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ABSTRACT

Discrete-event simulation models typically have stoch-
astic components that mimic the probabilistic nature
of the system under consideration. Successful input
modeling requires a close match between the input
model and the true underlying probabilistic mecha-
nism associated with the system. The general ques-
tion considered here is how to model an element (e.g.,
arrival process, service times) in a discrete-event sim-
ulation given a data set collected on the element of
interest. For brevity, it is assumed that data is avail-
able on the aspect of the simulation of interest. It is
also assumed that raw data is available, as opposed to
censored data, grouped data, or summary statistics.

Seven factors to consider for selecting probabilistic
input models for a discrete-event simulation study are
presented:

1. collecting the right data

2. using the full range of input models

3. performing a complete statistical analysis

4. evaluating time dependence

5. considering parametric vs. nonparametric ap-
proaches

6. considering tail behavior

7. performing a sensitivity analysis.

Most simulation texts (e.g., Law and Kelton 1991)
have a broader treatment of input modeling than pre-
sented here. Nelson et al. (1995) survey advanced
techniques.

1 COLLECTING THE RIGHT DATA

There are two approaches that arise with respect to
the collection of data. The first is the classical ap-
proach, where a designed experiment is conducted to
collect the data. The second is the exploratory ap-
proach, where questions are addressed by means of
existing data that the modeler had no hand in collect-
ing. The first approach is better in terms of control
and the second approach is generally better in terms
of cost.

Collecting data on the appropriate elements of the
system of interest is one of the initial and pivotal steps
in successful input modeling. An inexperienced mod-
eler, for example, collects wait times on a single-server
queue when waiting time is the performance measure
of interest. Although these wait times are valuable
for model validation, they do not contribute to the
input model. The appropriate data to collect for an
input model for a single-server queue are typically ar-
rival and service times. An analysis of sample data
collected on a queue are given in sections 3 and 4.

Even if the decision to sample the appropriate el-
ement is made correctly, Bratley, Fox, and Schrage
(1987) warn that there are several things that can be
“wrong” about the data set. Vending machine sales
will be used to illustrate the difficulties.

• Wrong amount of aggregation. We desire to
model daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for
this month and want to model next month’s
sales.

• Wrong distribution in space. We want to model
sales at a vending machine in location A, but
only have sales figures on a vending machine at
location B.

• Censored data. We want to model demand, but
we only have sales data. If the vending machine
ever sold out, this constitutes a right-censored
observation. The reliability and biostatistical
literature contains techniques for accommodat-
ing censored data sets.

• Insufficient distribution resolution. We want
the distribution of number of soda cans sold at
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a particular vending machine, but our data is
given in cases, effectively rounding the data up
to the next multiple of 24.

2 USING THE FULL RANGE OF INPUT
MODELS

Figure 1 contains a taxonomy whose purpose is to il-
lustrate the scope of potential input models that are
available to simulation analysts. There is certainly no
uniqueness in the branching structure of the taxon-
omy. The branches under stochastic processes, for ex-
ample, could have been state followed by time, rather
than time followed by state, as presented.

Examples of specific models that could be placed
on the branches of the taxonomy appear at the far
right of the diagram. Mixed, univariate, time-in-
dependent input models have “empirical/trace-driven”
given as a possible model. All of the branches include
this particular model. A trace-driven input model
simply generates a process that is identical to the
collected data values so as not to rely on a paramet-
ric model. A simple example is a sequence of arrival
times collected over a 24-hour time period. The trace-
driven input model for the arrival process is generated
by having arrivals occur at the same times as the ob-
served values.

The upper half of the taxonomy contains models
that are independent of time. These models could
have been called Monte Carlo models. Models are
classified by whether there is one or several variables
of interest, and whether the distribution of these ran-
dom variables is discrete, continuous, or contains both
continuous and discrete elements. Examples of uni-
variate discrete models include the binomial distribu-
tion and a degenerate distribution with all of its mass
at one value. Examples of continuous distributions
include the normal distribution and an exponential
distribution with a random parameter Λ (see, for ex-
ample, Martz and Waller 1982).

