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ABSTRACT In general, there are two principal approaches in
solving the ranking and selection problem:

In this paper, we consider the allocation of a fixed total
number of simulation replications among competing design
alternatives in order to (i) identify the best simulated
design, (i) intelligently determine the best simulation run
lengths for all simulation experiments, and (iii)
significantly reduce the total computation cost. An
asymptotically optimal allocation rule for maximizing a
lower bound of the probability of correct selection is
presented. Moreover, we illustrate the efficiency of our
method with a series of generic numerical experiments. The well-known two-stage sampling procedure developed
The simulation cost is significantly reduced with our by Stein (1945) exemplifies the first approach. Bechhofer
sequential approach. et al. (1954) prove that Stein’s procedure satisfies a user-
defined requirement for correct selection. Dunnett and
Sobel (1954) develop an exact analysis for the probability
of correct selection. Dudewicz and Dalal (1975) address
In order to appropriately design large man-made systemsthe problem of selecting the normal population with the
such as communication networks, traffic systems, and largest (mean) performance with unknown variances that
automated manufacturing facilities, it is often necessary to are not necessarily common. They develop a two-stage
apply extensive simulation to study their performance since procedure for selecting the best design, or a design that is
no closed-form analytical solutions exist for these complex very close to the best. At the first stage, all designs are
models. Unfortunately, using simulation to solve such simulated for n, replications. If the evidence is
problems can be both computationally expensive and time insufficient, based on the results obtained from the first
consuming due to their massive search space, evolution instage, additional simulation replications are prescribed for
time according to complex man-made rules, and the each design in order to reach the desired confidence level.
influence of random occurrences. Suppose we want to Rinott (1978) presents an alternative way to estimate the
comparek different designs based on the data obtained number of simulation replications required at the second
when random samples are drawn from each of khe stage.

designs. If the performance of each system is completely As examples of the second approach, Tong and
unknown, we would condudt simulation replications for Wetzell (1984) and Futschik and Pflug (1997) develop
each of thek designs. Therefore, we need a totalkbf adaptive procedures for sequentially allocating a fixed
simulation replications. If the accuracy requirement is high simulation budget. Tong and Wetzell use the results in
(N is not small), and if the total number of designs in the Bechhofer (1969) to ensure that the best design obtains a
selection problem is not smalk (is large), the total desired proportion of the total number of replications,

(a) Specify the number of simulation replications
first and hope that the resulting precision is
satisfactory, or

(b) Specify the desired precision first and hope
that the number of replications required to
achieve this precision is not unacceptably
large.

1 INTRODUCTION

simulation cost might become extremely high, therefore
precluding the feasibility of simulation. The effective
reduction of computation cost while obtaining a good
decision is therefore a very important topic in simulation.
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while developing a new rule to allocate the remaining
replications to the other designs. Futschik and Pflug
(1997), on the other hand, formulate a specific closed-form
expression for an expected loss function. Therefore, an
approximate solution for the objective function is given by
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applying nonlinear programming and a regularization techniques for solving OCBA. The performance of these

technique.

techniques is illustrated with a series of generic numerical

These approaches have been extended to more generadxperiments in Section 4. Section 5 concludes the paper.

ranking and selection problems in conjunction with new
developments.
(1979), Matejcik and Nelson (1995), Bechhofer et al.

Chiu (1974), Gupta and Panchapakesan2 FORMAL STATEMENT OF THE PROBLEM

(1995), and Hsu (1996) present methods based on theThe principle goal is to select the best lofalternative
classical statistical model adopting a frequentist view. On system designs. Without loss of generality, we consider
the other hand, Berger and Deely (1994), Bernardo and minimization problems in this paper; thus, the “best”

Smith (1994), Chick (1997a, 1997b), and Chick and Inoue design means the design with

the smallest mean

(1998) use a Bayesian framework for constructing ranking performancey. We assume that the competing designs

and selection procedures.

have known variances that are not necessarily common.

To further reduce the overall computation cost, Chen We further assume that the computing budget is limited
(1995) formulates the procedure for selecting the best and the number of competing designs is large. Denote by

design as another optimization problem. The idea in

Chen’s formulation is as follows: Intuitively, some inferior k: the total number of designs,
designs can be discarded during the early stages of Xj: the j-th iid. sample of the performance
simulation. As the simulation proceeds, on the basis of the measure from design
estimated values of the parameters, a decision is made on X, : the vector representing the simulation output
which designs can be eliminated from further consideration for designi; X; = {X; :j=1,2,.N/ },
as higher simulation accuracy for the remaining designs is N;: the number of simulation replications for
obtained. This procedure is repeated until a desired designi,
assurance of correct selection is obtained. Little effort is [I. : the sample mean performance measure for
therefore expanded on simulating inferior designs, N
reducing the overall simulation time. Ideally, we want to designi, i.e., I, = iz' X..
optimally allocate the number of simulation replications to TN g
each design in order to minimize the total simulation cost . .
while obtaining the desired confidence level. In fact, this M-z the mef';m performanp_e measiyes E0G).
question is equivalent to optimally decide which designs o;":the variance for design
will receive an additional computing budget for continuing b: the design having the smallest sample mean
the simulation or to find an optimal selection procedure to performance measure, i.g1, < miin o,
identify the best design. . .

