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ABSTRACT

This paper introduces a new method for multivari­
ate simulation input modeling based on the Johnson
translation system of probability distributions. This
technique matches the first four marginal moments
and the correlation structure of a given set of sam­
ple data, allowing computationally efficient parame­
ter estimation and random-vector generation. Appli­
cations of the technique in ergonomics and production
scheduling are discussed. The proposed method is
compared to traditional multivariate input-modeling
techniques based on the Johnson translation system.

1 INTRODUCTION

In statistical and simulation applications, one is of­
ten faced with the task of representing empirical data
with a parameterized distribution. Many such distri­
butions exist for modeling univariate data. Few of
these distributions are easily extended to model mul­
tivariate populations. The most commonly used mul­
tivariate distribution, the multivariate normal, has an
inflexible shape and is often inappropriate for data
modeling.

In this paper we present a more flexible method
for multivariate simulation input modeling. The pro­
posed method is based on the Johnson translation
system of univariate probability distributions, and it
exploits an appropriate affine transformation of inde-
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pendent standardized Johnson variates to generate a
multivariate random vector with the desired first four
marginal moments and correlation structure. Fur­
thermore, parameter estimation and variate genera­
tion are computationally efficient with this procedure.

There are numerous potential applications for this
multivariate input-modeling technique. In this paper
two applications are discussed in some detail.

Ergonomics Application. We construct a biome-
chanical model of the forces exerted by the trunk
musculature during lifting. Ten trunk muscles
are used to describe the trunk's moment gener­
ating mechanism. Each lifting task is character­
ized by the angular kinematics of the torso as
well as the total moment generated during the
lift. The forces exerted by the ten-muscle sys­
tem can be modeled as a ten-dimensional random
vector. The muscular force is estimated through
the use of electromyography (EMG) and is ex­
pressed as a percentage of the muscle's capacity.
The degree of muscle coactivation (correlation)
can be high, so it is inappropriate to use inde­
pendent random variables to model the joint be­
havior of these EMG measurements. Addition­
ally, the shape of the marginal distributions can
be significantly skewed so it is inappropriate to
use a normal multivariate distribution.

Production-Scheduling Application. A simula­
tion model is used to support real-time schedul-
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2 JOHNSON TRANSLATION SYSTEM
OF UNIVARIATE DISTRIBUTIONS

(3)

for S L (lognormal) family,

for Su (unbounded) family,

for S B (bounded) family,

for SN (normal) family.z,

(e Z
- e-z

) /2,
1/(1 + e- z

) ,

where

3 MULTIVARIATE DISTRIBUTIONS

3.1 Overview

Many univariate distributions have been generalized
to form bivariate distributions. These include numer­
ous discrete (binomial, hypergeometric, Poisson) and
continuous (uniform, normal, exponential, beta, and

If normal variates are generated by an approxima­
tion to the method of inversion, then the gener­
ated Johnson variates can enhance the effectiveness
of correlation-induction techniques such as common
random numbers or antithetic variates; and this can
be reflected in improved efficiency of simulation-based
performance measures for the target system.

distribution to sample data involves first selecting a
fitting method and the desired translation function
g(.) and then obtaining estimates of the four param­
eters " 6, A, and e. The fitting method utilized in
this paper is moment matching. The Johnson trans­
lation system of distributions has the flexibility to
match any feasible set of sample values for the mean,
variance, skewness, and kurtosis. Additionally, the
skewness and kurtosis uniquely identify the appropri­
ate translation function g(.). As a result, fitting a
data set using moment matching is reduced to the
problem of finding the values of" fJ, A, and ewhich
approximately transform X into a standardized nor­
mal variate. Although there are no closed-form ex­
pressions for the parameter estimates based on the
method of moments, these parameter estimates can
be accurately approximated using an iterative proce­
dure of Hill, Hill, and Holder (1976). Moreover, other
methods may used to fit each marginal distribution­
for example, any of the estimation procedures im­
plemented in the FITTR1 software package (Swain,
Venkatraman, and Wilson 1988).

After the data set has been fitted with a Johnson
distribution, variate generation is straightforward.
First, a standardized normal variate Z should be gen­
erated. The corresponding realization of the Johnson
variate X is found by applying to Z the inverse trans­
lation

(1)

(2)
for S L (lognormal) family,

for Su (unbounded) family,

for S B (bounded) family,

for S N normal family.y,

In(y),

In[y+R+1] ,
In[y/(l - y)] ,

ing of a repair shop. Each job entering the shop
for repair must pass through the same series of
operations. The operation times are stochastic
and nonnormal. In addition, the operation times
corresponding to a particular job are stochasti­
cally interdependent. Once again, independent
univariate and normal multivariate distributions
are inappropriate for modeling such a situation.
Moreover, component variates are realized se­
quentially in this system. As a result, it is desired
to determine the distribution of remaining oper­
ation times conditioned on the completed repair
times.

