Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradéttir, K. J. Healy, D. H. Withers, and B. L. Nelson

MODSIM I11 - A TUTORIAL

John Goble

CACI Products Company
3333 North Torrey Pines Court
LaJolla, CA 92037, U.SA.

ABSTRACT

This tutorial introduces the MODSIM |1l language,
showing how its simulation "world view" together with
its object-oriented architecture and built in graphics
contribute to successful simulation model building.

1 WHAT ISMODSIM 11172

Discrete systems simulation is one of the few truly new
capabilities offered by the computing revolution.
Computer simulation models provides us with a
fascinating means to develop insight into the behaviors
of the complex non-deterministic systems which
surround us - in communications networks,
transportation logistics, business and manufacturing
processes, to name a few. These systems are costly to
develop and modify. Feasibility analysis and
performance prediction through simulation can gresatly
reduce the risk of failure or wasteful expense.

Simulation is an exploratory technique. We develop a
model which represents our best understanding of a
proposed system or modification. We run the model in
the hope that it will confirm our design intuition. If it
does not we endeavor to understand why, and use this
knowledge to refine the model. Ultimately, we will use
the model to explain and justify decisions affecting the
real-world system.

So, simulation serves three principal roles: to help us
articulate a coherent description of a system; to validate
its dynamic behavior to our satisfaction; and, then to
communicate this to colleagues and decision makers.
These steps are commonly iterative. It is usually wise to
begin with a high-level abstraction of the system,
alowing the model to evolve as we gain greater
understanding of system behavior. Furthermore, the
system itself may change in this rapidly changing
environment, requiring changes to the model.

For the simulation study to be effective, the model
behavior should be presented in an understandable way,
typically using animation. Ideally, domain experts
should be involved in construction and validation of the

601

model. Finally, the whole exercise must be completed
within a useful time-frame, or it will serve little purpose.

Before embarking on model development, it may be
prudent to look for a suitable, off-the-shelf, domain-
specific simulator. Frequently, however, unique
characteristics or fidelity requirements dictate the need
for a custom model. The characteristics of simulation
modeling, then, make some specia demands of the
model development environment. The modeler needs
help in the conceptualization of systems with dynamic,
interacting, probabilistic behaviors. The model should
be understandable, maintainable, and should lend itself
to incremental addition of detail. The environment
should support graphical interaction for scenario
development and animated model execution.

This tutorial will introduce the benefits of using an
object oriented language specially developed for
simulation, and enhanced with comprehensive graphics
support. MODSIM 111 combines CACI's experience
with simulation programming over three decades with
advances in software engineering to offer the most
productive environment for the development of large,
complex, evolutionary, custom models.

Examples of MODSIM IlI's simulation features, and
the benefits of object-oriented architecture, are
demonstrated below using code fragments from a
hypothesized airport/airspace planning model. Such a
model might be concerned with the representation of
aircraft, flight duration, air traffic controllers, runway
allocation procedures, and so on. To be of any interest,
such a model must represent multiple aircraft in flight
concurrently, and delays due to contending requests for
resources, such as runways.

2 DEFINITION BLOCK-AN INTERFACE
DESCRIPTION

In support of modular program construction, objects in
MODSIM |1l are described in two separate blocks of
code. The Definition block describes the object type by
declaring its variables and methods. This is the object
description as it will be referred to by other objects in

602

the simulation, and it provides the forma interface
specification. An example of a Definition block for an
aircraft object is shown below.

Aircraft = OBJECT;
BestCruise : INTEGER,;
InFlight : Boolean;
ASK METHOD SetCruise (IN speed:INTEGER;
TELL METHOD FlyDistance (IN
distance INTEGER);
END OBJECT;

The Definition block for an aircraft object declares the
variables and methods that aircraft objects use in the
simulation model. The information the aircraft knows is
contained in its variables. In this smple case, the
aircraft is responsible for the management of two
variables, which represent its state:

* BestCruise-the optimal speed to cruise at for given
conditions
* |nFlight-whether or not the aircraft is actually in flight.

3 IMPLEMENTATION BLOCK-WHAT THE
METHODSDO

The arcraft behaviors are described in its methods.
These methods are named in the object description
provided by the Definition block. The logic of what they
do and how they affect the state variables of the object
are described in the Implementation block, shown below.
OBJECT AircraftObj;

ASK METHOD SetCruise (IN speed:INTEGER);
BEGIN
BestCruise ;= speed;
END METHOD;

TELL METHOD FlyDistance (IN distance;INTEGER);
BEGIN
InFlight := TRUE
WAIT DURATION distance/BestCruise;
END WAIT;
InFlight:=FALSE;
OUTPUT ("Arrived Safely at",SimTime);
END METHOD;

END OBJECT,

The behaviors that objects can perform are the
methods described in the Implementation block.
In this case the aircraft is capable of the behaviors
described in the following two methods:

* ASK METHOD SetCruise-When the aircraft is
requested to perform this behavior, it registers the new
value for its optimal cruising speed, instantaneoudly, that
is, simulation time does not elapse.

