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ABSTRACT some notions of the effective dimension of the integrand.
Section 3 describes some simulation methods, Monte
This paper surveys recent research on using Monte Carlo Carlo, quasi-Monte Carlo and hybrids thereof, that can be
techniques to improve quasi-Monte Carlo techniques. used on high dimensional integration problems. For very
Randomized quasi-Monte Carlo methods provide a basis high dimensional problems, some of these methods lose
for error estimation. They have, in the special case of effectiveness. Section 4 describes methods of using lower
scrambled nets, also been observed to improve accuracy.dimensional integration methods on higher dimensional
Finally through Latin supercube sampling it is possible problems. Brief conclusions are given in Section 5.
to use Monte Carlo methods to extend quasi-Monte Carlo

methods to higher dimensional problems. 2 THE PROBLEM OF DIMENSION

1 INTRODUCTION This section presents working definitions of high and very
high dimensional problems, taken from Owen (1998). The
The problem we consider is the estimation of an integral ANOVA decomposition is based on Owen (1992) and
other references cited there. The definitions of effective
_ dimension are from on Caflisch, Morokoff and Owen
I= f(x)dx. Q)
[0,1)4 (21997).

Standard manipulations can be applied to express integrals
over domains other than the unit cube or with respect
to nonuniform measures in the form (1). Similarly, the When d = 1, there are standard integration techniques
integrand f in (1) subsumes weighting functions from that have very good accuracy whehis smooth. See
importance sampling or periodization. We are especially Davis and Rabinowitz (1984). For small > 1 iterated
interested in cases where the dimensibris large, and versions of such rules, based on Fubini’s theorem, can be
some of the methods considered here apply to the casevery effective. But for a rule with error&(n=") in one
d = oc. dimension, the errors becon@(n~"/¢) in d dimensions.
The focus of this article is on ways of combining A working definition of a high dimensional problem is
Monte Carlo and quasi-Monte Carlo solutions to this one where iterated integrals are computationally infeasible
integration problem. Our goal is to provide readers with or insufficiently accurate.
enough information to see what can be done and decide High dimensional problems are best handled by
whether the approach is worthy of further investigation for simulation methods, including Monte Carlo and quasi-
their problems. For those readers who want to implement Monte Carlo (equidistribution). These are reviewed in
these constructions or to gain a full understanding of when Section 3.
and why the methods can work, there are references to In sufficiently large dimensions it becomes difficult
the literature. to even construct quasi-Monte Carlo point sets with
Section 2 describes the effect of the dimensién meaningful equidistribution properties. For example,
on the problem of computing (1). This section also some constructions are not especially equidistributed unless
presents an ANOVA decomposition of the integrand and n = O(d?) which can be too large. A working definition

2.1 High and very high dimensions
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of a very high dimensional problem is one where iterated
integrals are computationally infeasible or insufficiently
accurate. Monte Carlo is still available for such problems,
as is Latin hypercube sampling (Section 4.1). Latin

in w. Using a natural conventioffiy(«) = I, and another
convention givesfa(z) = f(z) — 32, <4 fu(@).

The function f,,(z) only depends orx*. When it is
desired to emphasize this point, we wrftg(z*). Formally,

Supercube sampling (Section 4.4) is directed at extending f, (2*) = f,(z) at any pointz for which z* = z*. The

quasi-Monte Carlo into very high dimensional problems.

2.2 ANOVA Decomposition

Let A={1,2,...,d} denote the set of input variables to
the function f on [0,1]?. We can writef as a sum of
2¢ functions, one for each subset df with that function
only depending on the variables in its subset. That is

fa) =" ful), )

uCA

where f,(z) only depends on those components of
whose indices are im.

For any choices off, with v # A, we can make
(2) hold by choosingf4 by subtraction. For example,
suppose

f(z) =30+ 202! + 1022 — 16222
wherez = (z!,2?) € [0,1]2. This can be rewritten as
f(x) = fo(z) + fry(2) + froy (@) + friy ()

where fy(z) = 41, fuy(x) = 12(z' — 0.5), fray(z) =
2(z% — 0.5), and fon (@) = —16(zt — 0.5)(z? — 0.5).
Notice thatfo1 friy(2')dz! = 0. This is reasonable; had
f{1y integrated to some other constant we could have
added that constant tg, and subtracted it fromfy,;.
More generally, when some structure can be attributed
to either f, or f, with v C u we prefer on grounds of
parsimony to attribute it tqf,,.

