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ABSTRACT

A psycho-physical vehicle-following model tries to
capture both the physical and human components of
congested-traffic simulations. These models determine
the reactions of the vehicle driver depending on the
vehicle's state. The state of a vehicle can be determined
by the distance and by the difference in speed, in
comparison to the leading vehicle. If the vehicle state
changes, the driver must react. The reaction of the driver
isto calculate anew value for acceleration. There are two
different classical methods of time advance to calculate
the state changes. This paper examines the effect of these
methods on simulation run times and simulation results.
Empirical experiments were done on a SLX-based
simulation model.

1 INTRODUCTION

Traffic simulation has been a wide application area for
modeling and simulation for many years. Both analytical
and simulation models are used depending on the aims of
traffic modeling. Simulation models have been frequently
applied in the area of urban street traffic. Existing
modeling approaches can be classified depending on the
level of detail for the simulated process. Macroscopic
approaches describe the traffic flow in the entirety of al
vehicles (Kuehne 1995). Significant parameters are
traffic density, flow of traffic and so on. The main
application area for this kind of approach is the
simulation of wide-area traffic systems like highway
networks and interregional road networks.

Microscopic approaches are characterized by the
description of single vehicles and relations between them
(Lieberman 1991). Models from this class show the
behavior of single traffic participants. Valid traffic rules
and regulations form the basis for the applied behavior
rules. The traffic rules define, for example, the maximum
of speed and the right of way. The behavior rules contain
additional  strategies for controlling speed and
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acceleration. Currently, microscopic models are used to
simulate urban traffic processes on single intersections or
on networks of urban intersections.

For many years analytical models have been used in
the field of microscopic traffic modeling. The application
of analytical models is, however, subject to certain
conditions such as homogeneity of the arrival process.
Rough estimates of the performance parameters can be
done with this model class.

Intelligent load-dependent control approaches for
traffic lights are used by traffic engineers to manage the
increasing urban volume of traffic (Hoyer 1993).
Simulation models are necessary tools for evaluating the
quality of load-dependent controls in project phases.
Traffic engineers demand from the simulation side:

simulation models with a high level of detail,

fast smulation models, and

acceptable expenses for the model building
process.

The needed level of detail is focused on modelling the
vehicle-following process and rules for resolving
conflicts between vehicles, like who has the right of way.
Queuing models or psycho-physical  modelling
approaches are widely used for modelling vehicle-
following processes.

Queuing models (Schlothauer, Schulze 1996) describe
parts of aroad as single- or multiple-server systems with
gueue capacity of zero. Arriving entities (vehicles) can be
served only if at least one necessary server is idle. The
service time for a new entity depends on the speed of the
preceding vehicle. Passing the predecessors is not
allowed. The simple structure of queuing models does
not permit modelling the vehicle-acceleration process.
The speed of a vehicle is used as a discrete parameter in
the model. The use of psycho-physical vehicle-following
models leads to a higher level of model accuracy.
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2 PSYCHO-PHYSICAL VEHICLE FOLLOWING
MODELS

Psycho-physical  vehicle-following models determine
reactions of vehicles in traffic processes with regard to
changing the acceleration of vehicles. Reactions happen
if differences in speed and distance to the predecessor
occur (Wiedemann 1974). Different simulators have been
developed and implemented, based on the ideas of
Wiedemann. A new SLX-based (Heriksen 1996) psycho-
physical vehicle-following simulation model has been
developed and integrated within a new microscopic
traffic simulator. Development has been done at the
University of Magdeburg (Fliess 1996).

Vehicles are the main objects in this modeling
approach. The class of vehicles contains the following
default attributes:

current position on a path,

current speed,

current accel eration,

desired speed,

maximum negative acceleration,
maximum positive acceleration and
current state.

There are only discrete values for the current state
attribute. The state of a vehicle describes six different
behavioral patterns of vehicles. The state will be changed
if defined limits for distances to the predecessor or
differences in speed are crossed. The acceleration of the
vehicle will be newly recalculated and shall then be
constant until the driver has to react to new traffic
conditions. Table 1 lists the different limits for the
distance to the predecessor (leading vehicle). Limits for
distances depend on the current speed of the vehicle and
avehicle specific time gap.

