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ABSTRACT

We use simple orthogonal and non-orthogonal designs
to analyze a multi-tiered model for forecasting per-
formance of a large-scale home mortgage portfolio.
The experiments are used to assess the sensitivity of
performance to projected changes in economic condi-
tions, as well as the sensitivity of the model to co-
efficients estimated from historical data. Our results
attribute the variation in loan performance to varia-
tion in individual factors or factor combinations, in-
dicating which are crucial to monitor or forecast ac-
curately. The results are at times counter-intuitive,
indicating the benefits of a systematic approach to
sensitivity assessment and scenario generation.

1 INTRODUCTION

Managing credit risk in financial institutions requires
the ability to forecast aggregate losses on existing
loans, to predict the length of time that loans will
be on the books before prepayment or default, to
analyze the expected performance of particular seg-
ments in the existing portfolio, and to project pay-
ment patterns of new loans. To accomplish these
tasks, Smith et al. (1996) developed a comprehen-
sive forecasting model in SAS for a major California
financial institution. The comprehensive model con-
sists of three components, as summarized in Table 1.
The first component is a model of transition prob-
abilities among five financial states. Current loans
are those with outstanding balances and payments
on schedule, delinquent loans (30 to 89 days or 90+
days) have outstanding balances and payments over-
due, paid-off loans have had the outstanding balance
paid in full at maturity or earlier, and defaulted loans
are those for which partial or complete charge-off has
occurred and/or the title has been acquired through
foreclosure.

The transition component of the comprehensive
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model is structured as a Markovian recursion to pre-
dict the likelihoods that a loan will be in each alterna-
tive state at annual intervals. In aggregate, it predicts
the expected number of accounts in the portfolio that
will fall in each financial state. At the beginning of
the forecast period, the state of an active account will
either be current, delinquent 30 to 89 days, or delin-
quent 90+ days. Each time a payment is due, the
debtor may make a payment to remain current, delay
payment, or prepay the loan to maturity. Over the
scheduled term of the loan, it is possible that the loan
can be in any of the five financial states. The loan
will either be in the paid-off state or defaulted state
after maturity. Let

P;(2)

P ;(t)

Pr{loan is in state j at time ¢}

Pr{loan is in state j at time ¢t + 1}

given it is in state k at time ¢}

Allowing for non-stationary transitional probabilities,
the likelihood that a loan is in state j at time t+1 is
expressed as a Markov chain as follows:

5
Pi(t+1) = > Pe(t) x Py;(t).
k=1

Transitions can be made from the three active states
(current, delinquent 30-89 days, or delinquent 90+
days) to each of the other five states. However, the
defaulted and paid-off states are absorbing (terminal)
states from which no transitions can be made.

The second component models the likelihood of a
loss occurring after transition to the defaulted state.
The magnitude of the expected loss depends on the
amount of equity in the property and the position of
the lien holder. The net equity is affected by changes
in market price of the property and by the extent to
which the principal has been paid off. Because there
is no loss on a substantial portion of loans which ter-
minate with default, and because loss patterns may



Sensitivity and Scenario Analyses for Simulation Metamodels 1441

Table 1: Structure of the Comprehensive Forecasting Model

Component
Transition Loss Severity
Description ~ Yearly transition probabilities  Probabilities of defaulted loan Proportion of outstand-
from the three active states to  transitions into four potential ing balance charged off
the five potential states states
Model 1. Current ORE/Loss incurred Total loss
States 2. Delinquent 30-89 days ORE/No loss incurred Partial loss

3. Delinquent 90+ days
4. Paid-off
5. Defaulted

Non-ORE/Loss incurred
Non-ORE/No loss incurred

Methodology Multinomial logistic

Logistic

Regression

depend on whether or not the bank acquires title,
we analyze the severity of loss in stages. We first
predict the probability that the title of the loan is
acquired through foreclosure, i.e., the loan is trans-
ferred to owned real estate (ORE). We then predict
the probability that a loss is incurred on the loan.
This categorization was found to provide better pre-
dictions of loss, and it is consistent with the financial
institution’s internal reporting and monitoring proce-
dures.

The final component models the severity of the loss.
We first predict the probability that the remaining
balance is totally lost. For loans which incur partial
losses, we then model the proportion of the outstand-
ing balance lost.

The output of the forecasting model describes
many aspects of model behavior, both on a yearly
basis, a five year interval, and over the remaining life
of the portfolio (30 years). We will focus on four
performance measures in this paper which reflect the
lifetime performance of the portfolio:

o Adjusted Severity (ADJSEV): average loss in-
curred on defaulted loans with non-zero losses;

e Percent Default (PCTDFLT): expected percent
of loans defaulted;

e Percent Loss (PCTLOSS): expected percent of
current net receivables lost;

e Time on books (ONBOOKS): expected length of
time the loans in the portfolio remain active.