Examples of k-variable multivariate input models
(Johnson 1987) include a sequence of k independent
binomial random variables, a multivariate normal dis-
tribution with mean µ and variance-covariance ma-
trix Σ and a bivariate exponential distribution (Bar-
low and Proschan 1981).

The lower half of the taxonomy contains stochas-
tic process models. These models are often used to
solve problems at the system level, in addition to
serving as input models for simulations with stochas-
tic elements. Models are classified by how time is
measured (discrete/continuous), the state space (dis-
crete/continuous) and whether the model is station-
ary in time. For Markov models, the discrete-state/
continuous-state branch typically determines whether
the model will be called a “chain” or a “process”, and
the stationary/nonstationary branch typically deter-
mines whether the model will be preceded with the
term “homogeneous” or “nonhomogeneous”. Exam-
ples of discrete-time stochastic processes include ho-
mogeneous, discrete-time Markov chains (Ross 1997)
and ARIMA time series models (Box and Jenkins
1976). Since point processes are counting processes,
they have been placed on the continuous-time, dis-
crete-space branch.

In conclusion, modelers are too often limited to
univariate, stationary models since software is typi-
cally written for fitting distributions to these models.
Successful input modeling requires knowledge of the
full range of possible probabilistic i nput models.

3 PERFORMING A COMPLETE STATIS-
TICAL ANALYSIS

All input modeling should include a complete statisti-
cal analysis of the data set. This section uses service
time data to illustrate the types of decisions that of-
ten arise in input modeling.

Consider a data set of n = 23 service times col-
lected to determine an input model in a discrete-event
simulation of a queuing system. The service times in
seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life test-
ing literature (Lawless 1982, p. 228), the same princi-
ples apply to both input modeling and survival anal-
ysis.]

The first step is to assess whether the observations
are independent and identically distributed (iid). The
data must be given in the order collected for inde-
pendence to be assessed. Situations where the iid
assumption would not be valid include:

• A new teller has been hired at a bank and the 23
service times represent a task that has a steep
learning curve. The expected service time is
likely to decrease as the new teller learns how
to perform the task more efficiently.

• The service times represent 23 completion times
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the ex-
pected time to complete the task is likely to
increase with time.

If a simple linear regression of the observation num-
bers regressed against the service times shows a signif-
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Figure 1: A Taxonomy for Input Models
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Figure 2: Service Time Vs. Observation Number

icant nonzero slope, then the iid assumption is prob-
ably not appropriate.

Assume that there is a suspicion that a learning
curve is present. An appropriate hypothesis test is

H0 : β1 = 0

H1 : β1 < 0

associated with the linear model (Neter, Wasserman,
and Kutner 1989)

Y = β0 + β1X + ε,

where X is the observation number, Y is the service
time, β0 is the intercept, β1 is the slope, and ε is an
error term. Figure 2 shows a plot of the (xi, yi) pairs
for i = 1, 2, . . ., 23, along with the estimated regres-
sion line. The p-value associated with the hypothesis
test is 0.14, which is not enough evidence to conclude
that there is a statistically significant learning curve
present. The p-value may, however, be small enough
to warrant further data collection.

There are a number of other graphical and statis-
tical methods for assessing independence. These in-
clude analysis of the sample autocorrelation function
associated with the observations and a scatterplot of
adjacent observations. For this particular example,
assume that we are satisfied that the observations
are truly iid in order to perform a classical statistical
analysis.

The next step in the analysis of this data set in-
cludes plotting a histogram and calculating the values
of some sample statistics. A histogram of the obser-
vations is shown in Figure 3. Although the data set is
small, a skewed bell-shaped pattern is apparent. The
largest observation lies in the far right-hand tail of
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Figure 3: Histogram of Service Times

the distribution, so care must be taken to assure that
it is representative of the population.

The next decision that needs to be made is whether
a parametric or nonparametric input model should be
used. One simple nonparametric model would repeat-
edly select one of the service times with probability
1/23. The small size of the data set, the tied value,
68.64 seconds, and the observation in the far right-
hand tail of the distribution, 173.40 seconds, tend to
indicate that a parametric analysis is more appropri-
ate. For this particular data set, a parametric ap-
proach is chosen.