* TELL METHOD FlyDistance-When requested to
perform this behavior, the aircraft cal culates the required
flight time to cover this distance at its cruising speed.
This particular activity then pausesin execution until this
period of time has elapsed within the simulation model,
before completing the remainder of the behavior-in this
case printing a notification that it has arrived safely.
Unlike ASK methods, TELL methods are used to
describe behaviors that elapse simulation time. While
this method is paused, waiting for time to pass, other
methods of other objects may be executing.

A key benefit of using MODSIM Il in building
complex simulations is the easy modeling of these
behaviors. In a large model, many objects will have
behaviors that must take account of the passage of time.
Often, these behaviors will be concurrent, or overlapping
intime. For example, our model will want to represent
multiple "instances' of the aircraft object type. These
instances can be created as needed; each can be given its
own identifier, has its own state variables and can
execute its methods as requested.

For a simple example of concurrent behaviors, let's
look at how an aircraft dispatcher in our model might
order two aircraft to fly to different destinations:

ASK JumboJet TO SetCruise(600);
TELL JumboJet TO FlyDistance(3000);

ASK Biplane TO SetCruise(100);
TELL Biplane TO FlyDistance(200)IN 1.0;

Using TELL methods, the flight times of both the
JumboJet and Biplane aircraft can be modeled
concurrently.

In this example, the aircraft object named JumboJet
will elapse 5 hours flying a distance of 3000 miles at 600
mph. One hour after the JumboJet takes off (... IN 1.0),
the Biplane aircraft will take off and fly 200 miles at 100
mph. It will complete its flight two hours before the
JumboJet arrives at its destination. MODSIM Il is
responsible for sequencing the execution of the methods
of both object instances, including the pauses to
represent the flight times, so that the events of taking off
and landing are played out in the correct order in the
model. ASKing the object does not elapse any
simulation time.

4 TIMING AND INTERACTION

Besides executing concurrently, time elapsing behaviors
may interact. To make the model more readlistic, we
want to consider the effect of changing the cruising

MODSM III - A Tutorial 603

speed of an aircraft while it is in flight-perhaps in
response to a change in weather conditions. Such a
change invalidates the origina computation of flight
time, and a new arrival time must be determined based
on the new cruising speed and the distance remaining.
Let's look at how the logic, or implementation, of the
methods of our aircraft objects can be refined to
incorporate this modified behavior. The method which
is responsible for registering a change in cruising speed
can INTERRUPT the time-elapsing method, FlyDistance
if appropriate. On recognition of this INTERRUPT, the
remaining time to WAIT is reevaluated. To see the
changes that we've made, compare this code with the
origina Implementation block for the aircraft object,
presented earlier.

OBJECT AircraftObj;

ASK METHOD SetCruise(IN speed:INTEGER);
BEGIN
BestCruise ;= speed;
IF InFlight
INTERRUPT SELF FlyDistance;
END IF;
END METHOD;

TELL METHOD FlyDistance (IN
distance]INTEGER);
BEGIN
InFlight := TRUE
WHILE distance > 0.0
speed := BestCruise;
start := SimTime;
WAIT DURATION distance/BestCruise;
ON INTERRUPT
elapsed ;= SimTime-start;
distance := distance-(el apsed* speed);
END WAIT;
END WHILE;
InFlight:=FALSE;
OUTPUT ("Arrived Safely at",SimTime);
End METHOD;

The aircraft's CruiseSpeed can now be changed while
in flight-the arrival time will be recomputed each time
this occurs.

Look at how the FlyDistance method describes the
entire flight from take off to landing, allowing multiple
speed change events, in a logical activity description.
Contrast this with multiple, disconnected, event
subroutines in a conventional programming language
which does not support the concept of time-elapsing
behaviors.

Because MODSIM |11 provides you with arich set of
features to manage the complex scheduling, interaction
and synchronizing of time-elapsing behaviors, you get

increased readability and consistency in your models,
factors that trandlate directly to increased productivity
and maintainability.