The models are refit on a quarterly basis to allow
for seasonal patterns in delinquency rates, as well as
changes in portfolio composition as active loans go
off the books, new loans are initiated, and blocks of
loans are purchased from or sold to other lenders.

Markovian models of mortgage performance have
been proposed as alternatives to discrete event sim-
ulation in evaluating mortgage-backed securities, al-
though the modeling tradeoff between simplicity and
realism is acknowledged (Zipkin 1993). This tradeoff
is important for our application since the modeling
and analysis is not a one-time project, but is con-
ducted quarterly basis after refitting the component
models. A better understanding of the trade-off will
either support the use of expected values or demon-
strate the need to estimate performance variability.

In this paper, we investigate three causes of per-
formance variation: variation attributable to uncer-
tainty about future economic conditions and loan
characteristics, variation due to the use of estimated
coefficients in the component models, and the inher-
ent variation which results from individual loans’ dis-
crete state transitions rather than expected value per-
formances. In Section 2, we show how elliptical ex-
perimental designs can be used in a tolerance analysis
framework to model performance variability for new
loans in the portfolio. In Section 3, we present re-
sults from a highly fractionated factorial experiment
to assess the model’s sensitivity to the estimated co-
efficients of the component submodels. We run the
model in a discrete event simulation mode in Sec-
tion 4 to provide bounds on the mean performance
measures computed from the base model. Our con-
clusions are provided in Section 5.

2 TOLERANCE EXPERIMENT:
NARIO ANALYSIS

SCE-

Throughout this paper, we concentrate on one small
segment (6508 loans) of the portfolio: fixed-rate unin-
sured loans in southern California with an initial loan
balance of $150,000 or less. A single run of the fore-
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DELUNEM MKTAPPR CONVRATE
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Table 2: Coded Factor Levels for Scenario Analysis

LTV AMOUNT INTRATE TERM

—0.692 —0.692 -1 +1.344 +1.344 +1 -1
+1.233 -1.233 -1 —1.344 —1.344 +1 +1
-1.233 +1.233 -1 —0.439 —0.439 -1 +1
+0.692 +0.692 -1 +0.439 +0.439 -1 -1
—0.692 —0.692 +1 +0.439 +0.439 -1 +1
+1.233 —1.233 +1 —0.439 —0.439 -1 -1
-1.233 +1.233 +1 —1.344 —1.344 +1 -1
+0.692 +0.692 +1 +1.344 +1.344 +1 +1

casting model for this segment takes just under four
minutes of CPU time on a Sparc 20 with four co-
processors at the University of Missouri-St. Louis,
and substantially longer on the financial institution’s
older, IBM mainframe. Previously, scenario analysis
efforts were performed in an ad hoc manner because
of the time involved. Full portfolios may contain over
90,000 loans.

2.1 Initial Experiment

Monte Carlo sampling for scenario analysis is a time-
consuming activity. It is complicated by the facts
that the economic variables are correlated, both with
each other and over time, and the coefficients in the
component models are related to each other. Instead,
we adapt the so-called tolerance analysis of Taguchi
(1986, 1987) by using response surface metamodeling
methods to examine the robustness of the compre-
hensive forecasting model.

Response surface metamodels are efficient scenario
analysis tools. Once constructed, they permit an ana-
lyst to examine many alternatives without re-running
the simulation. In the tolerance analysis context, re-
sponse surface metamodels can be used to assess the
system’s overall performance, to attribute the over-
all performance variation to variation in the factors,
and to determine whether or not changes in the vari-
ability of the factors would increase or decrease the
performance variability (Myers et al. 1992; Sanchez
et al. 1994a, 1996).

We consider seven factors in our experiment. The
first three represent sources of variation in the gen-
eral economic environment, and are not controllable
by the financial institution, and so can be referred to
as external noise factors. The latter four are internal
sources of noise in that they represent characteris-
tics which vary from loan to loan across the portfolio.
These factors can be influenced by lending policies for
new loans. For example, new loans with low down-

payments (high LTVs) may be charged higher interest
rates. Regardless, the level to which the institution
segments the portfolio for projection purposes will in-
fluence the noise factors’ variability. The factors are:

e DELUNEM: A constant yearly percent change
in unemployment rate for 1-4 years in the future
(for 5 years and out, this was held at zero);

o MKTAPPR: An index value representing a con-
stant yearly change in market appreciation rates
for 1-4 years in the future (for 5 years and out,
this was held at its average value);

¢ CONVRATE: The conventional interest rate on
new 30 year fixed-rate mortgages;

e LTV: The loan-to-value ratio at origination;
e AMOUNT: The loan amount;

e INTRATE: The interest rate on the loan;

o TERM: The term of the loan.