A particularly useful choice for thef,, is based on
the analysis of variance (ANOVA) decomposition from
statistical experimental design. (Montgomery (1984) is a

value of =% does not enter. For = () we may write fj
without an argument, since the function is constant.

Let 0% = [(f(x) — I)?dz and suppose that® < co.
Now let o2 = [ fu(2)?dx for [u| >0 andoj = 0. Then

2 _ 2
U—E (o

(4)

Equation (4) partitions the variance of into parts
corresponding to each subsetC A. The f, enjoy
some other easily verified properties: jfe u, then the
line integral fol fu(z)dx? = 0, for any values ofr* with
k # j, and ifu # v then [ f,(z) fu(z)dz = 0.

2.3 Effective Dimensions

The ANOVA decomposition can be used to consider notions
of the “effective” dimension of an integrand. For example,
because an additive integrand

f@) = fo+ fry') + -+ fray (%) (5)

is a sum of one dimensional integrands it can be much
easier to integrate than a genediatlimensional integrand.

In many application areas, additive integrands are very
unlikely.

Nearly additive integrands may however be common
in some application areas. Caflisch, Morokoff and Owen
(1997) found that 8860 dimensional integrand motivated
by a problem in computational finance was very nearly
additive. They then defined two notions of effective
dimension using the ANOVA decomposition.

Definition 1 The effective dimension of, in the su-

standard reference on design.) In concept, one simply perposition sense, is the smallest integés such that

embeds an equispaced grid in [0,1]¢, defines the main
effects and interactions on this grid, and then lgets: co
replacing sums by integrals.

We employ the following notation|u| is the cardinality
of u, * denotes thgu|-tuple consisting of components
2’ with j € u, and —u is the complement of; in A. In
the function setting we let

[ (f(z) -3 ﬁ(z)) RO

vCu

where the sum in (3) is over strict subsetg . Equation
(3) definesf, by subtracting what can be attributed to
subsets ofu, and then averaging over all components not
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2 2
2 0<uj<ds Tu = 0.9907.

Definition 2 The effective dimension df, in the trun-
cation sense, is the smallest integelr such that

Zug{lﬁ,‘..,dT} o2 >0.9902.

The truncation definition reflects that for some inte-
grands, only a small number of the inputs might really
matter. The superposition definition reflects that for some
integrands, the inputs might only influence the outcome
through their joint action within small groups. For ex-
ample, an additive function has superposition dimension
1 and a quadratic function has superposition dimension at
most 2, but either could have truncation definitiah
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Clearly the threshold0.99 is an arbitrary choice
and other values could be used. It is immediate that
ds < dr < d. The value ofdyr depends on the order in
which input variables are indexed. If one has subject matter
knowledge about which variables are most important, then
one would first order the variables in decreasing order of
importance before applying Definition 2.

3 SIMULATION METHODS

The simulation methods we consider here are all of the
form

(6)

where X; € [0,1]¢. Using the ANOVA decomposition (2)
and noting thatfy = I, we find that

I-1=>%"1, (7)
|u|>0
where for|u| > 0,
L= S =Y e @
u n Pt u (2 - n — u 7

is the error in the estimate df, = [ f,(z)dz = 0. From
(8) we see that the contribution df, to the error comes
from the |u|-dimensional projected quadrature rul!,
1=1,...,n.

3.1 Monte Carlo

Simple Monte Carlo sampleX; independently from the
U0, 1]¢ distribution and then applies the estimate (6). It
is well known that] — I has mean zero and variance
o2 /n, so that the Monte Carlo errors are of order'/? in
probability. Variance reduction techniques like stratification
and control variates (with finitely many strata or variates)
and importance sampling, do not affect this rate, though
they may improve the constant.

The dimensiond does not appear in this rate. This
means that the effectiveness of Monte Carlo is independent
of the dimension, unless one is considering a dimension
indexed sequence of functions for whighhas a dimension
effect.

