ({
1

<−

≠
=

i

k

bi
i

bP µµì

≥ 1 - { }[ ]∑
≠=

<−−
k

bii
ibP

,1

0ˆˆ1 µµ

= 1 - { }∑
≠=

>
k

bii
ibP

,1

ˆˆ µµ

≡ APCS.

We refer to this lower bound on the correct selectio
probability as the Approximate Probability of Correct
Selection (APCS).  APCS can be computed very easily an
quickly; no extra Monte Carlo simulation is needed.  W
therefore use APCS to approximate P{CS} as the
simulation experiment proceeds.  Chen et al. (1999
approximate P{CS} using the Chernoff bounds (Ross
1994) and offer an asymptotically solution, which i
summarized in the following theorem.

Theorem 1. Given a total number of simulation
replications T to be allocated to k competing designs whose
performance is depicted by random variables with mea

kµµµ ,,, 21 ë , and finite variances 22
2

2
1 ,,, kσσσ ë ,

respectively, the Approximate Probability of Correc
Selection (APCS) can be asymptotically maximized when

(1) 

2/1

1
2
,

2
,






















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



→ ∑

≠
=

k

bi
i ib

sb

s

b

s
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δ
σ
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2

,

,











→

sbs

ibi

s

i

N

N

δσ
δσ

for i = 1, ..., k and i ≠ s ≠ b,

where Ni is the number of replications allocated to design i,
δb,i = bµ  - iµ  and bµ  ≤ sµ  ≤ i

sbi
µ

≠≠
min . #

We now present a cost-effective sequential approac
based on OCBA to select the best design from k
alternatives within a given computing budget.  Initially n0

simulation replications for each of k designs are conducted
to obtain some information about the performance of eac
design.  As simulation proceeds, the means and varianc
of each design are estimated from the data alread
collected up to that stage.  According to these estimate
values, an incremental computing budget, ∆, is sequentially
allocated.  Ideally each new replication should bring u
closer to the optimal solution.  Namely, a decision is mad
on which designs should be eliminated from further
consideration and how much computational effort shoul
be invested for the next round of the simulation
experiment.  This procedure is continued until the tota
budget T is exhausted.

4 NUMERICAL TESTING

In this section, we will test our OCBA and compare it with
several different allocation procedures by performing a
series of numerical experiments.

4.1 Different Allocation Procedures

In addition to the OCBA we present in this paper, we tes
two more procedures and compare their performances.  W
briefly summarize the compared allocation procedures a
follows.

4.1.1  Equal Allocation

This is the more straightforward way to conduct simulation
experiments and has been well applied.  The computin
budget is equally allocated to all simulated designs
Namely, Ni = T/k for each i.  The performance of equal
allocation will serve as a benchmark for comparison.

4.1.2  Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been wide
applied. Unlike the OCBA approach, the two-stage
procedures are developed based on the classical statisti
model. See Bechhofer et al. (1995) for a systemati
discussion of the two-stage procedures. In the first stag
all designs are simulated for n0 samples. Based on the

sample variance estimate (2iS ) obtained from the first
2
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stage, the number of additional simulation samples for ea
design in the second stage is determined:

Ni = max(n0, ( 2
iS h2/d2  ), for i = 1, 2,…, k,

where • is the integer "round-up" function, d is the
indifference zone, h is a constant which solves Rinott's
integral (h can also be found from the tables in Wilcox 1984
In short, the computing budget is allocated proportional to t
estimated sample variances. The major drawback is that o
the information of variances is used when determining th
simulation allocation, while our OCBA utilizes the
information of both means and variances. As a result, t
performance of Rinott procedure is not as good as our OCB

4.2 Numerical Experiments

4.2.1  Experiment 1. Normal Distribution

There are ten design alternatives. Suppose Xij ~ N(i, 62), i =
1, 2, .., 10. We want to find a design with the minimum
mean. It is obvious that design 1 is the actual best desig
In the numerical experiment, we compare the convergen
of P{CS} for different allocation procedures. Furthermore
n

n

s
t
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10,000 independent experiments are performed to estima
P{CS}. In all the numerical illustrations, we estimate
P{CS} by counting the number of times we successfully
find the true best design (design 1 in this example) in thos
10,000 independent experiments. P{CS} is then obtained
by dividing this number by 10,000, representing the correc
selection frequency.

Figure 1 shows the test results using OCBA and othe
two different procedures given in section 4.1. All
procedures obtain a higher P{CS} as the available
computing budget increases. However, OCBA achieves 
higher P{CS} than other procedures do with a same
amount of computing budget. In particular, we indicate the
computation costs in order to have P{CS} = 99% for
different procedures in Figure 1.

It is worth noting that Rinott procedure does not
perform much better than the simple equal allocation. Thi
is because Rinott Procedure determines the number 
simulation samples for all designs using only the
information of sample variances. On the hand, Rinot
procedure is much slower than the our OCBA. This is
because when determining budget allocation, OCBA
exploits the information of both sample means and
variances. The sample means can provide the valuab
information of relative differences across the design space
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Figure 1:  P{CS} vs. the computation budget T for experiment 1. The
computation cost for obtaining P{CS}=99% using different allocation
procedures are indicated.
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 is
4.2.2  Experiment 2. Uniform Distribution

We consider a non-normal distribution for the performa
measure: Xij ~ Uniform (i-10.5, i+10.5), i = 1, 2, .., 10. The
endpoints of the uniform distribution are chosen such 
the corresponding variance is close to that in experime
Again, we want to find a design with the minimum me
and design 1 is the actual best design. All other setting
identical to experiment 1. Figure 2 contains the simula
ce

that
t 1.

an
 are
ion

results for all compared allocation procedures. We can s
that the relative performances of different procedures a
very similar with what we see in experiment 1. OCBA i
much faster than Rinott and equal allocation.

4.2.3  Experiment 3. Larger Variance

This is a variation of experiment 1. All settings are
preserved except that the variances for each design
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doubled. Namely, L(θi, ξ)) ~ N(i, 2⋅62), i = 1, 2, .., 10.
Figure 3 contains the simulation results for the compa
three allocation procedures. We can see that the rela
performances of different procedures are very similar w
what we see in previous experiments, except that big
computing budgets are needed in order to obtain a s
P{CS}, due to larger variance. Once again, OCBA is mu
faster than the other two allocation procedures.

5 CONCLUSIONS

We have shown that the algorithm based on the OC
technique is a powerful tool for selecting the best des
out of k (simulated) alternatives.  The great advantage
364
e
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e
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the OCBA technique is that the algorithm dynamically
determines the simulation lengths for all
simulationexperiments and thus significantly improves
simulation efficiency with a given computing budget.
Numerical results show that algorithms based on OCBA
can indeed significantly improve simulation efficiency.
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