Chen et al. (1996) provide an approach to solve such S the design having the second smallest sample
an optimization problem. They use Chernoff bounds to mean performance measure
estimate the gradient information and then apply the €., [y < Hs = MINK;,
modified steepest ascent method to solve this optimization 8 =M - [

T H i

problem. In a follow-up work, Chen et al. (1997) obtain the
gradient information through finite differencing and then
apply the steepest-ascent method to solve the budget
allocation problem.

while achieving the desired confidence level.

Note that whenN/'s are large, i; can be a good

blem.  Numerical results show that these approximation fory, since, according to the law of large
approaches significantly reduce the overall simulation cost, ,mbers Plim o =i} =1
’ i >0 I 1 '

However, given the

Instead of using the nonlinear programming methods fact that we can conduct only a finite number of simulation

described above, we opt for a decision-theoretic approach.replications, i; is simply an approximation {@. Since an
Thus, we propose an asymptotically optimal allocation approximation is used to select the best design, it is

rule, Optimal Computing Budget Allocation (OCBA), for
maximizing the lower bound of the probability of correct

desirable to state the confidence in our decision, typically
expressed as the probability ofrrect selection In this

selection subject to a fixed total number of simulation paper, we defineorrect selectioras the event that a design

replications.

The paper is organized as follows: In the next section, b) is actually the best design.

with the smallest sample performance measure (i.e., design

In the remainder of this

we formulate the optimal computing budget allocation paper, we let “CS” denote “correct selection.”
There exists a large literature on selecting the best

(OCBA) problem and discuss the major issues in solving

this optimization problem. Since our approach is based on design based on the classical statistical model. Goldsman
the Bayesian framework, we also provide a brief discussion and Nelson (1994) provide an excellent survey of ranking,
of that framework for completeness. Section 3 presents theselection, and multiple comparison techniques for selecting
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the best system (e.g., Gupta and Panchapakesan 1979%fter the simulation is performed,c? can be
Kleijnen 1987, Goldsman, Nelson, and Schmeiser 1991,

and Law and Kelton 1991). In addition, Bechhofer, @pproximated byS?, the sample variance. We further
Santner, and Goldsman (1995) give a systematic and moreestimateP{CS} using Monte Carlo simulation.
detailed discussion on this issue. These approaches are The goal is to maximiz{CS}, with a given number
mainly suitable for problems having a small number of of simulation replications]. Since the simulation budget
competing designs. However, for large-scale industrial is restricted, it is necessary to develop an allocation rule for
problems, the number of designs can rapidly grow N;in such a way that the information about the best design
extremely large. is maximized. In other words, simulation replications
We adopt the Bayesian framework for constructing an should be allocated in a way that provides as much
efficient approach to ranking and selection problems (Chen information as possible for the identification of the best
1996, Chick and Inoue 1998). Under a Bayesian model, we design.

assume that the simulation outpMt , has a normal If simulations are performed on a sequential computer
j 1 . . . .
with the assumption that the simulation cost for each
distribution with meary; and known variancer?. After replication is roughly the same across different designs, the
the simulation is performed, a posterior distributiorupf ~ fotal computation cost can be approximated by
P{ 1 | X;,j =1, ...N; }, can be constructed based on two N; + N, +---+ N, . In the case where the simulation cost

pieces of information: (i) the prior knowledge on the depends on the particular designs under consideration, our
system’s performance, and (ii) the simulation output. Thus, approach can be appropriately modified to handle such a
the probability of correctly selecting the best design can be case (Chen et al. 1998). Thus, under this environment, our

defined by problem can be formulated as
P{CS} = P{designbis actually the best design} max P{CS}
Py <, i b 0X;,i=1,2,..k }. 1 Mo
{Ho <H ' J @) St Ny+N, ++N, =T. )

To simplify the notation used, we rewrite Eq. (1) as . _ _ _
P{{, < fi;,i # b}, where i, denotes the random variable The solution to (2) is complicated by the following

whose probability distribution is the posterior distribution restrictions:

for designi.