A third important feature of Monte Carlo sampling
is that error estimation is comparatively easy. An
unbiased estimate of v is s2/n wheres? = (1/(n —
1)) (f(X:) — )% This estimate is available from
the same data used to constriict
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3.2 Quasi-Monte Carlo

The aim in quasi-Monte Carlo integration is to choose
X, without the usual clusters and gaps seen in Monte
Carlo sampling. The reader unfamiliar with quasi-Monte
Carlo may consult Niederreiter (1992) for more information
about this topic, including background on the results cited
here. In particular, we refer below t@, m, s)-nets and
(t,s)-sequences. These are quasi-Monte Carlo point sets
defined and discussed in Niederreiter (1992).

If the integrand has bounded variation in the sense of
Hardy and Krause, then it is possible to find a deterministic
sequenceX;, ¢ > 1 along which

[T — 1| = O(n"*(logn)%). 9)

If we do not require the: point integration rule to include
the points of then — 1 point integration rule, then it is
possible to reduce the exponentlofgn to d — 1.

The rate in (9) is asymptotically superior to the rate
n~1/2 that characterizes Monte Carlo. In high dimensions,
the rate (9) does not set in until is large. One simple
observation is that the error bound increases withntil
n equalsexp(d). Thus the smallest for which (9) could
be relevant is likely to be at leaskp(d).

Morokoff and Caflisch (1995) have reported that QMC
methods usually beat MC in practice although the advantage
usually disappears by about = 8. Paskov and Traub
(1995) by contrast found that QMC was very effective on
some integrands withl = 360. Caflisch, Morokoff and
Owen (1997) suggested that QMC was superior to MC if
the effective dimension of the integrand was not large.

Accuracy considerations favor QMC over MC. QMC
has superior asymptotic accuracy, and in examples it
usually has better small sample accuracy. The main
practical disadvantage of QMC with respect to MC is that
there is no way to estimate the accuracy achieved from
the sample values. The constant implicit in (9) is the total
variation of f in the sense of Hardy and Krause. There
appear to be no good ways to estimate that quantity, and
in any case, it can be a gross upper bound on the error.

3.3 Randomized Quasi-Monte Carlo

Randomized QMC methods have long been used to provide
a basis for error estimation in QMC methods. Owen (1995)
surveys the use of such methods.

Here is a generic recipe for randomizing QMC
methods. LetAq,..., A, be a QMC point set. Let
X,; be a randomized version of;. The randomization
should have the following properties:

RQMC-1 X, ~U0,1)%, i=1,...,n,

RQMC-2 Xi,...
bility 1.

, X, iIs a QMC point set with proba-
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Property RQMC-1 makes the estimator (6) an unbiased Taking a large value of makes for a more accurate
estimate ofl. Property RQMC-2 simply means that the variance estimate. But for a given number of function
randomization has preserved whatever special properties evaluationsN = nr one can usually expect that a larger
the underlying QMC point set had. The examples below value of n with a smaller value ofr should give better

illustrate this. accuracy inl. At the extreme, takingr = 1 andr = N
Space does not allow a detailed description of QMC simply reproduces Monte Carlo estimation.

points and their randomizations, but we discuss two For scrambled nets, Owen (1997a) describes a form

examples briefly. Further details can be found in Owen of internal replication in which consecutive blocks of

(1998). observations can be treated as replicates. The cost of this,
Cranley and Patterson (1976) describe a form of compared to genuine replication, is usually an upward bias

random rotation in which in the estimated variance, while the gain is usually greater

- accuracy inl.

X! = Al + U7 mod1. (10)
Here U’ are independent/[0, 1] random variables; = 4 VERY HIGH DIMENSIONS
1,...,d and zmodl meansz — |z| where |z] is the
greatest integer less than or equal 40 Certain lattice
rules (Sloan and Joe (1994)) have a structure that makes
them very accurate for periodic functions whose Fourier
coefficients decay rapidly. The rules are still accurate after
rotation.