Table 1: Limits for the Distance to the Leading Vehicle

DXy = Tq * Vi + Dy
where DX, denotes the limit for the desired distance,
T, denotes the individual desired time gap, V; denotes
the current speed of vehicle i and D, denotes the

distanceif two vehicles are standing one after the other.

Limits for differences in speed to the leading vehicle
can be classified into two cases. These cases are
described in Table 2.

Table 2: Limits for the Differencesin Speed

Limit Independent Variables

positive observation limit | distance to the leading
Dv>0 vehicle

negative observation limit | distance to the leading

Dv<O vehicle

Limits | Independent Variables Valuesfor Time
Gaps [seq]

break own speed, 25

distance |time gap to break

desired | own speed, 18

distance | desired time gap

safety own speed 1.0

distance |time gap for safety

risk speed of the prede-cessor, 0.5

distance |time gap for distance

For example, the limit for the desired distance can be
calculated with

The positive observation limit can be calculated with
— 2

where DX denotes the distance to the leading vehicle and
K, ,K, , k; denote special constants.

The different limits used can be shown in an
observation-decision diagram. Difference in speed scales
the abscissa and difference in distance scales the
ordinate of the diagram. Such a diagram shows the
possible states and crossings over the states for vehicles.
Figure 1 presents an observation-decision diagram with
possible values. The vehicle states used are presented in
Table 3.
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Fig. 1: Observation-Decision Diagram

A new value for the acceleration attribute must be
caculated if the vehicle has changed its state. For
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example, the acceleration in the state Approximatingl
will be calculated by

- (DXI B Do B Tdvi)a'i—l_ O-SDVi2
Dx - Dy- Tyviy

where DX; denotes the distance between the leading and

8,

following vehicle, V; denotes the current speed of the

following vehicle, and a;_, isthe acceleration of the
leading vehicle.

Table 3: Description of vehicle states

State Kind of drive | Acceleration
Free not depending on the current
Drivingl influenced speed and the desired
speed
Free direct positive acceleration
Drivingll influenced until the desired distance
is reached and the dif-
ference in speed is zero
Approxi- direct negative  acceleration
mating| influenced until the desired distance
is reached and the dif-
ference in speed is zero
Approxi- direct negative  acceleration
matingl| influenced until the risk distance is
reached and the differ-
encein speed is zero
Followingl |indirect keeping acceleration
influenced until the desired distance
is reached and the differ-
encein speed is zero

Figure 2 shows the progress of the trgjectory
T=f(distance (t), differencein speed (t) )
for the following vehicle until the modeling time

reaches 100 sec. The values used for the vehicle
attributes are presented in Table 4.
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Fig. 2: Trajectory Progress for the Following Vehicle

3 IMPLEMENTING TIME ADVANCES

There are two methods of implementing time advancesin
simulation models. These methods are called the time-
sliced or the event-oriented methods. Using the time-
sliced-oriented approach, the attribute values of vehicles
will be updated at constant time dlices. At a constant rate
the simulator checks for al vehicles if a limit has been
crossed and the vehicle must get a new state. The
selected value in existing traffic simulators for the time
slice is often 1.0 sec. This value was selected according
to the mean reaction time of a driver. The time-dice-
oriented method can be implemented very easily.

Table 4: Selected Attributes for Vehiclesat Time 0.0

Vehicle Attributes Values
Leading Vehicle | current position 55.0m
current speed 20.0 m/s
acceleration 0.0 m/&?
Following current position 0.0m
Vehicle current speed 30.0m/s
acceleration 0.0 m/g?

Using the event-oriented method, the simulator has to
compute the time when a vehicle will change its state.
The time for this event can be calculated from the
intersection of vehicle's trajectory with corresponding
limits. The necessary condition is: There is no change in
the state of the leading vehicle.

Determination of intersections between the trajectory
and limits for the distance can be reduced to an
intersection between a parabola and aline. To do this, the
simulator has to solve a second-degree equation. The
intersection between the trgjectory and limits for
differences in speed will be reduced to solving a fourth-
degree equation. Suitable approximation methods like
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Newton iteration can be used for determining the event
time. These events are called expected events. Table 5
presents a list of state events for the following vehicle
using the attribute values of Table 4.