This paper is organized as follows. Section 2 gives a
concise introduction to the Johnson translation sys­
tem of univariate distributions. Section 3 contains
a brief survey of multivariate distributions including
a previously developed multivariate Johnson distri­
bution. Section 4 outlines the proposed multivariate
model, discusses its capabilities and limitations, and
gives a method for fitting multivariate distributions to
sample data. Section 5 discusses the ergonomics ap­
plication of the proposed input-modeling procedure.
Finally, conclusions and recommendations for future
work are given in Section 6.

Starting from a continuous random variable .IX" whose
distribution is unknown and is to be approximated
and subsequently sampled, Johnson (1949a) proposed
a set of four normalizing translations. These transla­
tions have the general form

where Z is a standard normal random variate, , and
6 are shape parameters, A is a scale parameter, eis a
location parameter, and g(.) is a function whose form
defines the four distribution families in the Johnson
translation system,

g(y) =

The translation (1) should approximately trans­
form the continuous random variate X into a stan­
dard normal variate. The process of fitting a Johnson
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gamma) distributions (Mardia 1970). However, very
few of these can be practically extended to higher
dimensions. The multivariate normal distribution
(Johnson and Kotz 1972) is the most easily manipu­
lated and most frequently used multivariate distribu­
tion. However, the component normal distributions
have a fixed shape and are often inappropriate for
data fitting. In addition to the inflexibility of the
multivariate normal, Johnson (1987) cites the follow­
ing limitations of existing multivariate distributions:

• Some distributions (e.g., the Bessel function
distributions) present significant computational
problems.

• The support of some distributions (e.g., the beta­
Stacy) is too limited to be of interest.

• Some multivariate distributions (e.g., Morgen­
stern's distribution) are able to represent only
weak correlation structures.

• Computational methods for distribution fitting
and variate generation have not been developed
for some multivariate distributions.

Although the bivariate Bezier distribution family
(Wagner and Wilson 1995) seems to have the poten­
tial for accurately representing many commonly oc­
curring forms of bivariate dependence, the extension
of this family to three or more dimensions appears
to be cumbersome and computationally prohibitive.
Other approaches to multivariate input modeling
can be based on TES (Transform-Expand-Sample)
processes (Jagerman and Melamed 1992a, 1992b;
Melamed, Hill, and Goldsman 1992) and ARTA (Au­
toRegressive To Anything) processes (Cario and Nel­
son 1996). Both methodologies enable the user to
specify the autocorrelation function out to an arbi­
trary lag for a univariate stochastic process with a
user-specified marginal distribution, but ARTA pro­
cesses seem to be substantially easier to use. In the
following subsections we consider flexible multivariate
distributions that are based on the Johnson family of
univariate distributions.

3.2 Multivariate Johnson Distributions

Johnson (194gb) proposed a bivariate distribution
based on the univariate Johnson distributions. The
parameterized model matches the first four moments
for each marginal distribution and then attempts t?
approximate the correlation between component varI­
ates. As detailed below, the technique is easily ex­
tended to higher dimensions. Consider a continuous
multivariate random vector X with v components,

T
X==(X1, ... ,Xv ) ,

which is to be modeled with some parameterized
distribution. The Johnson multivariate modeling
method determines a normalizing translation such
that

This is accomplished as follows:

1. Identify the transformation

such that the marginal distribution of "\i is ap­
proximated by an appropriate univariate John­
son distribution, where i == 1, ... , l/ and gi (.) is
one of the translation functions in (2)

2. Estimate the matrices of shape parameters,

and the matrices of the respective location and
scale parameters,

using the method of moments on each marginal
distribution separately.

3. Estimate correlation matrix ~ by (a) inserting
each sample value {Xj : j == 1, ... , n} into the
estimated normalizing translation (4) to obtain
the corresponding sample {Zj : j == 1, ... , n} of
estimated standard normal random vectors; and
(b) computing the sample correlation matrix of
the {Zj} as the approximate moment-matching
estimator of ~.

