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ABSTRACT

Generalized Semi-Markov Processes (GSMPs)  are
usually described by sets of variablcs, events and clock
distributions. This kind of reprcsentation often lacks
intuitive appcal. In this paper wc proposc a mapping
from GSMPs to Event Graph Modecls. This mapping
allows us to usc an event graph o visualize a GSMP
modcl as an intermediale step to implementation. By
examining the cvent graph model, we can perform logic
checking and verification more casily than if we try to
interpret the GSMP description.

1 THE TWO MODELING PARADIGMS

Before presenting the mapping algorithm, we first
introduce the two modeling schemes. S will denote a
countable sct of "physical” statcs and A cqual a finite sct
of integers enumcrating the events. Generic states are s
and s”; a generic cventis Q.

1.1 Event Graph Models

Event graph models (EGMs) were first described by
Schruben (1983) and later enriched by others, including
Som and Sargent (1989). Pictorially the vertices of an
EGM represent the various cvents in the simulation.
The edges of the graph represent relationships between
events. Basically, the edges define the conditions undcr
which and the time delay after which one event will
schedule another event to occur. Suppose the following
edge is part of a simulation graph,
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This edge is rcad as follows:

"whenever event A occurs, the system state, S,
changes 10 fA(S). Then, if condition (i) is true, event B
will be scheduled to occur after a delay of 1."

Appropriate labels arc omitted if the inter-cvent
edge delay is zero or if the scheduling is unconditional.

One of the simplest cxamples of an EGM is a single
server qucuc. Here the single state variable, Q, is the
number of customers in the system (waiting in linc or in
service). The random time between customer arrivals is
denoted as 1, and the random time of customer service
is tg. The EGM for a gencric queuc is as follows:

(Q>0)

L @ s
ARRIVE s >
{Q=Q+1} $Q=Q—-1}

The ARRIVE event simply increments the queue and
the LEAVE cvent decrements the queuc.

We formally definc an EGM using a dirccted graph
G = (E,V} with cdge sct E and vertex set V and an
associated statc spacc, S. Gencric vertices arc denoted
by v (perhaps with a subscript). Generic edges arc
denoted as € = (v(,vq), which spccifics the origin and
destination of a dirccied edge. We label the graph with
the following sets:

F = {f: Vve V] are the state changes associated with
each cvent.

C = {c:SoR, Ve = (vq.vq )€ E) when ¢, = 0, the cdge

condition is falsc (as in thc C programming languagc).

T = {tg: Ve =(vyvq ) € EJ arc the inter-cvent delay
times.
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P = (pe: Ve = (vgvq ) € E} arc cxccution priority
cxpressions used to break time tics.

The conditions in C specify whether or not an
edgc's destination cvent will be scheduled after the
edge's origin cvent occurs. At any given time in the
exccution of the simulation, thosc edges where c(s) # 0
(i.e. thc edge conditions arc truc) are rclerrcd to as
active edges. Edges where ¢(s) = 0 can be thought of as
being temporarily missing from the graph.

The basic notion of an cvent graph model, M =
(V.E,S,F.C.T,P), is to represent the indices for above
sets with the edges and vertices of a directed graph. It is
this graph of indiccs that organizcs the above scts into a
simulation model.

1.2 Generalized Semi-Markov Processes

GSMPs are a useful probability modcl for discrete event
simulation: Comprehensive trcatments appear in (Glynn
and Iglehart, 1988) and in (Glynn, 1989). We dcfinc
GSMPs following the development in (Glasscrman,
1991). Define the following: E(s) = non-cmpty set of
possible cvents in state s€S; p(s’;s,a) = probability of
jumping from state s to s when cvent, o, occurs; F,(.)
= distribution of interval until event o occurs. The
dynamics of a particular GSMP modcl may requirc the
two doubly-indexcd indcpendent scquences of random
variables: (1) {X(ok); aeA, k=1,2,..} distributed
according o F(.) (thesc arc the successive inter-cvent
times for the GSMP sample path) and (i1) {U(ok); o
€A, k=1,2,...} uniformly distributcd on thc scmi-open
interval (0,1] (thesc arc uscd for random statc changes
when cvents occur). Glasserman [1991] also defincs the
mappings ¢ for cach a€A, s" =¢n(s,U(0.k)) so that
Prob(s” = ¢q(s,U(0Lk)) = p(s’:s.00). In an EGM of the
samec systcm both these input processes might be
mappings of thc random number scquence, U. The
algorithm or scheme by which the dynamics of a GSMP
evolve is typically specificd by mimicking the exccution
of a typical event-scheduling discrete event simulation
code.