As gi]ndicated earlier, we consider the case where the 1. Ny, Na,..., N, areintegers and the number of
variance aiz is known. Under this assumption, the combinations folN;, N,, ..., N is large even
unknown mean y; has the conjugate normal prior for moderatek.
distribution N(yo,vo). Furthermore, the posterior 2. There is no closed-form expression for the
distribution of any simulation output still follows the normal confidence levelP{CS}.
distribution. Thus, the posterior distributionefis 3. Since the optimal allocation depends on

uncertain  parameters,P{CS} can be
computed only after exhausting the total
i ~ NPpizuo +Nwvol,  ofve [ simurl)ation bugget. °

E oZ +Nvi o7 +Nw§ E
fori =1,2,..k Due to these difficulties, obtaining an exact solution
for (2) becomes virtually impossible, especially wheis

Suppose that the performance of any design is extremely large. Since the purpose of solving (2) is simply
completely unknown before conducting the simulation. In @ €nhancéCS}, we should not expand too much effort
that case, De Groot (1970) suggests a procedure whereby £0/Ving (2) during the overall ranking and selection
prior distribution is found by taking the parameter of the Process. Otherwise, the additional cost of solving (2) may

conjugate prior distribution to some limiting value. In Overwhelm the benefits of optimal computing budget
particular, we can considev, as an extremely large allocation. Hence, we need to find an inexpensive method

.__that can solve (2) efficiently, even if this means obtaining a
n_um_ber._ Chen_et "_"I' (1999a) then show that the pOSte‘r'orsub-optimal solution. In other words, efficiency is more
distribution ofys is given by crucial than optimality in this setting. In the next section,
" ) an asymptotic allocation rule with respect to the number of
. 14 g; simulation replicationsy; is presented.

B=NGED Xe plcationh s p

i = N;
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3 OPTIMAL COMPUTING BUDGET
ALLOCATION (OCBA)

The problem is the optimal allocation of the simulation
replications to each competing design to maxinfges}.
As discussed in the previous section, this allocation
problem is difficult, since a change in any one of e
always modulates the correlation structure of the
underlying multivariate normal distribution, making it
virtually impossible to compute{CS} exactly.

LetY; be a random variableé € 1,2,..k). According

inequality, P{(IS](Yi <0) 3

i=1

to the Bonferroni

K
1—2[1— P{(Yi <0)}]. We replaceY; by the random
=

variable ({1, - [; ) to provide a lower bound for the
probability of correct selection. That is,

P{CS}

k
= P{ﬂ(ljb -; <0)}
)

izb

21- %[1‘ P{a, - 4; <0}]

i=Li#zb

k
=1- 5 P{i, > i}
i=LT¢b
= APCS.

We refer to this lower bound on the correct selection
probability as theApproximate Probability of Correct
Selection(APCS). APCScan be computed very easily and
quickly; no extra Monte Carlo simulation is needed. We
therefore use APCS to approximate P{CS} as the
simulation experiment proceeds.
approximate P{CS} using the Chernoff bounds (Ross
1994) and offer an asymptotically solution, which is
summarized in the following theorem.

Theorem 1. Given a total number of simulation
replicationsT to be allocated t& competing designs whose

Lin, and Yiicesan

HL /5b'i g fori=
0s/3bs H

whereN,; is the number of replications allocated to desgign
&i=Hp - By and [, < g < minfi;.  #
iZbzs

We now present a cost-effective sequential approach
based on OCBA to select the best design fr&m
alternatives within a given computing budget. Initiaily
simulation replications for each kfdesigns are conducted
to obtain some information about the performance of each
design. As simulation proceeds, the means and variances
of each design are estimated from the data already
collected up to that stage. According to these estimated
values, an incremental computing buddetis sequentially
allocated. Ideally each new replication should bring us
closer to the optimal solution. Namely, a decision is made
on which designs should be eliminated from further
consideration and how much computational effort should
be invested for the next round of the simulation
experiment. This procedure is continued until the total
budgetT is exhausted.

(2) % - 1, ...kandi #s#b,
S

4 NUMERICAL TESTING

In this section, we will test our OCBA and compare it with
several different allocation procedures by performing a
series of numerical experiments.

4.1 Different Allocation Procedures

In addition to the OCBA we present in this paper, we test

two more procedures and compare their performances. We
briefly summarize the compared allocation procedures as
follows.

Chen et al. (1999b) 4 1 7 Equal Allocation

This is the more straightforward way to conduct simulation
experiments and has been well applied. The computing
budget is equally allocated to all simulated designs.
Namely, N, = T/k for eachi. The performance of equal

performance is depicted by random variables with means yji5cation will serve as a benchmark for comparison.