Random vector generation consists of generating Z
from a v-dimensional multivariate normal distribu­
tion Nv(Ov,~) and then applying the inverse trans­
lation,

using the previously determined parameter vectors
and the vector-valued inverse translation function

where gi 1 (-) is defined by (3) for i == 1, ... , v. This
method will generate random vectors with exactly
the same marginal moments as the original sam­
ple data (at least to the limits of machine accu­
racy); and if each of the empirical marginal distri­
butions of the original sample data is nearly symmet­
ric about its mean, then the intercomponent correla­
tions of the fitted multivariate Johnson distribution
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and kurtosis vectors for Y. Finally, define the k-fold
Hadamard product of ex as

II v

1/Ji=6L L e;jO;i for i=l, ... ,lI. (8)
j=l l=j+l

Thus, the Johnson parameter matrices" 6, A, and e
that determine the distribution of Yare selected to
satisfy the moment-matching conditions

(6)

(7)

(9)
aw

bw

e~) == [otl for k =3,4

together with the auxiliary vector

'11 x == (1/J1, ... , 1/JII )T ,

where

Now if the random vector W is generated accord­
ing to the affine transformation (5), then it is easily
shown that the skewness and kurtosis vectors aw and
b w describing the components of W have the follow­
ing relationship to the skewness and kurtosis vectors
ay and by describing the components of Y,

4 A NEW MULTIVARIATE EXTENSION
OF THE JOHNSON SYSTEM

will nearly match the sample correlations of the orig­
inal sample data. However, if some of the empirical
marginal distributions of the original sample data (or
the corresponding underlying theoretical marginals)
possess marked skewness, then the correlation ma­
trix of the fitted multivariate Johnson distribution
will not match the sample correlation matrix of the
original data set.

These multivariate Johnson distributions have
been shown in several applications to achieve an im­
proved fit when compared to previously used multi­
variate distributions. Schreuder and Hafley (1977)
used the bivariate bounded Johnson distribution
(SBB) to fit tree height and diameter data. Due to
its flexibility, this distribution produces a consistently
better fit than the beta, gamma, Weibull, lognormal,
and normal distributions. The implied relationships
between the component variates can be interpreted
based on the results of a well-known height-diameter
regression model. Subsequently, Schreuder, Bhat­
tacharyya, and McClure (1982) successfully used a
trivariate Johnson Bounded distribution (SBBB) to
fit tree diameter, height, and volume data.

based on the Cholesky decomposition ex = 0x0i
together with the matrix of standard deviations

If Y = (Y1 , ... , Yv) T consists of independent stan­
dardized Johnson variates so that each component Yi
has mean zero and variance one for i = 1, ... , v, then

(10)

4.1 Limitations of the Procedure

The ability to match the skewness of W to that of
X depends only on finding a random vector Y of
standardized Johnson variates with the vector ay of
marginal skewness values specified by (10). A stan­
dardized univariate Johnson distribution can always

ay = [e~)] -1 ax }

by = [e~)] -1 (bx - ~x) .

It follows from (5), (9), and (10) that the transformed
random vector W has the same second-order moment
structure as X; moreover the skewness and kurtosis
of Wi match the skewness and kurtosis of Xi for i =
1, ... , v.

This method requires relatively little computa­
tional effort. Data fitting requires determining 4 x 1I

marginal moments and v(v - 1)/2 correlation values,
finding the fourth power of lI(v+ 1)/2 numbers, in­
verting two 1I x 1I matrices, finding 1I 1/Ji's and fitting
v univariate Johnson distributions. Random vector
generation requires generating 1I independent Normal
variates, applying 1I Johnson inverse translations of
the form (3), and two 1I x 1I matrix multiplication
operations.

(5)W == J-lx +O'x0 x Y

An improved method to model multivariate distribu­
tions is now presented. Suppose the continuous ran­
dom vector X has mean J-lx and correlation matrix
ex. Define the lower triangular matrix

has the same mean vector and covariance matrix as
X. Notice that W does not have a multivariate John­
son distribution as defined in Subsection 3.2. The pa­
rameters Ii, bi, Ai, and ~i of Yi are set so that the ith
component Wi of the random vector W has the same
skewness and kurtosis as Xi for i = 1, ... , v.

Let ax and b x be v x 1 vectors whose ith ele­
ments are the skewness and kurtosis of Xi, respec­
tively. Similarly, let ay and by denote the skewness
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(11)

(12)

be found whose skewness matches any target value.
As a result, the proposed multivariate input-modeling
procedure always matches the first three marginal
moments and correlation structure of the modeled
data.

The ability to match the kurtosis of W to that of
X depends only on finding a vector Y of indepen­
dent standardized Johnson variates with the vector
ay of marginal skewness values and the vector by of
marginal kurtosis values specified by (10). Now for
every choice of marginal distributions for Y, we must
have

by > a(2) + 1 ._ y v,

see, for example, page 216 of Stuart and Ord (1994).
Unfortunately, the requirement (11) is not guaranteed
to hold for every solution of (10); and in some appli­
cations of the proposed method for multivariate sim­
ulation input modeling, we have observed that (11)
fails to hold.