2. A PROPOSED GSMP—-EGM MAPPING

We start with a dirccted graph G = (V,E) and use the
same physical state space, S, with a unique vertex, v € V
in the event graph corresponding o cach cvent, o, in
the GSMP. The verticcs are labeled with the statc
changes associated with each cvent [=¢q,0=v. For
each pair of vertices, ¢ = (Vorvd ) definc:

Ce = {55 €5 : vy € E(s) and vq € {E(s) - (E(s) -
{voh}1 where s—s’ indicates that the present state of

thc system is s” and the state immcdiately preceding s’
was s.

In other words if v, can causc a transition out of statc s
and v is a new event when the state changes (0 s’ then
it must be possible for vy to schedule vy (i.e. if the
systems enters statc s’ from statc s).

If s> and vo uniquely determine s (i.c f, is
invertiblc) the we can wrilc a static definition:
Ce=1[s"€S:vye E(s)and vq € {E(s) - (E(s) - {vo])]
VseS§ > plsisvgy) >0}

Here, if it is possible to get from statc s o0 s’ when v, is
cxecuted and vy is a ncw event in state s° then v, must
schedule vq if the system is in state s’

The cdges of G arc E = {¢ = (v,vq ): Ce # D).
Each edge is labeled with:

le={X(vq.k), k=1,2,..}, its delay time

Pe:S—R, its execution priority,
and Ce:S—{true,false}, its edge condition, where
ce(s) = truciff s e Cg; that is we label cach cdge with a
membership rule, C, - Note that E can be countably
infinitc if S is, typically |El < ISI.

3 EXAMPLE 1: A SINGLE-SERVER QUEUE

GSMP:

S§=1{0,1,2,...} = Q = numbecr of customers in the systcm
A=(1,2)=(Arrive, Lcave)

F;(.) is the distribution of the intcr-arrival time,ty,
F>(.) is the distribution of the scrvice time, L.

L(s) = {12} ifs>0, and E(0) = {1}, finally p(s+1,s,1) =
1, p(s-1,8,2) = 1

EGM:

V = {Arrive, Leave)

note that the statc changes [, and f; arc invertible so we
can use the static definition of C.. f,”(s)=s-1 for s >0,
£, (s)=s+1

C(],])= {s’eQ@:1€ L(s-1)and ] € [E(s") - (E(s'-1) -
{1hH1, >01={Q>0)

C(1,2'): {s’eQ:1€ L(s'-1)and 2 € {E(s") - (E(s'-1) -
(111}, s>0}={Q=1}

Coy =1{s'€Q:2e E(s'+])and | € {E(s)-
(E(s'+1)- {2} }={D)

Co2 =(s€Q:2€ E(s'+])and 2 € (E(s') - (E(s'+])
- {2HH={Q>0}

The resulting event graph is identical (o the single
scrver queuc model pictured in section 1.1 with the
addition of the redundant condition (Q > 0) on the cdge
gencrating the arrivals.
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4 EXAMPLE 2: A COLLISION-FREE BUS

NETWORK

An intcresting cxample of a larger GSMP is the
collision-frec bus nctwork modcled by Iglchart &
Shedler (1983). In this model there arc N ports
connected by a passive bilateral bus on which message
packets are transmitted and reccived. In addition to the
bus, there is a onc-way logic control wire that links the
ports. This wire transmits send flipflops which are
essentially rcquests by a port to usc the bus for
transmission. The signal tapped at the control wire
input to a port is the inclusive OR of the scnd flipflops
from upstream ports, i.c., thc port sces whether some
upstream port is waiting (o transmit.

When a message packet arrives at a port for
transmission, the port sets the send flipflop (requests the
bus), waits for a time intcrval to make surc that its
flipflop is received and that it has been notified of any
occurring transmission. After that delay, the port wails
until the bus is obscrved o be idle and there arc no bus
requests from upstrcam.  When thosc conditions arc
satisficd, it bcgins transmission and rcscts its send
flipflop to 0.

Propagation times between ports i1 and j arc denoted
as T(i,) for the actual propagation timc along thc bus
and R(i,j) for the propagation timc along thc control
wire. S(j) represents the send flipflop at port j and P(j)
is the inclusive OR signal tapped at port j. For
simplicity thc modcl assumcs that there is at most onc
packet in queuc at each port; A(j), a random variable,
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represents the time between completion of transmission
and arrival of the next message packet at port j. L(j) is
a random variable representing the transmission time
for port j. Since event intcrval times are constant, we
omit their description by sampling function.