Some QMC methods, known ag,m,s)-nets and
(t, s)-sequences, construct poirds so that certain hyper-
rectangles obtain a number of sample points proportional
to their volumes. The hyperrectangles involved have co-
ordinates that are integers divided by powers of an integer
baseb > 2. For suchA; it is possible to apply random _ )
permutations to their digits in basén a way that preserves 4.1 Latin Hypercube Sampling
their net properties and renders the resultinguniformly

For high enough dimensions it can be difficult to construct
QMC point sets with meaningful QMC properties and
reasonably small values of To illustrate the difficulties,
consider(0, d)-sequences in bage These only exist for

b > d. To have all hyperrectangles of siagb x 1/b x
1--- x 1 get n/b? points each, takes at least > d?
points. If one takes such a large then every one of
the d(d — 1)/2 bivariate projections of theX; will be
equidistributed. But taking such a largeis costly if d is

arge.

= X Latin hypercube sampling (LHS) is a form of simultaneous
distributed. See Owen (1995,1997a) for details. Owen gyasification on alld dimensions. McKay, Beckman and

(1995) surveys earlier work on randomizing digits. Conover (1979) introduced a version of LHS for computer
In one special case, the randomization of a QMC experiments. Let

point set can be shown to enhance the accuracy of the

integration rule. The explanation is that randomization o) = Ul

leads to cancellation of some error components. Owen X} = - (11)
(1997b) shows that scrambled nets can lead to errors of

size n=3/2(logn)@~1/2 in probability. The integrand wherer; are uniform random permutations of the integers

must have greater smoothness than bounded variation: al,...,n, the Uf are U[0, 1] random variables, and all of
sufficient condition is thad“ f (X )/ Hj:1 90X’ obey a Lip- the 7, and U] are independent.
schitz condition (Owen 1997b). Hickernell (1996) shows An older version of LHS, due to Patterson (1954) has
that this randomization can improve the equidistribution ‘
of nets. xi - M) =05 (12)
‘ n

3.4 Using randomized QMC rules In either (11) or (12), for each input = 1,....d

and every interval of the form((m — 1)/n,m/n) for
In practice one can take a small numbeof independent m = 1,...,n, there is one observatial; in that interval.
replicates of QMC points. The corresponding estimates Latin hypercube sampling can be used in any dimension
Ii,...,I, are unbiased estimates df with common d, evend > n. Because LHS stratifies each input variable
varianceof oy . The pooled estimaté = (1/r) 37, _, I, individually, it is able to integrate near additive functions

has variancerg oo/, and an unbiased estimate of this  with great accuracy. Stein (1987) shows that
variance is

’I“(’I“l— 1) zr:(fk — j)Q VarLHs(f) = % Z UZ +o0 (:L) . (13)

k=1 [u[>1
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The additive portion of the integranfldoes not contribute
to the asymptotic variance under LHS.

In finite samples, LHS is never much worse than MC.
Owen (1997a) shows that

Ly

vargs(l) < —— o2
tns(f) < ——0

(14)

Owen (1998) shows that LHS can also work for
d = oo. As in the finited setting, the additive part of
does not contribute to the asymptotic variance.

4.2 Padding

If an integrandf has nominal dimensiod but is nearly of
dimensions < d then one can employ an dimensional
QMC or RQMC rule on the important input variables and
use something else for the others. 4

If one thinks of then by d matrix of X; values as
the input to the simulation, then the leftmastcolumns
can be filled with (R)YQMC points. Something has to go
in the otherd — s columns. One might simply replace all
of those values by the central valie5. But, this does
not make for an unbiased estimate bfand so it can be
hard to estimate the error in the resulting estimate.

As an alternative, one can simply pad out the matrix
by filling in a lower quality rule. For particle transport
problems, Spanier (1995) and Okten (1996) suggest filling
out the remaining columns with simple Monte Carlo points.
Owen (1994) considers filling out the remaining columns
with a Latin hypercube sample. If one has used an RQMC
rule on the firsts dimensions and MC or LHS padding,
then it becomes possible to estimate the variancé. ok
further benefit is that if one has guessed incorrectly, so
that some of the variables thought to be unimportant really
are important, then the padding procedure can lose much
less accuracy than one would lose by filling (rb’s.

