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ABSTRACT

Generalized Semi-Markov Processes (GSMPs) arc
usually described by sets of variables, events and clock
distributions. This kind of representation often lacks
intuitive appeal. In this paper we propose a mapping
from GSMPs to Event Graph Models. This mapping
allows us to use an event graph to visualize a GSMP
model as an intermediate step to imple.nenLation. By
examining the event graph model, we can perform logic
checking and verification more easily than if we try to
interpret the GSMP description.

This edge is read as follows:
"whenever event A occurs, the system state, S,

changes to fA(S), Then, if condition (i) is true, event B
will be scheduled to occur after a delay of t."

Appropriate labels arc omitted if the inter-event
edge delay is zero or if the scheduling is unconditional.

One of the simplest examples of an EGM is a single
server queue. Here the single statc variable, Q, is the
number of custOlners in the systcm (waiting in line or in
service). The random time between customer arrivals is
denoted as ta and the random time of customer service
is ts. The EGM for a generic queue is as follows:

(Q>O)
1 THE TWO MODELING PARADIGMS

Before presenting the mapping algorithm, we first
introduce the two modeling schemes. S will denote a
countable set of "physical" slates and A equal a finite set
of integers enumerating the events. Generic slates are s
and s'; a generic event is a.

1.1 Event Graph Models

~Q=Q+ 1 ~

(Q==l)

IQ==Q-l J

Event graph models (EGMs) were first described by
Schruben (1983) and later enriched by others, including
Som and Sargent (1989). Pictorially the vertices of an
EGM represent the various events in the simulation.
The edges of the graph represent relationships between
events. Basically, the edges define the conditions under
which and the time delay after which one event will
schedule another event to occur. Suppose the following
edge is part of a simulation graph,

The ARRIVE event simply inCrelTICnts the queue and
the LEAVE event dccrclnents the queue.

We formally define an EGM using a directed graph
G = {E,V} with edge set E and vertex set V and an
a~sociatcd state space, S. Generic vertices are denotcd
by v (perhaps with a subscript). Generic edges arc
denoted as c = (vo,vd), which specifics the origin and
destination of a directed edge. We label the graph with
the following sets:

{3=.f (5)}
1\

{3=t JS)}

1465

F = {fv: VVE V} are the state changes associated with
each event.

C ={ce:S--)9\, Ve =(vo'vd )E E) when Cc =0, the edge
condition is false (as in the C programming language).
T = {te: Vc = (vo'vd ) EEl are the inter-event delay

tilnes.
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P = {Pe: Ve = (vo,vd ) E E} are execution priority
expressions used to hreak time tics.

The conditions in C specify whether or not an
edge's destination event will be scheduled after the
edge's origin event occurs. At any given tilne in the
execution of the simulation, those edges where c(s) =t 0
(i.e. the edge conditions are true) are referred to as
active edges. Edges where c(s) =0 can be thought of as
being temporarily missing from the graph.

The basic notion of an event graph model, M =
(V,E,S,F,C,T,P), is to represent the indices for above
sets with the edges and vertices of a directed graph. It is
this graph of indices that organizes the above sets into a
simulation model.

1.2 Generalized Semi-Markov Processes

GSMPs are a useful probability model for discrete event
simulation: Comprehensive treatments appear in (Glynn
and Iglehart, 1988) and in (Glynn, 1989). We define
GSMPs following the development in (Glasserman,
1991). Define the following: £(s) = non-empty set of
possible events in slate SE S; p(s',·s,a) = probability of
jumping from state s to s' when event, ex, occurs; Fa(.)
= distribution of interval until event a occurs. The
dynamics of a particular GSMP modcllnay require the
two doubly-indexed independent sequences of random
variables: (i) {X(a,k); aE A, k= 1,2,... } distributed
according to Fa (.) (these are the successive inter-event
times for the GSMP salnple path) and (ii) {U(a,k); a
E A, k= 1,2,... } unifonnly distributed on the sellli-open
interval (0,11 (these are used for random statc changes
when evenL~ occur). Glasserman 119911 also defines the
mappings <p for each UE A, s' =¢a(.\",U(a,k») so that
Probes' = ¢a(s,U(a,k)) = p(s':s,a). In an EGM of the
saIne system both these input processcs 111 ight be
mappings of the random nUlnber sequcnce, U. The
algorithm or SChCll1C by which thc dynamics of a GSMP
evolve is typically specificd by mimicking the execution
of a typical event-scheduling discrete event simulation
code.

