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ABSTRACT

For large investment projects sensitivity analysis is 
important tool to determine which factors need furth
analysis and/or can jeopardize the future of a project.
practice reliable information on the joint probabilit
distribution of factors affecting the investment is mos
lacking, so a stochastic analysis is not possible. This pa
analyzes how and to what extend statistical design
experiments in combination with regression meta model
can be helpful in finding important factors in determinist
models. Information that is useful to decision makers.

1 INTRODUCTION

In practice, deciding on investment in infrastructure us
the Net Present Value (NPV); that is, a necessary condi
to accept an investment proposal is that the NPV be 
negative. In developing countries this criterion is used 
investments financed by development aiding agenc
(World Bank, Asian Development Bank). In this paper w
address the problem of uncertainty in the model s inputs
and parameters, further referred to as factors. In prac
most models used to analyze investments are determin
because no or only limited information is available on t
(joint) distribution of the factors.

An additional question is: Which factors can make
project go $wrong#; that is, which factors may caus
NPV <  0� Decision makers ask for this type o
information to support their decision making process; 
Van Groenendaal (1998b).

Note that information on which factors affect the NP
is useful also to evaluate implementation progress after
decision to proceed has been taken.

In applied work sensitivity analysis is limited to on
factor at a time in combination with a few scenarios. F
this three data points per factor are required: the base 
value, and a minimum and maximum value. The result
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information is, however, insufficient to meet the decis
makers needs.

Van Groenendaal and Kleijnen (1997) and V
Groenendaal (1998a) suggest to apply the statistical theo
on design of experiments in combination with regress
meta-modeling (further referred to as DOE) for sensiti
analysis of deterministic models. This approach requ
the same information on factors as the currently u
methods.

DOE is typically applied in a constructive way; that
one starts with a simple design and estimates a si
meta-model. For example, first use a  design to iden
important (main) effects and to see if there are poss
interactions. Only if the estimation results indicate ot
effects, a more complicated design is introduced. T
approach is chosen to minimize the amount of w
required.

In this paper we explain the different steps of DOE
deterministic models and discuss some of the hazard
keep our analysis manageable we use a rather s
deterministic investment model, based on work done
the Asian Development Bank (ADB, 1996), instead o
complicated one.

The remainder of this paper is organized as follo
Section 2 discusses DOE in more detail. Section 3 rev
the NPV model used as a test case. Section 4 applies 
Section 5 contains conclusions.

2 DESIGN OF EXPERIMENTS

As argued by Van Groenendaal  (1998b), the NPV-ana
of an investment problem has a typical form. Many inp
need not to be analyzed separately, but can be comb
The way they are introduced in the NPV-analysis acts 
funnel. An example is the analysis of investment c
which in most cases is based on many inputs. In
calculation of the NPV the aggregated cost is used. It is
necessary to vary all separate inputs affecting 
investment cost, the variation in the total cost suffices
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the investment cost is important, one can always ana
separately how the different factors affect the to
investment cost. We therefore assume that the numbe
factors is limited.

Note that for models with many factors, screening
required before the procedures discussed here can
applied. For a discussion of screening we refer to Kleijn
(1998).

We propose to apply the design of experiments
obtain information at extreme points of the experimen
area mentioned earlier. (This in contrast to a Monte Ca
approach where areas with high probability are samp
more often.) The simulation results at the extreme poi
together with the design matrix, are the inputs for
regression meta-model. The parameter estimates of
meta-model indicate which factors are important.

Many designs are such that the regression matrix
the standardized factor values for the meta-model has 
properties. (For an excellent discussion see Montgom
(1991).)   Such properties simplify the analysis and 
interpretation of results (Kleijnen and Van Groenenda
1992, pp 177-8).

Let us review the commonly used approach to DO
The aim is to obtain the required information with 
minimum number of simulation runs, so the first step is
estimate the main effects. Although there are many des
to choose from, a 2k-p fractional factorial design (with k the
number of factors and p chosen so that k-p � q, with q the
number of parameters) or a Plackett-Burman des
(Plackett and Burman, 1946) are often used as a sta
point.

In general both these designs are Resolution 
designs; that is, the estimates of the main effects are
aliased with other main effects, but they are with tw
factor interactions. However, by carefully choosing t
generators of a design, it is possible to minimize the w
required, or even start with a Resolution IV design. In
Resolution IV design the estimates of the main effects 
no longer aliased by interactions, but interactions are 
aliased.