Two sets of jointly correlated factors exist. The
first set is DELUNEM and MKTAPPR. These en-
vironmental factors vary by year and by principal
metropolitan statistical area, but had a correlation of
-.521 over the prior five year history when DELUNEM
was lagged by one year. In other words, increases
in local unemployment rates led to subsequent de-
creases in market appreciation. LTV and AMOUNT
constitute the second set of correlated factors. Since
we are interested in predicting the performance for
new loans, and inflation makes comparisons of dollar
amounts questionable over long periods of time, we
calculated the correlation for only the newest loans
(with a vintage of one year or less.) These had a
strong positive correlation of .807. Higher loan-to-
value ratios tended to be associated with larger loans,
perhaps indicating more difficulty in raising money
for the down payment.



Sensitivity and Scenario Analyses for Simulation Metamodels

1443
Table 3: Transmitted Variances as Percentages of Total Performance Measure Variances
Factor Performance Measure
Groupings ADIJSEV PCTDFLT PCTLOSS ONBOOKS
DELUNEM 0.00% 2.56% 6.67% 2.23%
MKTAPPR 0.07% 3.25% 5.47% 1.20%
Cross term -0.01% -3.03% -6.55% -1.72%

Net Effect 0.06% 2.78% 5.59% 1.72%
CONVRATE 0.00% 0.01% 02% 11%
LTV 0.18% 44.52% 26.20% 87.26%

AMOUNT 92.77% 5.35% 11.08% 2.58%
Cross term 6.65% 24.91% 27.50% -24.23%

Net Effect 99.60% 74.78% 64.78% 65.61%
INTRATE .09% 21.16% 27.40% 12.28%
TERM 25% 1.27% 2.21% 20.28%
Total 100.00% 100.00% 100.00% 100.00%
With only seven factors, we can construct a satu- of the noise factors Wy, (h=1,...,w):

rated two-level factorial experiment. The design ma- w
trix (in natural units) is shown in Table 2. The lev- PM; ~ fo; + Z Br, iWh (1)

els for the non-correlated factors (CONVRATE, IN-
TRATE, and TERM) were set at approximately one
standard deviation above and below the mean. (The
levels for TERM were rounded slightly since most
mortgages have terms in multiples of 12 months.)
These levels are recommended for discrete sampling
of a normal distribution, since they result in a two-
point distribution with the same mean and standard
deviation as the underlying distribution.

For the correlated factor pairs, the factor levels
were calculated using the experimental designs of
Sanchez (1994b). Design points are located at the
major and minor axes of an ellipse, rather than at
corners or faces of the cubes typically used to graphi-
cally represent factorial designs. Let p; and o; denote
the mean and standard deviation of factor i (i = 1,2).
The ellipse’s shape is a function of the correlation p
between the two factors:

Major axes: (p1 + 01/1+p, p2 +02/1+p)
(1 — o1y/1+ p, p2 —02y/1+p)
Minor axes: (p1 — 01/1 = p, p2+02/1-p)

(g1 +01v/1 = p,

g2 —02¢/1=p)

Means and standard deviations can be estimated from
historical data or expert opinion.

After running the experiment, we can construct
models for performance measure PM; as functions

h=1

Treating the regression coefficients in equation (1) as
constants, we obtain

w w w
o] ~ Zﬁﬁ.jdi +2 Z Z PhkBh,50k,0h0k- (2)
h=1 h=1k=h+1

Equation (2) estimates the overall variation in per-
formance measure j. For a noise factor h which is
uncorrelated with all other noise factors, its contri-
bution to this overall variance is called the transmit-
ted variance and is equal to §7 ;of. For correlated
factor pairs, the transmitted variance cannot be sep-
arated completely. For example, if factors 1 and 2
are correlated then their joint transmitted variance

to performance measure j is equal to
5?,]0% + 5%,]-0% + 2p1,201,582,;0102. (3)

Noise factor assessment refers to the attribution of
variance in a performance measure to known sources
of variation. The noise factor assessments for all four
performance measures are provided in Table 3. (Al-
though the transmitted variances are approximate,
percentages are shown to two decimal places to facil-
itate reassessment as in Section 3.2.) For this exper-
iment, the net transmitted variance from the corre-
lated loan characteristics (AMOUNT and LTV) dom-
inates for all four performance measures. This is not
surprising for ADJSEV: one would expect the magni-
tude of the loss to depend on the size of the loan. LTV
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appears to be the most influential of the pair for pre-
dicting PCTDFLT and ONBOOKS. INTRATE im-
pacts the overall loss, but through the transition and
loss behavior rather than through the severity compo-
nent. External market conditions had surprisingly lit-
tle impact on the overall performance, and loan term
was only a factor for predicting the expected time on
the books.