There are dozens of choices for a univariate para-
metric model for the service times. These include gen-
eral families of scalar distributions, modified scalar
distributions and commonly-used parametric distri-
butions (see Schmeiser 1990). Since the data is drawn
from a continuous population and the support of the
distribution is positive, a time-independent, univari-
ate, continuous input model is chosen. The shape
of the histogram indicates that the gamma, inverse
Gaussian, log normal, and Weibull distributions (Law-
less 1982) are good candidates. The Weibull distri-
bution is analyzed in detail here. Similar approaches
apply to the other distributions.

Parameter estimates for the Weibull distribution
can be found by least squares, the method of mo-
ments, and maximum likelihood. Due to desirable
statistical properties, maximum likelihood is empha-
sized here. The Weibull distribution has probability
density function

f(x) = λκκxκ−1e−(λx)
κ

x ≥ 0,

where λ is a positive scale parameter and κ is a pos-
itive shape parameter. Let x1, x2, . . . , xn denote the
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data values. The likelihood function is

L(λ, κ) =
n∏
i=1

f(xi) = λnκκn

[
n∏
i=1

xi

]κ−1
e−
∑n

i=1
(λxi)

κ

.

The log likelihood function is

logL(λ, κ) = n logκ+ κn logλ+ (κ − 1)
n∑
i=1

logxi

−λκ
n∑
i=1

xκi .

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
=
κn

λ
− κλκ−1

n∑
i=1

xκi

and

∂ logL(λ, κ)

∂κ
=
n

κ
+n logλ+

n∑
i=1

log xi−

n∑
i=1

(λxi)
κ logλxi.

When these equations are equated to zero, the simul-
taneous equations have no closed-form solution for λ̂
and κ̂:

κn

λ
− κλκ−1

n∑
i=1

xκi = 0

n

κ
+ n logλ+

n∑
i=1

logxi −
n∑
i=1

(λxi)
κ logλxi = 0.

To reduce the problem to a single unknown, the first
equation can be solved for λ in terms of κ yielding

λ =

(
n∑n
i=1 x

κ
i

)1/κ
.

Law and Kelton (1991, p. 334) give an initial esti-
mate for κ and Qiao and Tsokos (1994) present a
fixed-point algorithm for calculating the maximum
likelihood estimators λ̂ and κ̂.

The score vector has a mean of 0 and a variance-
covariance matrix I(λ, κ) given by the 2 × 2 Fisher
information matrix

I(λ, κ) =


E
[
−∂2 logL(λ,κ)

∂λ2

]
E
[
−∂2 logL(λ,κ)

∂κ∂λ

] E
[
−∂2 logL(λ,κ)

∂λ∂κ

]
E
[
−∂2 logL(λ,κ)

∂κ2

]

 .

The observed information matrix

O(λ̂, κ̂) =

[
−∂2 logL(λ̂,κ̂)

∂λ2

−∂2 logL(λ̂,κ̂)
∂κ∂λ

−∂2 logL(λ̂,κ̂)
∂λ∂κ

−∂2 logL(λ̂,κ̂)
∂κ2

]
,

can be used to estimate I(λ, κ).
For the 23 service times, the fitted Weibull dis-

tribution has maximum likelihood estimators λ̂ =
0.0122 and κ̂ = 2.10. The log likelihood function
evaluated at the maximum likelihood estimators is
logL(λ̂, κ̂) = −113.691. Figure 4 shows the empiri-
cal cumulative distribution function (a step function
with a step of height 1/n at each data point) along
with the Weibull fit to the data.
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Figure 4: Empirical and Fitted Cumulative Distribu-
tion Functions for the Service Times

We now consider interval estimators for λ and
κ. Using the fact that the likelihood ratio statis-
tic, 2[logL(λ̂, κ̂) − logL(λ, κ)], is asymptotically χ2

distributed in n with 2 degrees of freedom and that
χ22,0.05 = 5.99, a 95% confidence region for the pa-
rameters is all λ and κ satisfying

2[−113.691− logL(λ, κ)] < 5.99.

The 95% confidence region is shown in Figure 5. The
line κ = 1 is not interior to the region, indicating
that the exponential distribution is not an appropri-
ate model for this particular data set.