To handle the (relatively rare) anomalous situa­
tions in which (11) fails to hold for the solution to
(10), we match each marginal skewness and "adjust"
the corresponding marginal kurtosis values to feasi­
ble levels that satisfy (11). Therefore, if ay and
by completely consist of feasible skewness/kurtosis
pairs, then the transformed multivariate W will have
the same first four marginal moments and correlation
structure as the original variate X. If some infea­
sible pairs exist, then the corresponding kurtosis is
increased to a feasible value. The resulting random
vector W will have the first three marginal moments
and correlation structure of X with some marginal
kurtosis values slightly above those of X. It is easy
to apply the transformation to the corrected kurtosis
values to determine the marginal kurtosis of Wand
the deviation from the marginal kurtosis of X. Notice
that the order in which the multivariate components
are determined has some influence on the adjustment
required for infeasible kurtosis pairs.

4.2 Conditional Marginal Distributions

Consider the specific case where the multivariate dis­
tribution is used to model operation times for suc­
cessive jobs passing through a repair shop. Each job
requires the same operations to be performed. Addi­
tionally, the operation times associated with a single
job are correlated. Information about the job repair­
time distributions is used in a real-time scheduling
system. As a result, it is desired to utilize informa­
tion from partially complete jobs to improve the es­
timate of remaining work. For example, we seek to
determine the conditional probability distribution of
the current job's service time for operation k given

the service times of completed operations 1 through
k - 1. Now the density function for the ith indepen­
dent standardized Johnson variate r'i is

f () bi '(Yi - ~i)
y. Yi = Aiy"2;gi -A-i-

{
1[ (y._~.)]2}

X exp - 2 Ii + bi . gi T 1

where gi(-) is the Johnson translation associated with
i and g~ (-) is the corresponding first derivative. Let

Y(k)=(Y1, ... ,Yk)T for k=I, ... ,v,

denote the subvector consisting of the first k compo­
nents of Y. Since the components of Yare indepen­
dent, the joint probability density function (p.dJ.) for
Y(k) is

k

fY(k)[y(k)] =II fy. (Yi) . (13)
i=l

Using transformation (5) and the change-of-variables
formula, we see that X(k), the subvector of X con­
sisting of the first k operation times (components) of
X, has joint p.d.f.

fX(k)(x(k)) (14)

fY(k) ([lTX(k)0X(k)]-l[x(k) -ILX(k)])

det[ux(k)eX(k)]

where I-tX(k) is a k x 1 subvector consisting of the first
k components of I-tx; and eX(k) and UX(k) are the
k x k analogues of ex and ux, respectively. Thus,
the conditional p.d.f. of the kth operation time Xk
given the vector X(k - 1) = x(k - 1) of the preceding
k - 1 operation times may be computed as follows,

fXkIX(k-l)[Xk I x(k - 1)] =
fX(k)[x(k - 1), Xk]

where the joint p.d.f. fX(k)(-) is evaluated by com­
bining (12), (13), and (14). This expression may be
numerically determined and manipulated. Through
similar analysis, nearly any measure of the job service
time distribution can be accurately estimated using
this procedure.

5 ERGONOMICS APPLICATION

Consider now the ergonomic model of trunk muscle
coactivation. The muscle exertion of a random sub­
ject on a particular type of lifting task is modeled as
follows:
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• The sample data set of size n = 230 yielded the
marginal moments shown in Table 1. The corre­
sponding matrix C x of sample correlations given
in Table 2.

• Extracting the "square root" ex of the correla­
tion matrix yields the results shown in Table 3.

• The skewness vector ay and the kurtosis vector
by are computed from (6)-(10) as shown in Ta­
ble 4.

• Finally, we fit each Yi with the appropriate John­
son distributions as shown in Table 5.

• This model can now be used to generate ran­
dom vectors that drive a biomechanical simula­
tion model.

6 CONCLUSIONS AND
RECOMMENDATIONS

In this paper we have developed a method for multi­
variate simulation input modeling based on the John­
son translation system of probability distributions.
The method matches the first four moments and
correlation structure of a given set of sample data.
The distribution-fitting procedure allows computa­
tionally efficient parameter estimation and random­
vector generation. An application to the field of er­
gonomics illustrates the procedure.