Table 5: List of Eventsfor the Following Vehicle

Clock Value | Vehicle State Acceleration [m/<]
0.0 Approximatingl -1.27
3.2 Approximatingl | -1.27
10.41 Followingl -1.27
10.91 Followingl| -1.27
13.63 Free Drivingl| 0.46
18.62 Free Drivingl| 0.46
20.09 Followingl 0.46
21.80 Followingl 0.00

Using the event oriented method, the calculation for
new attribute values of involved vehicles has been done
eight times. Ideal conditions lead to these small number
of calculations: There are only two vehicles in the system
and the state of the leading vehicle is constant. Using the
time diced approach with a time slice of one sec., the
calculation of new attributes has been done 22 times for
both vehicles.

Realistic traffic processes are characterized by alarger
number of vehicles and frequent state changes of the
leading vehicle. So the simulator has to process both
expected and unexpected events. Unexpected events
occur if the leading vehicle changes its state and the
following vehicle has to react to the new vaues of
attributes of the leading vehicle. A reaction of the
following vehicle will take place after passing a reaction
time.

State changes of the leading vehicle have severa
consequences. The simulator has to proceed with the
following steps:

1. Calculation of the new time for the new expected

event for the leading vehicle.

Scheduling this event into the event list.

Remove the expected event for the following vehicle

from the event list.

4. Cadlculation of the unexpected event for following
vehicle.

5. Scheduling this event into the event list.

2.
3.

Steps 1 and 4 contain the determination of the
intersection between the trgjectory of the leading vehicle
with corresponding limits. The approximation of the
intersection between the trajectory and the limits for
differencesin speed is a compute-intensive process.

Steps 2, 3 and 5 concern operations with the event list
of the ssimulator. These actions involve basic operations

for removing and inserting events. The run times for
these operations depend on the number of events in the
event list, the internal scheduling algorithms and the
implementation level of these agorithms (Schulze and
PreuR3 1997).

The number of events will be determined by the
number of moving vehicles in the traffic system. Event
lists of urban traffic simulators contain not only events
for vehicles. For example, they contain events for street
cars, bicycles, pedestrians and traffic lights. An average
content of more than 200 events is typical for urban
traffic systems.

4 REMARKSON SIMULATION RUN TIMES

Run times for simulation models are affects by different
factors. On one hand, the use of constantly increasing
processor power reduces the run time. On the other hand,
the desired higher level of modeling detail leads to
increasing run times for simulation experiments. A lot of
runs have to be executed for constructing acceptably
small confidential intervals. The input data for arriving
vehicles are characterized by large dispersion. Our
experience in typical traffic simulations is that the
number of necessary runsis often greater than 20. Results
have to describe the steady-state of the traffic system.
The influence of the transient phase should be rejected.
Experiences from real traffic-simulation projects show
that the length of the transient phase can be as much as
60 minutes of simulated time. This value was used for
urban-traffic systems with three networked intersections.
The minimum length of one simulation run was defined
to be 120 simulated minutes. The need for a lot of
simulation runs and the necessary simulation length
require fast computer run time for executing simulation
experiments.

The computer run time for traffic simulation models
can be divided into two parts:

Basic demand for static objects and
Additional demand for dynamic objects.

The basic demand includes the time for initialization
of the static model components like parameters of roads
and lanes, or timing for traffic lights. The additional
demand includes the time for:

creating and destroying dynamic objects,

resolving conflicts between different road users,
like yielding and pedestrians getting in a car's
way, and

vehicle following.
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The run time for dlice-oriented or event-oriented
methods depends on different factors. The dependencies
are shown in Table 6.

Table 6: Dependencies on Run Time for Traffic Models

Method of Time Dependencies on run time

Advances
slice oriented Number of dynamic model
objects
Slicevalue
event oriented Number of dynamic model
objects

Number of events
Implementation level of event-
list-handling algorithms

The number of dynamic objects affects both methods
of time advance. An increased number of dynamic
objects leads to longer run time because more attribute
values of these objects have to be updated. Reduction of
the time dlice value results in increased run time in the
time-dlice approach.