As further proof that κ is significantly different
from 1, the standard errors of the distribution of the
parameter estimators can be computed by using the
inverse of the observed information matrix

O−1(λ̂, κ̂) =

[
0.00000165
−0.000139

−0.000139
0.108

]
.

This is the asymptotic variance-covariance matrix for
the parameter estimators λ̂ and κ̂. The standard er-
rors of the parameter estimators are the square roots
of the diagonal elements

σ̂λ̂ = 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval for κ is

2.10− (1.96)(0.329) < κ < 2.10 + (1.96)(0.329)
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Figure 5: 95% Confidence Region Based on the Like-
lihood Ratio Statistic

or
1.46 < κ < 2.74,

since z0.025 = 1.96. Since this confidence interval does
not contain 1, the inclusion of the Weibull shape pa-
rameter κ is justified.

At this point, model adequacy should be assessed.
Since the chi-square goodness-of-fit test suffers from
arbitrary interval limits, it should not be applied to
small data sets. The Kolmogorov–Smirnov, Cramer–
von Mises, or Anderson–Darling goodness-of-fit tests
(Lawless 1982) are appropriate here. The Kolmogor-
ov–Smirnov test statistic, for example, for this data
set with a Weibull fit is 0.152, which measures the
maximum difference between the empirical and fitted
cumulative distribution functions. This test statistic
corresponds to a p-value of approximately 0.15 (Law
and Kelton 1991, page 391), so the Weibull distri-
bution provides a reasonable model for these service
times. The Kolmogorov–Smirnov test statistic values
for several models are shown below.

Model Test statistic
Exponential 0.301

Weibull 0.152
Gamma 0.123

Inverse Gaussian 0.099
Log normal 0.090

P–P and Q–Q plots can also be used to assess
model adequacy. A P–P plot, for example, is a plot
of the fitted cumulative distribution function at the
ith order statistic x(i), i.e., F̂ (x(i)), versus the ad-
justed empirical cumulative distribution function, i.e.
F̃ (x(i)) = i−0.5

n , for i = 1, 2, . . . , n. A plot where the
points fall close to a line indicates a good fit. For
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Figure 6: A P–P Plot for the Service Times

the 23 service times, a P–P plot for the Weibull fit is
shown in Figure 6, along with a line connecting (0, 0)
and (1, 1). P–P plots should be constructed for all
competing models.

4 EVALUATING TIME DEPENDENCE

Accurate input modeling requires a careful evaluation
of whether a stationary (no time dependence) or non-
stationary model is appropriate. Arrivals to a lunch
wagon are used to illustrate the types of modeling
decisions that need to be made.

Arrival times to a lunch wagon between 10:00 AM
and 2:30 PM are collected on three days. The real-
izations were generated from a hypothetical arrival
process given by Klein and Roberts (1984). A to-
tal of n = 150 arrival times were observed, including
n1 = 56, n2 = 42 and n3 = 52 on the k = 3 days.
Defining (0, 4.5] be the time interval of interest (in
hours) the three realizations are

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this
data is whether the three days represent processes
drawn from the same population. External factors
such as the weather, day of the week, advertisement,
and workload should be fixed. For this particular ex-
ample, we assume that these factors have been fixed
and the three processes are representative of the pop-
ulation of arrival processes to the lunch wagon.
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The input model for the process comes from the
lower branch (stochastic processes) of the taxonomy
in Figure 1. Furthermore, the arrival times consti-
tute realizations of a continuous-time, discrete-state
stochastic process, so the remaining question con-
cerns whether or not the process is stationary.

If the process proves to be stationary, the tech-
niques from the previous example, such as drawing a
histogram, and choosing a parametric or nonparamet-
ric model for the interarrival times, are appropriate.
This results in a Poisson or renewal process. On the
other hand, if the process is nonstationary, a nonho-
mogeneous Poisson process might be an appropriate
input model. A nonhomogeneous Poisson process is
governed by an intensity function λ(t) which gives
an arrival rate [e.g., λ(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary
with time.