2. A PR()POSED (;SMP~E(iMMAPPIN(;

We start with a directed graph G = (V,E) and use the
same physical state space, S, with a unique vertex, v E V
in the event graph corresponding to each event, a, in
the GSMP. The vertices are labeled with the state
changes associated with each event fv=¢a,a=v. For
each pair of vertices, e = (vo,vd ), define:
Ce = (s~s' E S : Vo E £(s) and vd E {E(s') - (£(s) ­

(vo })}} where s~s' indicates that the prcsent state of

the system is s' and the state immediately preceding s'
was s.
In other words if Vo can cause a transition out of slate s
and vd is a new event when the slate changes to s' then
it must be possible for Vo to schedule vd (i.e. if the
systems enters state s' from state s).

If s' and Vo uniquely determine s (i.e fv is
invertible) the we can write a Sialic definition:
Ce = Is' ES: Vo E E(s) and vd E (E(s') - (E(s) - (vol)}
VSES3 p(s';s,voJ>O}.
Here, if it is possible to get frOITI stale s to s' when Vo is
executed and vd is a new event in state s' then Vo must
schedule vd jf the system is in slate s'.

The edges of G are E = fe = (vo,vd): Ce * 0}.
Each edge is labeled with:

te={X(vd,k), k=1,2,... }, its delay time
Pe:S~R, its execution priority,

and cc:S~{true,false}, its edge condition, where
ce(S) = true iff s' E Ce; that is we label each edge with a
membership rule, Ce., Note that E can be countably
infinite if S is, typically lEI < lSI.

3 EXAMPLE 1: A SIN(iIJE-SERVER QUEUE

(iSMP:
S = {O, 1,2,... } =Q = number of customers in the system
A = (1 ,2) = (Arrive, Leave)
F1(.) is the distribution of the inter-arrival time,ta,
F2(') is thc distribution of the service time,ts.
£(s) = {J,2} if s>O, and E(O) = {I}. finally p(s+l,s,l) =
1, p(s-1 ,s,2) = 1
EGM:
V = {Arrive, Leave}
note that the state changes f1 and f2 arc invertible so we
can use the static definition of Ceo [1-

1(s)=s-l for s > 0,
i2-1(S)=s+ 1

C(1,1) = Is' EQ: 1 E £(s'-I) and I E {£(s') - (£(s'-l)­
{1}) }, s>O} ={Q>O }
C(1,2) = Is' E Q: 1 E £(s' -1) and 2 E {E(s') - (E(s' -1) ­
{ 1}) } , s>O} ={Q= 1}

C(2,1) = (s' E Q : 2 E E(s' +J) and 1 E (E(s')­
(£(s' +1) - (2})} }={0}

C(2,2) = {s' E Q : 2 E E(s' + J) and 2 E (E(s') - (E(s' + I)
- (2})} }= {Q>O }
The resulting event graph is identical to the single
server queue model pictured in section 1.1 with the
addition of the redundant condition (Q > 0) on the edge
generating the arrivals.
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4 EXAMPLE 2: A COLLISI{)N-FREE BUS
NETWORK

An interesting example of a larger GSMP is the
collision-free bus network modeled by Iglehart &
Shedler (1983). In this model there are N port~

connected by a passive bilateral bus on which message
packets are transmitted and received. In addition to the
bus, there is a one-way logic control wire that links the
ports. This wire transmits send flipOops which are
essentially requests by a port to use the bus for
transmission. The signal tapped at the control wire
input to a port is the inclusive OR of the send flipflops
from upstream ports, i.e., the port sees whether some
upstream port is waiting to transmit.

When a message packet arrives at a port for
transmission, the port sets the send flipflop (requests the
bus), waits for a time interval to make sure that il~

flipflop is received and that it has been notified of any
occurring translnission. After that delay, the port wails
until the bus is observed to be idle and there are no bus
requests from upstream. When those conditions are
satisfied, it begins transmission and resets its send
flipflop to O.

Propagation times between ports i and j are denoted
as T(ij) for the actual propagation tilne along the bus
and R(i,j) for the propagation tilTIe along the control
wire. S(D represents the send flipflop at port j and P(i)
is the inclusive OR signal tapped at port j. For
simplicity the model assumes that there is at most one
packet in queue at each port; A(j), a random variable,

represents the time between completion of transmission
and arrival of the next message packet at port j. LU) is
a random variable representing the transm ission time
for port j. Since event interval times are constant, we
omit their description by sampling function.