To check whether a meta-model based on input fro
Resolution III design needs to be extended, Box a
Wilson s (1951) fold-over can be applied. Let D be the
design matrix used. The fold-over of D is defined as -D, so
the number of simulation runs is doubled. The effect of 
fold-over is that a Resolution III design becomes 
Resolution IV design. If the coefficients change it is cle
that interactions are present. Because we now have t
as many simulation runs, we can estimate a limited num
of interactions also. In some cases this might be sufficie
see Van Groenendaal (1998a) for an example. In case
model is inadequate we have to add more simulation r
This can be done gradually or one can proceed t
Resolution V design, in which no main effect or two-fact
interaction is aliased with any other main effect or tw
714
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factor interaction, but two-factor interactions are aliased
with higher order factor interactions.

In practice interactions between three or more factor
are often assumed to be zero. In all our applications w
never experienced significant three-factor interactions.

To evaluate the estimation result the adjusted R
square, adj

2R , is normally used. However, at the start of the

procedure to construct an adequate meta-model the numb
of data points is often close to the number of coefficients t
estimate, in which case the adj

2R  is of limited use only.

Note that the distinction between the lack-of-fit error
and the experimental error that is often used to test fo
$goodness of fit# can not be used here, because we hav
only one observation for each factor combination.

Another way to determine if the model is correct is by
applying cross-validation; that is, delete one of the
simulated NPV values from the data set and re-estimate t
model for the reduced set. The re-estimated model is the
used to forecast the deleted value. In case of (not detecte
interactions the model will not be stable and the forecas
will be poor; see Kleijnen and Van Groenendaal (1992)
The advantage of this approach is that no new simulatio
runs are required to test the model. Note that cros
validation can be applied at any stage of the procedure.

A final problem that has to be addressed is the fact th
the error term in the meta-model will in general not be
normally distributed, because we use the extreme points 
the experimental area. To test normality of the residues w
apply the Wald statistic on skewness, on kurtosis, and 
combined test (Greene, 1993, pp. 309-311). All three ar

2χ  distributed. If the statistics are significant, the
assumption of normality of the residues has to be rejecte
and we cannot use the F-test on model reduction (Kleijne
1987, pp. 155-57). To test for model reduction; that is

0H   :  R  =  0β , we use the limiting distribution of the

Wald statistic W =  ( R  )  [R  ( X X )  R ]  R T 2 T -1 T$

$

$β σ β ,

which converges to a 2χ  distribution with degrees of
freedom equal to the rank of the matrix R (Greene, 1993,
pp. 300-301). This Wald statistic on model reduction
assumes homoscedasticity. Because we simulate extre
points, this assumption may not hold. Therefore, we teste
the model reduction also assuming heteroscedasticity.

Let ( e  ,   ...  ,   e  ,   ...  ,   e )1
2

i
2

m
2  be the vector of squared

residues, with m the number of observations, and let $Ω
denotes a covariance matrix with
( e  ,   ...  ,   e  ,   ...  ,   e )1

2
i
2

m
2  on the diagonal and zero

otherwise. The Wald statistic for the heteroscedastic mod
is  W =  (R )  [R ( X X )  (X  X ) ( X X )  R ]   R T T -1 T T -1 T -1$ $ $β βΩ ,

which has the same 2χ limiting distribution as the
homoscedastic model. Next we briefly introduce the cas
study.



Identifying Important Factors in Deterministic Investment Problems Using Design of Experiments

ctio
sly

ion
ack
as
rm
the

e is
nd
 as
tion
ns
the

r a
an
he

ge

re as
um

uan
ghly
ded
es
 the
gy

s

,

gle
nt
se

rs

tor
nd-

y
est
1,
e

3 STAR FARM CASE STUDY

The Chinese government sees large-scale biogas produ
as an opportunity to solve several problems simultaneou
namely: (i) the lack of energy in rural areas, (ii) the pollut
of the environment by large breeding farms, and (iii) the l
of fertilizer for the agricultural sector. Large-scale biog
digesters using the manure of one or more breeding fa
plus some crop residues help to solve these problems; 
(i) produce a convenient form of energy (biogas), (ii) ther
no more uncontrolled pollution by dumping manure, a
(iii) the residuals of biogas production can be used
fertilizer in the production of vegetables and as an addi
to fodder for other stock, such as, pigs, fish, and praw
There are, however, a number of factors that affect 
profitability of investing in large scale biogas plants. (Fo
complete description of the problem we refer to V
Groenendaal and Kleijnen (1998).) These factors and t
base values are:

1. The shares of the different inputs in the total Z, for
which the vector of base values is
(0.808 ,   0.114 ,   0.078 )T .