The variables for this GSMP are:

W(t) = (W (1), ..., Wx(1)) where Wj(t) is the state of port
jattime t. W;(1)=1 if port j has set the flipflop but is not
ready to transmit (because it is still waiting), W(t)=2 if
port j has complcted the waiting time but has not begun
transmitting, Wi(1)=3 if port j is transmitting, W;(1)=4 if
transmission is complcte and port j is waiting for the
next message packet.

U() = (Uy(1), ..., Un(t)) where U(t)=1 if port j obscrves
the bus to be busy at time (, and equals 0 otherwise.

V(O = (V2u(0, Vai(0), Vi), Vai(V), ..., Vana(t)
where Vi (1)=1 if port j has observed that port k has set
its flipflop and cquals zero othcrwisc.

The following are the events of the GSMP: “arrival
of new packet at port j”, “cnd of waiting pcriod for port
J7, “end of transmission by port j”, “obscrvation by port
j of the sctting (to 1) of the flipflop by port k upstrcam
(k<j)”, “obscrvation by port j of the resctting (1o 0) of
the flipflop by port k upstrcam (k<j)”, “obscrvation by
port j of the start of transmission”, “observation by port
j of the cnd of transmission.” Table 1 displays thc
events (with abbrevialed names) along with their state
changes, intcrval times and the subset of S for which the
cvent is a member of E(s).

Table 1: Attributes of thc Events of the Collision-Free Bus Nctwork GSMP

Event State Changes time dclay s: event € E(s)

New Packet(j) W() =1 AQj) W) =4

Clear(j) W(j)=2or 3* R(j,N)+T(1,N) W() =1

End Transmission(j) W() =4 L) w(@) =3

Obscrve Set(j k) Vik,j) =1 R(j k) Jk<j3W(k)=1,V(k,j)=0
Observe Reset(j k) V(k,j) =0, W(j) =2 or 3* R(.k) Jk<jaW(k) =3, Vik,j) =1
Observe Start(j) UGy =1 T(k.j) Fko>Wk)=3,U(G=0
Obscrve End(j) UGj) =0, W(j) = 2 or 3* T(k.j) FkoaWk)=4, UG =1

*W(j) = 3if P(j) = 0 and U(j) = 0, W(j) = 2 otherwisc
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4.1 The Event Graph Translation

In this GSMP all of the stawc changes are invertible so
we can use the static definition of C,, Co = {s" €S : v,
€ E(s) and vq € {E(s") - (E(s) - {voD]} Vs €§ >
p(sis,vg) > 0}.  For example consider vo=Clear(j),
vg=Observe Start(k). Now Clcar(j) € E(s) if and only if
W(j)=1 and Observe Start (k) € E(s) if and only if
W(j)=3 for some j and U(k)=0. So the only possible
combinations of s and s’ arc thosc whcre s includes

Clear

ObsStr

NewPak

Obstind

Schruben and Savage

W(@)=1 and s includes W(j)=3 and U(k)=0 and
p(sss,vg) > 0. Cg thercfore contains {s: W(j)=3 and
U(k)=0}. Cg is not empty so we would draw an edge
from Clear(j) to Observc Start(k); its edge condition
would be (W(j)=3 and U(k)=0) and its timc dclay, from
the GSMP, would be T(j,k). Table 2 lists all of the
cdges for which C. is non-cmpty with the cdge
conditions and timc delays. The statc changes arc the
same as given in Table 1. Figurc 1 shows thc event
graph.

RsetfT

Figure 1: Event Graph of the Collision-Free Bus Network
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Tablc 2: Edges of the Event Graph Translation of the Collision-Free Bus Network GSMP

Edge

Ce

New Packet(j) — Clear(j)

New Packet(j) — Observe Sci(j k), k>j
Clear(j) — End Transmission(j)

Clear(j) — Obscrve Resct(j k), k>j

Clear(j) — Obscrve Start(k), VK#

End Transmission(j) — New Packet(j)

End Transmission(j) — Obscrve End(k), Vk#]
Observe Set(j,k) — Observe Reset(l,k), I<k
Observe Reset(j,k) — End Transmission(j)
Observe Reset(j.k) — Observe Sei(Lk), 1<k
Observe Resct(j,k) — Observe Reset(k 1), 1>k
Observe Resel(j,k) — Obscrve Start(l), Vizk
Observe Start(j) — Observe End(j)

Obscrve End(j) — End Transmission(j)
Observe End(j) — Observe Resct(j.k), k>)
Obscrve End(j) — Observe Start(j)

Observe End(j) = Observe Start(k), Vk#j

4.2 Checking the Logic

Now that we have an event graph model, we can
code it up using available software. In this case we uscd
SIGMA (Schruben 1995). In debugging this model a
number of implcmentation issucs arise.