The variables for this GSMP are:
Wet) = (W l(t), ... , WN(t» where Wit) is the state of port
j at time 1. W/t)=l if port j has set the flipflop but is not
ready to transmit (because it is still waiting), W/t)=2 if
port j has completed the waiting time but has not begun
transmitting, Wit)=3 if port j is transmitting, W/t)=4 if
transmission is complete and port j is waiting for the
next message packet.
U(t) = (U 1(L), ... , UN(t» where U/t)= 1 if port j observes
the bus to be busy at time t, and equals 0 otherwise.
Vet) = (V2•1(t), V3•1(t), V3.2(t), V4•1(t), ... , VN~-l(t)

where VJ.k(t)= 1 if port j has observed that port k has set
its flipflop and equals zero otherwise.

The following are the evcnl~ of the GSMP: "arrival
of new packet at port j", "end of waiting period for port
j", "end of transmission by port j", "observation by port
j of the setting (to 1) of the flipflop by port k upstream
(k<j)", "observation by port j of the resetting (to 0) of
the flipflop by port k upstrealTI (k<j)", "observation by
port j of the start of transmission", "observation by port
j of the end of transm ission." Table 1 displays the
events (with abbreviated names) along with their state
changes, interval times and the subset of S for which the
event is a member of E(s).

Table 1: Attributes of the Evenl<.; of the Collision-Free Bus Network GSMP

Event State Changes time delay s: event E E(s)

New PacketU) W(j) = 1 AU)
Clear(j) W(j) = 2 or 3* R(j,N)+T(l,N)
End TransmissionU) W(j) = 4 L(i)
Observe SetU,k) V(k,j) = ] RU,k)
Observe Reset(j,k) V(k,j) = 0, W(j) = 2 or 3* R(i,k)
Observe Start(j) U(j) = 1 T(k,j)
Observe End(j) U(j) = 0, W(j) = 2 or 3* T(k,j)

* W(j) = 3 if P(j) = 0 and U(j) = 0, WU) = 2 otherwise

WU)=4
W(j) = 1
W(D =3
:3 k<j:3 W(k) =1, V(k,j) =0
:.) k<j :3 W(k) = 3, V(k,j) = 1
::3 k :3 W(k) =3, U(j) =0
3k:3W(k)=4,UU)=]
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4.1 The Event (;raph Translation

In this GSMP all of the state changes are invertible so
we can use the static definition ofCe, Ce = (s' ES: Vo
E E(s) and vd E (E(s') - (E(s) - {vol)} Vs ES 3

p(s';s,voJ > O}. For example consider vo=ClcarU),
vd=Observc Starl(k). Now ClcarU) E E(s) if and only if
WU)=] and Observe Start (k) E E(s) if and only if
W(j)=3 for some j and U(k)=O. So the only possible
combinations of sand s' are those where s includes

W(j)=l and s' includes W(j)=3 and U(k)=O and
p(s';s,vo) > O. Ce l1lerefore contains {s: W(j)=3 and
U(k)=O}. Ce is not empty so we would draw an edge
from Clcar(j) to Observe Start(k); its edge condition
would be (W(j)=3 and U(k)=O) and its tilne delay, from
the GSMP, would be T(j,k). Table 2 lists all of the
edges for which Ce is non-clnpty with the edge
conditions and time delays. The stale changes are the
same as given in Table 1. Figure 1 shows the event
graph.

Figure 1: Event Graph of the Collision-Free Bus Network
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Table 2: Edges of the Event Graph Translation or the Collision-Free Bus Network GSMP

1-!69

Edge

New Packct(j) ~ ClearU)

New Packct(j) --) Observe Set(j,k), k>j

Clcar(j) ~ End Transmission(j)

ClcarU) ~ Observe Reset(j,k), k>j

Clcar(j) ~ Observe Start(k), \ik;t:j

End TransmissionU) ~ New Packet(j)

End TransmissionU) --4 Observe End(k), 'v'k;t:j

Observe SetU,k) --4 Observe Reset(l,k), l<k

Observe ResetU,k) ~ End Transmission(j)

Observe Reset(j,k) --4 Observe Set(l,k), l<k

Observe Reset(j,k) --4 Observe Reset(k,l), I>k

Observe Reset(j,k) ~ Observe Start(l), \7ltk

Observe Start(j) --4 Observe EndU)

Observe EndU) -) End Transmission(j)

Observe End(j) ~ Observe ResetU,k), k>j

Observe EndU) -) Observe Start(j)