Unlike making cals on a subroutine library,
MODSIM |Il understands the meaning of these
simulation features. Thus it can diagnose inadvertent
misuse early-for example, WAIT statements are not
allowed in ASK methods that are always instantaneous.
Not only does such checking save time in building and
running a model, but it can help avoid debugging subtle
logic errors in simulations with complex interactions.

These specialized features for modeling concurrent
and interacting behaviors distinguish MODSIM |1l as a
simulation model development tool. In addition,
MODSIM |1l includes a rich collection of simulation
building block objects. These library objects are
designed to fulfill many common simulation modeling
requirements. MODSIM Il uses the power of object
oriented software architecture to alow these pre-built
library objects to be readily adapted to special needs.

Consider contention for resources, an issue which is a
the heart of many discrete system simulations. Specific
allocation policies are a basis for common behavior.
Objects incur delays in competing for resources; they
queue for resources on some priority basis, they may
choose to abandon requests after a time-out interval.
Every simulation model will want to report to some
degree on measurements of resource utilization, waiting
time statistics, and so on.

MODSIM |11 provides a prebuilt Resource object as
one of many objects in its simulation support libraries.
In our airport model, for example, runways are clearly a
resource. We could use an instance of ResourceObj
taken directly from MODSIM lll's library to model
runway allocation, enqueueing and degqueueing the
aircraft on a first-come-first-served basis, and recording
statistics.

We need to make one important change, however. To
avoid the danger of wake turbulence effects, it is
important that a light aircraft not use a runway
immediately following a large aircraft; it should delay a
short time to alow wake vortices in the air to dissipate.
This is where inheritance comes in. It alows us to
describe a Runway object in terms of the existing
ResourceObj provided by MODSIM I11. We only need
to specify the differences between the new RunwayObj
and ResourceObj.

Inheritance is one of the chief benefits of object
oriented software congtruction, and the basis for
providing libraries of useful objects which can be readily
adapted to specialized needs.

In the example below, we have imported a resource
management object from the MODSIM Il library,
defined an enumerated variable called AircraftCategory
and show the Definition block for Runway. By declaring

604

our Runway object to be derived from the library-
supplied resource management object, it inherits all the
built-in capabilities for enqueueing requests and
maintaining utilization statistics. The Give method is
declared as overridden, meaning that a different
implementation, for just this method, will be substituted
in the Implementation block (not shown). The Runway
object aso has an extra variable to 'remember' the last
aircraft type. Our specialized implementation logic can
now be designed to impose appropriate delays before
giving the runway to aircraft of different categories.

FROM ResMod IMPORT ResourceObj;
TYPE
AircraftCategory = (Light, Heavy);

Runway = OBJECT (ResourceObj);
lastuse : AircraftCategory;
OVERRIDE
TELL METHOD Give(IN number : INTEGER);
END OBJECT;

The Runway object, derived from MODSIM Ill's
resource management object has been customized to
meet special modeling requirements.

Inheritance provides a disciplined way to selectively
modify and extend object characteristics. As a
specification mechanism, it maintains a clear distinction
between those properties which continue to be available
unchanged, and those enhancements designed to meet
special needs-this is very valuable as software evolves
through versions and upgrades.

New object types, derived through inheritance from
existing objects, continue to conform to common
interfaces, but incorporate additional capability. Thisis
an excellent match to the evolutionary nature of
successful simulation models; with increasing
understanding of the system comes adesire to add details
in areas of specia focus.

The reuse of libraries of pre-built objects holds out the
promise of real productivity gains in software
development. Without a means to adapt such objects to
special needs, this promise is rarely fulfilled. The
extensibility offered by inheritance, coupled with the
modular separation of interface definitions from actual
implementation code are the mechanisms needed to
support practical reuse of object libraries.

Object orientation offers other benefits to model
development. The controlled access to object data
structures through the object methods is just what is
needed to build robust objects which can be the basis of
reuse. Look back at the modified aircraft object
implementation: any request to change the aircraft speed
can now ensure a reevaluation of the flight time-which is
faithful to the way things happen in the real world.

Taken together, support for object modeling concepts,
along with concurrent time based behaviors, are what
make MODSIM 11 an effective simulation productivity
tool.

5 GRAPHICSAND SIMULATION

Through inheritance, the objects in your simulation can
aquire a rich set of graphical properties and behaviors.
You can use this to provide an interactive, graphically
managed model that speeds up analyses and produces
easy-to-understand results. Adding graphics is easy.
You use a graphical editor to configure the appearance
of [A1] icons, menus, dialog boxes and presentation
charts. Minimal code then connects these to the entities
and variables in the model. Adding graphics can
enhance the appeal of amodel in three principal aress:

5.1 GRAPHICAL SCENARIO LAYOUT

Interactive graphical editing lets you define a scenario to
simulate by selecting icons from the palette, positioning
them on the screen, and configuring parameters through
dialog boxes.