Uy, Ms,..., e, and finite variances 0Z,03,...,0¢,

respectively, the Approximate Probability of Correct
Selection APCS can be asymptotically maximized when

0 /12

Ny 0y B[P

k
(1) ,
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4.1.2 Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been widely
applied. Unlike the OCBA approach, the two-stage
procedures are developed based on the classical statistical
model. See Bechhofer et al. (1995) for a systematic
discussion of the two-stage procedures. In the first stage,
all designs are simulated fay, samples. Based on the

sample variance estimate&%) obtained from the first
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stage, the number of additional simulation samples for each 10,000 independent experiments are performed to estimate

design in the second stage is determined: P{CS}. In all the numerical illustrations, we estimate
P{CS} by counting the number of times we successfully
Nj = maxfi, [{ S2h%/d? 0), fori = 1, 2,.., k, find the true best design (design 1 in this example) in those

10,000 independent experimenB{CS} is then obtained
by dividing this number by 10,000, representing the correct
selection frequency.

Figure 1 shows the test results using OCBA and other
two different procedures given in section 4.1. All
procedures obtain a higheP{CS} as the available
computing budget increases. However, OCBA achieves a
higher P{CS} than other procedures do with a same
amount of computing budget. In particular, we indicate the
computation costs in order to haW{CS} = 99% for
different procedures in Figure 1.

It is worth noting that Rinott procedure does not
perform much better than the simple equal allocation. This
is because Rinott Procedure determines the number of
simulation samples for all designs using only the
information of sample variances. On the hand, Rinott
procedure is much slower than the our OCBA. This is
because when determining budget allocation, OCBA
exploits the information of both sample means and
variances. The sample means can provide the valuable
information of relative differences across the design space.

where 400 is the integer "round-up" functiord is the
indifference zoneh is a constant which solves Rinott's
integral f can also be found from the tables in Wilcox 1984).
In short, the computing budget is allocated proportional to the
estimated sample variances. The major drawback is that only
the information of variances is used when determining the
simulation allocation, while our OCBA utllizes the
information of both means and variances. As a result, the
performance of Rinott procedure is not as good as our OCBA.

4.2 Numerical Experiments
4.2.1 Experiment 1. Normal Distribution

There are ten design alternatives. Suppgse N(, 6%),i =

1, 2, .., 10. We want to find a design with the minimum
mean. It is obvious that design 1 is the actual best design.
In the numerical experiment, we compare the convergence
of P{CS} for different allocation procedures. Furthermore,

——OCBA ----Equal ---—- Rinott
0.99 / P
o ——
0.95 =
/ e Equal
0.91 - irlott 4400
: / ,/’ Rirott
. 0.87 4 4000
) yai
©, 083 i;
o ':,r
0.79 J
0 /
75 4
/' OCBA
0.71 1 1400
067 T T T L T T
0 1000 2000 3000 4000 5000 6000

Figure 1: P{CS} vs. the computation budgdt for experiment 1. The
computation cost for obtaining{CS}=99% using different allocation
procedures are indicated.

4.2.2 Experiment 2. Uniform Distribution results for all compared allocation procedures. We can see
that the relative performances of different procedures are

We consider a non-normal distribution for the performance very similar with what we see in experiment 1. OCBA is

measureX; ~ Uniform (-10.5,i+10.5),i = 1, 2, .., 10. The much faster than Rinott and equal allocation.

endpoints of the uniform distribution are chosen such that

the corresponding variance is close to that in experiment 1.4.2.3 Experiment 3. Larger Variance

Again, we want to find a design with the minimum mean

and design 1 is the actual best design. All other settings areThis is a variation of experiment 1. All settings are

identical to experiment 1. Figure 2 contains the simulation preserved except that the variances for each design is
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doubled. NamelyL(8, &) ~ NG, 289, i = 1, 2, .., 10. the OCBA technique is that the algorithm dynamically
Figure 3 contains the simulation results for the compared determines  the  simulation  lengths  for  all
three allocation procedures. We can see that the relativesimulationexperiments and thus significantly improves
performances of different procedures are very similar with simulation efficiency with a given computing budget.
what we see in previous experiments, except that bigger Numerical results show that algorithms based on OCBA
computing budgets are needed in order to obtain a samecan indeed significantly improve simulation efficiency.
P{CS}, due to larger variance. Once again, OCBA is much

faster than the other two allocation procedures. ACKNOWLEDGEMENTS
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Figure 2:P{CS} vs. the computation budgdt for experiment 2.
The computation costs for obtaini{CS}=99% using different
allocation procedures are indicated.
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Figure 3:P{CS} vs. the computation budgét for experiment 3.
The computation costs for obtainif§CS}=99% using different
allocation procedures are indicated.
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