Figure 7 contains a plot of the empirical cumula-
tive intensity function estimator suggested by Leemis
(1991) for the three realizations. The solid line de-
notes the point estimator for the cumulative inten-
sity function Λ(t) =

∫ t
0
λ(τ)dτ and the dashed lines

denote 95% confidence intervals. The cumulative in-
tensity function estimator at time 4.5 is 150/3 = 50,
the point estimator for the expected number of arriv-
ing customers per day. If Λ̂(t) is linear, a stationary
model is appropriate. Since people are more likely
to arrive to the lunch wagon between 12:00 (t = 2)
and 1:00 (t = 3) than at other times and the cumu-
lative intensity function estimator has an S-shape, a
nonstationary model is indicated. More specifically,
a nonhomogeneous Poisson process will be used to
model the arrival process.
The next question to be determined is whether a
parametric or nonparametric model should be chosen
for the process. Figure 7 indicates that the inten-
sity function increases initially, remains fairly con-
stant during the noon hour, then decreases. This
may be difficult to model parametrically, so a non-
parametric approach, possibly using Λ̂(t) in Figure 7
might be appropriate.

There are many potential parametric models for
nonstationary arrival processes. Since the intensity
function is analogous to the hazard function for time-
independent models, an appropriate 2-parameter dis-
tribution to consider would be one with a hazard
function that increases initially, then decreases. A
log-logistic process, for example, with intensity func-
tion (Lawless 1982)

λ(t) =
λκ(λt)κ−1

1 + (λt)κ
t > 0,

for λ > 0 and κ > 0, would certainly be appropri-
ate. A more general EPTF (exponential-polynomial-
trigonometric function) model is given by Lee, Wilson
and Crawford (1991) with intensity function

λ(t) = exp

[
m∑
i=0

αit
i + γ sin(ωt + φ)

]
t > 0.

The trigonometric function is capable of modeling the
intensity function that increases, then decreases.

In all of the parametric models, the likelihood
function for the vector of unknown parameters θ =
(θ1, θ2, . . . , θp) from a single realization on (0, c] is

L(θ) =

[
n∏
i=1

λ(ti)

]
exp

[
−

∫ c
0

λ(t)dt

]
.

Maximum likelihood estimators can be determined
by maximizing L(θ) or its logarithm with respect to
all unknown parameters. Confidence intervals for the
unknown parameters can be found in a similar man-
ner to the service time example.

5 CONSIDERING A PARAMETRIC VS. A
NONPARAMETRIC APPROACH

The criteria for determining whether to take a para-
metric or a trace-driven, or nonparametric approach
to define an input model are hazy (Bratley, Fox, and
Schrage, 1987). Determining whether a particular
deviation between the empirical and fitted paramet-
ric distribution is due to sampling variability (chance
variation) or an intrinsic part of the distribution is
more of an art than a science. Certainly a close fa-
miliarity with the system being modeled is advanta-
geous. Bézier curves (Flanigan–Wagner and Wilson
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1993) offer a unique combination of the parametric
and nonparametric approaches. An initial distribu-
tion is fitted to the data set, then the modeler decides
whether differences between the empirical and fitted
models represent sampling variability or an aspect of
the distribution that should be included in the input
model.

6 CONSIDERING TAIL BEHAVIOR

Many discrete-event simulation models involve queu-
ing. When modeling service times, for example, the
accurate modeling of the right-hand tail of the dis-
tribution is critical. These long service times signif-
icantly impact queuing statistics. Extremely large
sample sizes are required if a parametric approach is
to be taken for modeling probabilistic inputs. In the
example from section 2, for example, the lone obser-
vation in the right-hand tail (173.40) does not allow
the modeler to conclude that any parametric distri-
bution has appropriate tail behavior.

7 PERFORMING A SENSITIVITY ANAL-
YSIS

Assume that a single-server queuing model with a
deterministic arrival stream has just one probabilistic
element: the service time. If a statistical analysis
reveals that service times are accurately modeled by
the exponential distribution with a rate of λ, then it is
sensible to run the simulation at the point estimate λ̂,
as well as the upper and lower bound of a confidence
interval for λ. Analysis of the difference between the
outputs from the simulation at these three levels of
λ indicate the sensitivity of the output to λ and may
indicate whether further data collection is warranted.
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