The computer time in the event-oriented approach is
very strongly influenced by the algorithm used for event-
list handling and its implementation (McCormack 1979,
Schulze and Preul3 1997). Computer-time efficient-
algorithms are necessary for processing a large number of
events.

The number of events to process depends on the
number of dynamic modeling objects, as well as the
interval of time between two successive events for a
dynamic object. Short intervals between occurrence of
events leads to a growth of both the number of state
changes and event-list updates. The frequency of state
changes depends on the functions describing the limits
and on the operations during a state change.

The following hypothesis can be derived from this
considerations above: If the average interval for a state
change is greater than the value for the time dlice, then
the run time for the event oriented-approach is smaller
than for the time-sliced approach. A precalculation of the
average interval is not possible. For this reason
experiments have been done on a traffic system. The
experiments were executed with a simulation system
described in the next section.

5 THE SIMULATION SYSTEM

A driver has to make decisions constantly during his trip
about his direction and acceleration. The selection of the
direction is determined by the current position and
destination of the driver. For choosing his acceleration

the driver has to take the conditions on the road network
and other road users into consideration. The leading
vehicle has an essential influence on the acceleration.

The simulation system (Fliess 1996) used consists
logically of three main components driver, vehicle-
following, and lane model. In addition there are minor
components, e.g. for describing pedestrians. The driver
model reflects the behavior of the driver. He is
influenced by other road users and the circumstances of
the road network, like topology and lane performance.
The vehicle-following model is based on the psycho-
physical vehicle-following model described in section
two.

The circumstances of the road network are described
in the lane-model. The road network can be characterized
for example by the following elements:

lanes,

traffic lights,

conflict points,

sources and destinations, and
routing tables.

A special feature of this lane model is that the length
of each lane is independent of the length of the vehicles
or dynamic objects. The vehicles can aso be on severa
lanes at the same time. In many other simulation systems,
there are restrictions on the length of lanes.

The essential task of the driver-model is to calculate
the new acceleration of the vehicle. Correction of the
acceleration is caused by the influence of the leading
vehicle and the circumstances of the road network.
Another special feature of this smulation model is the
dynamic selection of the leading vehicle and a predictive
estimation of the gap between two vehicles in conflict
situations.

The simulation model was implemented in SLX
(Henriksen 1996) and uses the method of the layout-
based model generation LBMG (Lorenz and Schulze
1995) for generating the essential parts of the main
component lane model.

6 EXAMPLE

An urban road traffic system with three intersections was
used for an empirical investigation. Objectives were
investigation of different time-advance methods, in
relation to run time and to Simulation output in
microscopic traffic simulation models. The investigated
simulation models use the approach of psycho-physical
vehicle-following modeling. Required data for describing
the example were taken from real traffic projects. Figure
3 contains a schematic picture of the investigated road
network. It has an extension of approximately 800 meters
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in the east-west and 250 meters in the north-south
direction.

at| s1 a8, 09,010 | S8, 83

s3 | a3 84 |04 85,86 || 05, Q6

Fig. 3: Schematic Picture of the Road Network

Left intersection 1 is a ssimple four-way intersection.
There is just one lane for each direction. Middle
intersection 2 is a three-way intersection, while
intersection 3 is a four-way multiple-lane intersection.
Traffic lights are at intersection 1 and 3, but not at
intersection 2.

Significant parameters to describe the individual
vehicles and drivers are non-deterministic. Within the
given limits for these parameters an uniform distribution
is used. Table 7 shows some specific vehicle parameter
for thetype‘car’.

Table 7: Some Specific Parameters for Vehicles

Parameter Low Value Upper Value
Car length 3.8m 47m
Desired speed 16.0 m/s 20.0 m/s
Maximal positive 1.4 m/& 2.6 m/s?
acceleration

Maximal negative -2.5 m/&? -1.5m/&
acceleration

7 EMPIRICAL RESULTS

The objective of the investigation was to determine the
influence of the time-advance methods on the run time
and simulation results. The simulation runs were
executed on a PC with a 120 Mhz Pentium processor.
Different experiments were carried out with the example
described above. The simulation model used is described
in section three. The two time advance methods
described, were applied to the vehicle-following and
driver model components. Experiments varied the
methods of time advance and the traffic load.
The values used for the experimental parameter

method of time advance are:

Event oriented, and

Time-dlice oriented with time dlices of 1.0, 0.5

and 0.2 sec.