2. The total amount of annual input i = 1
3

i Z∑ ; base value
is 31,000 metric ton.

3. The total investment costs TIP  I ; base: 4,961,000
Yuan and a building time of one year.

4. Environmental benefits A ; 564,900 Yuan per year.
5. The prices of labor LP ; 4,200 Yuan per year, and the

intermediary inputs water and de-sulfurizer

M
T

W DP  =  ( P   ,   P  ); (0.48;2,034) Yuan per unit.

6. The price of biogas 
1QP ; 0.8 Yuan/mg

3, and the prices

of the energy inputs electricity, diesel oil, and coal

E
T

electricity diesel  oil coalP  =  ( P   ,   P   ,   P  ); (0.375,

1780, 285) Yuan per unit.
7. The prices  of the post-processing output liquid slud

( Q  )2 , fertilizer ( Q  )3 , and fodder ( Q  )4

(  P   ,  P   ,  P   )
2 3 4Q Q Q ;  (1.627, 813.7, 537.0) Yuan

per unit.
8. The efficiency τ  of the biogas digesters; the base

value is 1.029 mg
3/md

3.

The possible changes in the base values listed above a
follows. For the factors 1, 2, 5, and 7 we set the maxim
changes at � 20%. For factor 3 the change is � 25%, based
on previous experience. Factor 4 contains 209,900 Y
per year of avoided damages, but these are hi
uncertain. Therefore, we set the change of avoi
damages at � 50%. Given the current law, the indemniti
are assumed fixed. For factor 6 (energy prices) we vary
price of biogas � 25%, whereas we vary the other ener
715
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prices � 20%. We vary the efficiency of the bio-digester
(factor 8) � 17%.

Note that factor 1 actually comprises two factors
factors 1a and 1b (the share of chicken dung (say) 2α  and
the share of industrial waste 3α  in the total annual input
(the sum of all shares (  ,    ,    )1 2 3α α α  equals 1). We vary

2α  and 3α  in the same way; that is, if 2α  is at its
maximum (minimum) than so is 3α ; hence in the DOE
analysis the two components have to be treated as a sin
factor. In the same way factors 5, 6, and 7 represe
combined factors. In case of a stochastic analysis the
factors would be strongly correlated.

4 SENSITIVITY ANALYSIS THROUGH DOE

For the deterministic model we denote the eight facto
mentioned in Section 3 by  iX  (i = 1, ... , 8); for these iX
we consider only three values: -1, 0, and +1: iX  =  - 1
indicates the low value of the range, iX  =  0 denotes the
base case value, and iX  =  1 denotes the high value of the
range.

Since we assume three-factor and higher order fac
interactions to be zero, our meta-model is at most a seco
order approximation in X. In the sequel 0β  denotes the

grand mean, iβ  (i = 1, ... , 8) main effects, i , jβ  two-factor

interactions, andi , iβ  the quadratic effects in the

approximation.
First, we apply a IV

8-42 design and estimate a first-order
polynomial; that is, 0β  and iβ  (i = 1, ... , 8) (Table 1,

column 2). This Resolution IV design is obtained b
choosing the generators of the design such that the b
possible alias relationship is obtained (Montgomery, 199
pp. 358-60). The first four factors are identified with th
four columns, (say) d1, d2, d3, and d4, of the 24 full factorial
design. Factors 5 till 8 are defined as: d5 = d2* d3*d4, d6 =
d1* d3*d4, d7 = d1* d2*d3, and d8 = d1* d2*d4. The result is a
Resolution IV design.
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Table 1: First Order Regression Model

design IV
8-42 III

8-42 IV
(8+1)-42

0β

1β

2β

3β

4β

5β

6β

7β

8β

2574627
309834
913001

-1184953
650248

-258503
1084935
317222
869229

2575971
300206
919721

-1026669
679051
13824

1090311
310502
876176

2575971
353296
919721

-1235252
644872

-265450
1090311
310502
876176

adj
2R 0.87 0.86 0.85

All main effects have the signs expected by expert
Their absolute values indicate their relative importanc
(because we standardized: -1  X   1  )i≤ ≤ , assuming the
experimental area (the combination of factor ranges) 
chosen correctly (see Kleijnen and Van Groenendaal, 19
pp. 177-178).

We also included in Table 1 the estimation result for
case where the generators were chosen rather arbitra
(column 3) (so the design is a III

8-42 ) and applied a fold-over
(column 4).