5.2 Dynamic Analysis

With a scenario on the screen, you can begin the
simulation and see an animated picture of the system
under study. In addition, you can study plots that are
drawn while the simulation is running. Y ou can pan and
zoom on areas of special interest. These results, shown
dynamically, will suggest aternatives that can be tried
immediately. Interacting with the mode in this way
increases understanding of the system under study and
speeds your analysis. Often errors that may have
otherwise been difficult to find, will be obvious.
Dynamic analysis contrasts sharply with the old iterative
approach to simulation, where the following steps were
repeated: prepare data, simulate, examine results,
modify data, smulate, ...

5.3 Communication of Results

Through animation, you can dramatize the effect of
aternative system configurations, spot unexpected
behavior, and back up your recommendations. It's the
best way to sell your ideas.

6 DEVELOPMENT ENVIRONMENT
MODSIM is a complete development environment. The

MODSIM Il simulation support, Compilation Manager,
Object Manager and the Debugging Manager provide a

MODSM Il - A Tutorial 605

complete environment for the successful development of
advanced models.

6.1 Compilation Manager

The MODSIM compilation manager automatically
determines which modules have been edited since the
last compilation and recompiles only those modules and
any other modules that depend on them. No make files
arerequired.

6.2 Object Manager

MODSIM Il provides a browsing tool for MODSIM Il
objects, variables and procedures. The Object Manager
provides a concise representation of complex objects
including aggregation of fields and methods and
inheritance diagrams. For object types, all the fields and
methods are displayed. Methods are followed by a
condensed parameter list; fields have their types
indicated. You can see al the attributes and capabilities
this object has either defined or acquired through
inheritance.

Further detail is provided by an inheritance diagram of
this object, the module in which it is defined, any
replaceable types it has declared and any type
substitutions that have been made in ancestor objects.
Clicking on a displayed ancestor selects this object type
for browsing. A record is kept of all objects visited,
making it easy to return to a previously browsed object.
Browsing methods show you which ancestor originally
defined the method, which ancestor implementation the
object will invoke and afull parameter list.

6.3 Debugging M anager

Selective runtime checking of object referencing, invalid
parameters, array bounds, and memory use are
invaluable aids to software development. Models are
large, complex programs, and debugging support for
both simulation and programming errors are crucia to
success. With debugging support enabled, a runtime
error automatically drops you into debugging mode,
allowing you to see where the error occurred and letting
you examine variables. A traceback shows you the
calling chain that led to the current method or procedure,
SO you can browse up and down the execution stack
examining the sequence of procedure and method calls
that preceded the error. The debugger supports a wide
range of capabilities that are essential to interactive
symbolic debugging. In addition it has specid
knowledge of MODSIM IllI's simulation constructs and
can display the pending list, simulation time, and
memory usage information.

7MODSIM |11 AVAILABILITY

MODSIM |1l is a developed and supported by CACI
Products Company. MODSIM 111 is available to your
organization for a free trial in your environment, on your
computer. We provide everything you need for a
complete evaluation at your site: training, software,
documentation, sample models and immediate support
when you need it. In addition, CACI regularly offers
time-tested training courses.

AUTHOR BIOGRAPHY

JOHN GOBLE is the Vice President of Decision
Support Products for CACI Products Company in La
Jolla, CA. He holds a MSc degree in Industria
Engineering from the University of Nebraska. Prior to
coming to CACI he worked with Motorola as a
simulation developer in the Cellular Infrastructure area.
His efforts at CACI are being directed towards making
SIMPROCESS an industry standard for business process
simulation.

	MODSIM III - A TUTORIAL
	ABSTRACT
	1 WHAT IS MODSIM III?
	2 DEFINITION BLOCK-AN INTERFACE DESCRIPTION
	3 IMPLEMENTATION BLOCK-WHAT THE METHODS DO
	4 TIMING AND INTERACTION
	5 GRAPHICS AND SIMULATION
	5.1 GRAPHICAL SCENARIO LAYOUT
	5.2 Dynamic Analysis
	5.3 Communication of Results

	6 DEVELOPMENT ENVIRONMENT
	6.1 Compilation Manager
	6.2 Object Manager
	6.3 Debugging Manager

	7 MODSIM III AVAILABILITY
	AUTHOR BIOGRAPHY

	page1: 601
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