The first concern was that some of the cvents would
become inactive without being cxccuted. For example,
when port j begins transmission, an Obscrve Start cvent
is scheduled for the other ports (because W(j) = 3). If
the transmission is finished before port k observes the
start then Obscrve Start(k) disappears from the active
event set (W(j) # 3 for any j) although it was ncver
exccuted.

This mcans that cvents arc being canceled in the
original GSMP.  While somc GSMP definitions
explicitly allow for canccling, others do not. If this
were a problem for the modeler then certain
assumptions would have to bc made to prevent this
occurrence

Iglehart and  Shedler cxplicitly  state that
R(i,j)>T(,j) Vi,j. Additional assumptions ar¢ required
however to prevent cancellation in  the GSMP.
LG)>R(,N) will allow the resct flipflop o finish
propagating before the port finishes transmission and
A(j)>max;T(j,i) will allow the end of transmission o
propagate before a new packet arrives at the port.

Anothcer possibility is to redefinc the cvent sCs in
the original GSMP.  In fact without the above
assumptions or the introduction of new statc variables it

W() =1
W@ =1,Vkj)=0

tme delay

R(@,N)+T(1,N)
R(j.k)

W@ =3 L@

W) =3.Vk,j) =1 R(j.k)
W({=3,UK=0 TG,k
W(j) =4 AG)

W@ =4,U(k)=1 TGk
W) =3, Vkh=1 R(L,k)
W(j) =3 L)

Wl=1,V(kD=0 R(LK)
W(k)=3,V(,k) =1 Rk,
W(k)=3,U1=0 T(k,1)
JkaWEK) =4, U() =1 TG k)
W) =3 L@)

W@y =3, V) =1 R( k)
Jk>WEK) =3,U(G=0 T(.K)
W()=3,Uk) =0 TG.k)
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is possiblc that the modcel will fail to be a GSMP at all;
the system can rcach a state where the active cvent sct
cannot be fully determincd.

For cxample, supposc port j cnds transmission and
very soon afterwards a new packet arrives at port .
There may be a port k that has not obscrved that end of
transmission yet; W(j) = 1 but Obscrve Start(k) should
«till be an active cvent. We also have the usual case
however, where if W(j) # 4 for any j then there are no
Observe Start(k) events active. Thercfore if W()=1we
can’t tell whether Observe Start(k) should be active or
not.

Another situation is the cxistence of simultancous
cvents. In running the event graph of this GSMP it
became clear that this situation exists in the model
despite cfforts and assumptions aimed at preventing
simultancous events. Further inspection revealed that
the problem was causcd by the fact that the end of
transmission and start of transmission propagate at the
same speed. If a start of transmission by port jis
cnabled by the observation that port k has cnded
(ransmission then the cnd of k’s transmission and start
of j’s transmission now travel together down the bus. If
they arc cxccuted in the wrong order (Obscrve Start
then Obscrve End) then an crror rcsults because the
other ports will think the bus is frec when it is not.

In running the cvent graph version of the modecl, it
also became clear that therc werc other problem in the
definitions of the ecvent scts for cerain  states.
Specifically Obscrve End()) is supposcd to be an active
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evenl whencver W(k)=4 for somc k and U(j)=1. What
happens is that whencver port j observes a start of
transmission, U(j) will becomc 1 and if any other port is
waiting for a ncw packet (W(k)=4) then an Obscrve
End(j) will be scheduled. If port j obscrves a start of
transmission while the transmission is still happening
an Observe End may be scheduled because of some
other port which is waiting for a ncw packet, clearly this
should not happen.

5 IMPLICATIONS FOR SIMULATION
MODELING

Mapping (rom a GSMP to an EGM may uncover
logical crrors that arc not apparent in thc GSMP
description. In addition, implcmcenting and running the
event graph modcl may uncover other concerns that
need Lo be addressed in the original GSMP.

We can scc in this cxamplc that EGMs offer an
effective and cfficicnt mcthod for model development
and structural analysis and permits development and
enrichment of GSMP results and modcls. GSMPs offer
a path to proofs of validity of simulation mcthodologics
and potcnual algorithms for implcmentation. A
GSMP—EGM mapping bridges a basic application-
theory gap in that EGMs are very popular for modcl
building and GSMPs arc very popular for devcloping
DEDS theory.
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