Future work should include a comparison of the
proposed method for multivariate simulation input
modeling versus the approaches based on TES and
ARTA processes. Moreover, the approach outlined
in this paper could be adapted to Bezier distribu­
tions; and the results achieved with such an adapta­
tion should be compared to other techniques for fit­
ting multivariate distributions with Bezier marginals.

In the ergonomics application briefly described in
this paper, interest ultimately centers on how the ten­
dimensional distribution of trunk-muscle coactivation
varies over time. In this context the computational
complexity of the parameter-estimation and variate­
generation procedures appears to become a dominant
consideration.
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Table 1: Marginal Moments of Trunk Muscle Coactivation Data

Component Mean Standard Deviation Skewness Kurtosis
1 0.00645 0.00431 0.50456 2.62549
2 0.00947 0.00713 0.61072 3.04158
3 0.00831 0.00822 0.45553 2.80806
4 0.01141 0.01151 0.67521 3.01325
5 0.02709 0.02096 0.73188 3.03418
6 0.02938 0.01781 0.49942 2.76829
7 0.07834 0.02973 0.47293 2.71599
8 0.09164 0.03254 0.20482 2.33007
9 0.17535 0.05683 0.42247 2.83503
10 0.20070 0.06729 0.54304 3.20566

Table 2: Sample Correlation Matrix ex for Trunk Muscle Coactivation Data

1.0000 0.6157 0.3277 0.4067 0.3611 0.5264 0.3811 0.3122 0.2987 0.2310
0.6156 1.0000 0.2612 0.3960 0.2449 0.4421 0.3138 0.2956 0.3179 0.2179
0.3276 0.2612 1.0000 0.5391 0.1671 0.2779 0.2171 0.2914 0.1923 0.1994
0.4067 0.3960 0.5391 1.0000 0.2152 0.3677 0.2965 0.2682 0.2303 0.1459
0.3611 0.2449 0.1671 0.2152 1.0000 0.6195 0.4547 0.4016 0.3293 0.3736
0.5264 0.4421 0.2779 0.3677 0.6195 1.0000 0.4718 0.4971 0.4833 0.4514
0.3811 0.3138 0.2171 0.2965 0.4547 0.4718 1.0000 0.6490 0.7334 0.7031
0.3122 0.2956 0.2914 0.2682 0.4016 0.4971 0.6490 1.0000 0.6928 0.7582
0.2987 0.3179 0.1923 0.2303 0.3293 0.4833 0.7335 0.6928 1.0000 0.7499
0.2310 0.2179 0.1994 0.1459 0.3736 0.4514 0.7031 0.7582 0.7499 1.0000

Table 3: Sample Estimate of ex for Trunk Muscle Coactivation Data

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6156 0.7880 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.3276 0.0754 0.9417 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4067 0.1848 0.4161 0.7919 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.3611 0.0287 0.0495 0.0535 0.9292 0.0000 0.0000 0.0000 0.0000 0.0000

0.5264 0.1497 0.1000 0.1065 0.4460 0.6929 0.0000 0.0000 0.0000 0.0000

0.3811 0.1005 0.0899 0.1080 0.3271 0.1295 0.8372 0.0000 0.0000 0.0000

0.3122 0.1312 0.1902 0.0477 0.2940 0.2278 0.4406 0.7171 0.0000 0.0000

0.2987 0.1700 0.0867 0.0521 0.2254 0.2681 0.5741 0.2480 0.5980 0.0000

0.2310 0.0960 0.1237 0.0218 0.3039 0.2449 0.5559 0.3637 0.1862 0.5414
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Component
1
2
3
4
5
6
7
8
9
10

Skewness
0.004244
1.097259

-0.287684
-0.204774
0.658706
0.033781
1.503758
1.032861

-0.787371
-0.499475

Kurtosis
2.087854
4.179445
1.702515
7.474299
3.054686
6.183929
3.289309
2.103015
3.155087
3.865285
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Table 5: Parameters of Fitted Marginal Johnson Dis-
tributions for Trunk Muscle Coactivation Data

Muscle i Type Ii Oi ~i Ai

1 SE 0.808 1.139 -2.004 5.692
2 SE 1.019 0.727 -1.220 4.685
3 SE 0.966 1.283 -2.155 6.350
4 SB 0.818 0.340 -0.794 3.290
5 SB 0.994 0.819 -1.375 4.914
6 SB 0.633 0.159 -0.707 2.606
7 SB 0.670 0.654 -1.305 3.992
8 SE 0.161 0.205 -1.065 2.421
9 SB 0.677 0.152 -0.678 2.639
10 SB 1.189 0.161 -0.453 3.568
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