The traffic load varied among three levels. Starting
with a basic load (Level 1) the load was increased by 50
percent. That means:

Level 2=15* Level 1 and
Level 3=2.0* Level 1

Each possible combination of the values of input
parameters is called a scenario. The total number of
scenarios is 4*3=12. Twenty simulation runs with
different seeds for random number generators were
executed for each scenario.

7.1 Influence on the Run Time

Table 8 contains means and the half 90% confidentia
intervals of the determined run times for the simulation of
one scenario (al time are in seconds).

Table 8: Mean and 90% Half Confidential Interval of
Run Times

Load Load Load Level
Level 1 Level 2 3
Event oriented | 94+1.0 | 150+ 1.7 | 507 + 19.9
Slice=1 sec. 146+ 1.6 | 245+3.8 | 908 £20.0
Slice=0.5sec. | 253+3.3 | 409+ 6.0 | 1342+ 47.6
Slice=0.2sec. | 584+ 7.3 | 934 +12.9 | 2782 + 76.6

The run time grows with increasing traffic load. This
trend is independent of the method of time advance. This
is because the number of dynamic objects increases with
increasing traffic load. The run times for the event-
oriented approach are aways smaller than those for the
time-dliced approaches.

The results of this example support the hypothesis that
the run time for the event-oriented approach in
microscopic psycho-physical traffic models is smaller
than those in the time-sliced approach. The unconditional
requirement is the use of run-time-effective event
scheduling algorithms. Figure 4 gives a graphica
presentation of the average run time.

7.2 Influence on simulation results

The lost time for avehicleis atypical result of simulated
traffic systems. This time is the difference between the
realised and the ideal travel time for a vehicle, where the
ideal time would be achieved in a system with no other
road users. These lost times will be calculated for every
possible path from source to destination. There are 45
different pathsin the example model described above.
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Simulation Run Times
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Fig. 4: Average Run Times (in sec.)

The simulation result lost time is a random variable.
Twenty different simulation runs were executed to
estimate the steady-state mean for this random variable.
A 90 percent confidence interval was also calculated
additionally. Table 9 shows the confidential interval for
mean lost time on one path .

Table 9: 90% Confidence Intervals for mean Lost Times

Load Load Load
level 1 level 2 level 3
Event oriented |33.0£0.9 |38.5+1.1 |79.5+11.2
Slice=0.2sec. [32.8+0.8 |38.1+1.2 |82.4+84
Slice=0.5sec. |33.1£0.8 |39.4+1.3 [129.9+17.1
Slice=1.0sec. [33.6+1.0 [415+1.4 |219.1+11.8

The lost time increases with growing traffic load. This
trend is independent of the method of time advance.
There are no significant differences in the values of lost
time for traffic load level one and two. Differences occur
in load level three. The values for the event-oriented
approach and for the time-dlice value equal 0.2 are not
characterized by significant differences. The calculated
confidence intervals are overlapping.

The mean for the lost time increases with increasing
time dice. A growing time dlice coverts a higher degree
of inaccuracy of model results. Figure 5 presents 90
percent confidence intervals for lost times using traffic
load level 3.

90 percent confidence intervals for losing times

250 +

200 + z

150 + A low
E @ mean

100 + W upper

Seconds

50 +

Event-oriented Slice = 0.2 Slice = 0.5 Slice = 1.0

Time Advances Approaches

Fig. 5: 90 percent confidence intervals for lost times
using traffic load level 3.

8 CONCLUSIONS

This paper presents results of investigations on the
influence of various time-advance methods in
microscopic urban traffic models. Experiments were
focused on simulation run times and results. The
implemented  event-oriented  approach, including
effective algorithms for event-list handling, leads to
significantly smaller run times than the time-slice
approach. The use of event-oriented methods can be
recommended in microscopic psycho-physical vehicle-
following models. The kind of time-advances approach
influences the accuracy of simulation results.
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