Observe End(j) ~ Observe Start(k), \ik;t:j

Cc

W(j) = 1

W(j) = 1, V(k,j) = 0

W(D = 3
W(j) = 3, V(k,j) =]
W(D = 3, U(k) =0

W(j) = 4

WU) = 4, U(k) = ]

Wen =3, V(k,1) =1

W(j) =3
W(I) = 1, V(k,l) = a
W(k) = 3, V(l,k) = 1

W(k) =3, U(l) =0

:3 k j W (k) =4, U (j) =1

W(j) =3
W(j) = 3, V(k,j) = 1

3 k j W(k) = 3, U(j) =0

WU) =3, U(k) = 0

time delay

R(j,N)+T(l ,N)

RU,k)

L(j)
R(j,k)
T(j,k)

AU)
T(j,k)
R(l,k)
L(j)
R(l,k)
R(k,l)
T(k,l)
T(j,k)

LU)
R(j,k)
TU,k)
T(j,k)

4.2 Checking the Logic

Now that we have an event graph model, we can

code it up using available software. In this case we used

SIGMA (Schruben ]995). In debugging this model a

number of implementation issues arisc.

The first concern was that some of the evenL, would

become inactive without being executed. For example,

when port j begins transmission, an Observe Start event

is scheduled for the other ports (because WU) = 3). If

the transmission is finished before port k observes the

start then Observe Start(k) disappears [rorn the active

event set (W(D 1:- 3 for any j) although it wa, never

executed.
This means that event~ are being canceled in the

original GSMP. While sOlne GSMP definitions

explicitly allow for canceling, others do not. If this

were a problem for the modeler then certain

assumptions would have to be made to prevent this

occurrence
Iglehart and Shedlcr explicitly state that

R(i,j» T(i,j) Vi,j. Additional assumptions are required

however to prevent cancellation in the GSMP.

L(j»R(j,N) will allow the reset flipOop to finish

propagating before the port finishes transmission and

A(j»maxjT(j,i) will allow the cnd of transmission to

propagatc before a new packet arrives at the port.

Another possibility is to redefine the event sets in

the original GSMP. In fact without thc above

assumptions or thc introduction of new state variables it

is possible that the model will fail to be a GSMP at all;

the system can reach a state where the active event set

cannot be fully detennincd.
For example, suppose port j ends transmission and

very soon afterwards a new packet arrives at port j.

There may be a port k that has not observed that end of

transmission yet; WU) = 1 but Observe Start(k) should

still be an active event. We also have the usual case

however, where if W(j) ;t: 4 for any j then there are no

Observe Start(k) events active. Therefore if W(j) =1 we

can't tell whether Observe Start(k) should be active or

nolo
Another situation is the existence of simultaneous

events. In running the event graph of this GSMP it

became clear that this situation exists in the model

despite effOrL5 and assumptions aimed at preventing

simultaneous events. Further inspection revealed that

the problem waloi caused by the fact that the end of

transmission and start of transmission propagate at the

same speed. If a start of transmission by port j is

enabled by the observation that port k has ended

transmission then the end of k's transmission and start

of j's transmission now travel together down the bus. If

they are executed in the wrong order (Observe Start

then Observe End) then an error results because the

other ports will think the bus is free when it is not.

In running the event graph version of the model, it

also became clear that there were other problem in the

definitions of the event sets for certain states.

Specifically Observe End(j) is supposed to be an active
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SIMULATI()NFOR5 IMPLICATI()NS
M()DEI.JIN(;

event whenever W(k)=4 for some k and UQ)= 1. What
happens is that whenever port j observes a start of
transmission, UU) will become 1 and if any other port is
waiting for a new packet (W(k)=4) then an Observe
End(j) will be scheduled. If port j observes a start of
transmission while the transmission is still happening
an Observe End may be scheduled because of some
other port which is waiting for a new packet, clearly this
should not happen.

Mapping from a GSMP to an EGM may uncover
logical errors that are not apparent in the GSMP
description. In addition, implementing and running the
event graph model may uncover other concerns that
need to be addressed in the original GSMP.

We can see in this exarnple that EGMs offer an
effective and efficient method for Inodel developlnent
and structural analysis and pennits development and
enrichment of GSMP results and models. GSMPs offer
a path to proofs of validity of simulation methodologies
and potential algorithms for implementation. A
GSMP~EGM mapping bridges a basic applicalion­
theory gap in that EGMs are very popular for model
building and GSMPs arc very popular for developing
DEDS theory.