Suppose thad; = {1,2,...,s} C A is the set of all
input variables handled by an RQMC rule. It follows from
Theorem 1 of Owen (1998) that the resulting variance of
I is, under mild conditions,

()
+ol|—
n

> o
under padding by Monte Carlo, and

uCAq
1 d
2 2 2
ale =D ou— Y. oty | +o
uCAq j=s+1

1
n

1
n
under padding by LHS. For these results the ANOVA

components of the integrand must enjoy some extra
smoothness that the underlying RQMC method requires.

RQMC rule eventually balances out the errors fin for
u C A;, padding by LHS balances out some additional
additive components.

4.3 Engineering the Integrand

It is often possible to re-arrange a simulation so as to reduce
the effective dimension. For example, simulations driven
by Brownian motion sampled af time points, may be
generated in any order whatsoever, not just in order of time
sequence. Caflisch, Morokoff and Owen (1997) generate
the end point first then fill in the midpoint, quarter-points
and so forth of the Brownian motion, in each case sampling
the new point from its conditional distribution given the
existing points. This process replaces the integrgniy
another one with the same value bfthe same variance
o2 and the same nominal dimensidn The new integrand
was more strongly dominated by the first few steps and
this reduced the effective dimension. They were able to
employ LHS padding with scrambled nets, and also to use
Sobol' sequences to good effect.

Similarly, Acworth, Broadie and Glasserman (1997)
used the principal components of Brownian motion to
reduce effective dimension. Fox (1996) discusses several
ways to reduce effective dimension in discrete event
simulation.

4.4 Latin Supercube Sampling

Given a well engineered integrand, RQMC with padding
is able to reduce the variance substantially. But it only
reaps the benefits of RQMC for ANOVA effects within
the setA; of variables balanced by the simulation.

In some cases, one would like to be able to obtain
the benefits of RQMC balance within several groups of
variables. Of course there are restrictions on what one can
obtain. A good fullyd dimensional set of QMC points
may not exist for reasonable.

The idea of Latin Supercube Sampling (LSS) is to use
(R)YQMC within multiple groups of input variables. In a
simulation driven by several Brownian motions, there might
be one group of variables for each Brownian motion. In
a simulation that follows a sequence of particle collisions,
there might be one group of variables for each collision.

Suppose for example that = ks and that A; =
{1,2,...,8}, Ao ={s+1,s+2,...,2s}, and so on until
Ap={(k—1)s+1,(k—1)s+2,...,ks}.

Suppose further that/ € [0,1]°, i = 1,...,n is an
s dimensional (R)YQMC point set for each=1,... k.
Then LSS takes points

_ 1 2
Xi — (XTI'l(i)’ Xﬂf_)(i)7 ce .

where ther; are independent uniform random permutations

XY o) €0, 1% i=1,...,n,

These results say that one gets what one pays for: theof 1,2,.--,n. More generally, there is no need for thg
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to all contain equal numbers of input variables. It must
be true that4,; N A; = 0 wheneverj # L.

For largen, the pointsX; are well balanced in all
coordinate projection, whereu C A; for somej, but
are not especially well balanced in any such projections
where v has a nonempty intersection with two or more
Aj;. Accordingly, from (8) we expect that for large the
variance of/ should be

(15)

At least (8) suggests thaf, for v C A4; should not
contribute to vafl) under LSS. Under mild conditions,
Owen (1998) shows that (15) holds.

The implication is as follows. If the integrand has,
or can be engineered to have, almost all of its ANOVA
variance contained within subset$; of input variables,
then an enormous variance reduction can be obtained. In
the extreme, one gets andimensional error rate for d
dimensional problem. In the worst case though, it may
be true that almost none of the variance derives fegin
with w C A;. In this event, LSS fails softly, giving a
variance that is essentially the same as simple MC would
have given.

5 CONCLUSIONS

By employing randomness, it is possible to improve QMC
in three ways. First, by replication, one can get sample

based error estimates. Second, for the case of scrambled
nets, one can introduce cancellation that improves accuracy.

Third, by Latin supercube sampling, one can employ low
dimensional rules on high dimensional problems.
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