 If we compare column 3 and column 4, the  3β  and

5β  change considerably, and1β  to a lesser extent,

indicating possible interactions. Comparing columns 2 an
3 indicates that estimates of 3β  and 5β  may be aliased.

Note that the grand mean 
0

$β  is for all cases  almost

equal to the base case value (namely NPV = 2,557,93
We now continue with theIV

8-42  design.
Nine coefficients are estimated and significan

However, we have 16 data points, so estimation of t
combined  interactions is possible without adding ne
simulation runs. In the design two-factor interactions a
aliased with each other and there are 7 sets of aliased t
factor interactions (Montgomery, 1991, p. 631). We ca
estimate 16 coefficients from 16 data points, but this 
stretching the use of the available information to the limi
Statistical testing is not possible.

Unless information besides  the estimation results 
available, we cannot become more specific about whi
two-factor interactions are actually important. Sometime
such information is available from earlier experiments (th
model is not a black box to the experimenter (Va
Groenendaal, 1998a)), or  experts can rule out certa
716
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coefficients. In this example 2,8β , 2,6β ,  and 6,8β  are

expected to be significant, but it is not certain that all t
other effects are zero. In case no further information
available, extra simulation runs are required to ident
significant interactions.

If we assume that only  2,8β , 2,6β ,  and 6,8β  are

significant we obtain: 2,6β  = 216987, 2,8β  = 173846, and

6,8β = 251468. Because the design is orthogonal, t

estimates for the grand mean and the main effects do
change when interaction terms are added, so the estima
results in Table 1, column 2, remain the same.

To test the stability of the estimation results (includin

2,8β , 2,6β ,  and 6,8β ) we apply cross-validation. The resul

is in Figure 1, which shows that the result is acceptab
given the limited information available.

In case we had used the III
8-42  design to start our

analysis, the fold-over would result in sufficient data 
estimate a number of two-factor interactions. In this ca
we need to identify the exact the alias structure; s
Kleijnen (1975, pp. 320-28) on how to proceed. We w
not elaborate on this approach, but go to the next step
case the result is inadequate; that is, more information
required.

To further analyze the two-factor interactions  w
select a central composite design including a V

8-22  design.
For the star design we added 10% to (subtracted 10%
the high (low) value of the range. This design has 81 d
points (the base case, plus the 64 points of the V

8-22 design,
and the 16 points of the star design).
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Figure 1 NPV Meta-model Predictions versus Simulatio
Realizations
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The final result of this analysis is in Table 2. All mai
effects remain significant; there are ten significant tw
factor interactions, and no significant quadratic effects. T
most important two-factor interactions are the ones alrea
identified previously.

Table 2: Meta-model Based on a Central Composite V
8-22

Design

Coef. Estimate Coef. Estimate

0
$β

1
$β

2
$β

3
$β

4
$β

5
$β

6
$β

7
$β

8
$β

2558301

309817

912900

-1235250

644872

-264147

1084915

310418

869229

1, 2
$β

1, 5
$β

1, 6
$β

1, 7
$β

1, 8
$β

2, 5
$β

2, 6
$β

2, 7
$β

2, 8
$β

6, 8
$β

61967

43461

34736

34178

26877

-46371

216987

62100

173846

217307

adj
2R  =  0.98

The Wald statistic on skewness, on kurtosis, and t
combined test were highly significant, so the assumption
normality of the residues of our meta-model has to 
rejected. Therefore, we tested the model reducti
assuming homo- as well as heteroscedasticity. The C
square values are: 26

2χ  =  6.86 and  26
2χ  = 17.91

respectively, so the model reduction is accepted. The 
results indicate that assuming homoscedasticity 
permitted. Further reduction leads to significant W-value
that is, a loss of information.

Table 2 gives the impression that the previous mod
with 12 significant factors is inadequate. We shoul
however, keep in mind that with more data we are able
identify more effects also; effects which are not necessa
important for our goal: identify the most important threa
to our investment.

5 CONCLUSIONS

In practice the NPV of investment problems is  ofte
analyzed through the use of deterministic models, beca
no information on the joint probability distribution function
of factors is available. Sensitivity analysis of the NPV 
required to help decision makers understand what c
make a project go wrong. For sensitivity analys
717
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practitioners use one factor at a time and a few scenario
We base our sensitivity analysis on experimental desig
and regression meta-modeling. Our approach uses the sa
information about the experimental area as curren
practices and is relatively simple. It results, however, in
better information to support decision makers.
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