Note that a traditional factorial design and anal-
ysis would be inappropriate for two reasons. First,
certain combinations of the factors are not likely to
occur, thus the goal of obtaining the same variability
in the sampling distribution as in the underlying dis-
tribution would not be realized by setting all factor
levels at p+o. Second, the original forecasting model
(metamodel) was not constructed using similar com-
binations. The results would be highly suspect for
such dramatic extrapolations. The analysis differs as
well. For example, without considering the high pos-
itive correlation between LTV and AMOUNT, one
would underestimate the overall variance in PCTD-
FLT and PCTLOSS by over 24%. Conversely, the
variance of ONBOOKS would be overestimated if the
correlation of LTV and AMOUNT were ignored.

2.2 Model use and refinement

Metamodels can often be simplified by removing
statistically insignificant terms. Normal probability
plots are useful for this activity if few or no degrees
of freedom are available for error estimation, as in this
experiment. However, we advise caution in oversim-
plification when two or more noise factors are corre-
lated. The sampling scheme is not orthogonal, so if | p|
is near one, then the standard errors of the correlated
regression coefficients may be inflated due to multi-
collinearity. The effect of correlation on the overall
variance is computed through the metamodel coeffi-
cients, so excluding a marginally insignificant main
effect from the model may have noticeable impacts
on system evaluation and noise factor assessment due
to the exclusion of interaction terms. Thus, we elect
to retain both terms of a correlated factor pair in
the metamodel even if only one is significant. We
used a cutoff of @ = .20 because of low degrees of
freedom and our desire to achieve models with accu-
rate fits. For the 8-run tolerance experiment, reduced
metamodels with relatively high R? values were con-
structed for each of the four performance measures:

e ADJSEV: R? = .999 with LTV, AMOUNT and
TERM.

e PCTDFLT: R? = .941 with LTV, AMOUNT and
INTRATE.

e PCTLOSS: R? = .889 with LTV, AMOUNT and
INTRATE.

e ONBOOKS: R? = .982 with LTV, AMOUNT,
CONVRATE, INTRATE and TERM.

If the reduced metamodels are used for noise factor
assessment, the transmitted variance percentages are
zero for factors excluded from the metamodels, and
not materially different from those reported in Table 3
for the factors retained.

Note that statistical significance in the metamod-
els does not necessarily imply practical importance.
Since the transmitted variances depend on the com-
ponent variances (and covariances), a term may be
statistically significant in the metamodel yet corre-
spond to a factor with transmitted variance near zero.
For example, TERM is statistically significant in the
model of ADJSEV, but accounts for only 0.25% of
the variability of this performance measure.

One benefit of tolerance analysis is the ease of mod-
ifying the results to predict the effects of changes in
the underlying sources of noise. For example, the fi-
nancial institution might be interested in forecasting
the future loss percentage for a smaller portfolio seg-
ment: new loans with half the standard deviations
of loan-to-value and amount. The transmitted vari-
ance of this factor grouping would be reduced by a
factor of four. After re-standardizing, the net effect
of DELUNEM and MKTAPPR would account for
10.87% of the variance in PCTLOSS; the net effect of
LTV and AMOUNT would account for 31.50%, the
INTRATE would account for 53.30% and the TERM
would account for 4.29%. (CONVRATE'’s contribu-
tion remains negligible at 0.04%.) Similarly, if the
volatility in market conditions increased, one could
re-estimate the transmitted variances to determine
the impacts (if any) on performance. Such trans-
mitted variance reassessments require no additional
computer runs and may help guide scenario analysis
efforts. For example, from Table 3 we see that re-
running the base model with different conventional
rates will have no appreciable effect on any of the
four performance measures if the conventional rate
ranges from 7.45% to 8.45%. Even doubling the range
would increase performance variability by at most
0.33%, according to our metamodels. However, it
is important to remember that the metamodels are
only approximations of the true response surface. If
large changes in noise factor variance are anticipated,
a confirmation run using new factor settings should
be made. If the confirmation run’s performance mea-
sures are not close to those predicted, the new infor-
mation can be used to develop into more appropriate
metamodels of performance.
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Table 4: Transmitted Variance Percentages: Coefficient Sensitivity Experiment

Performance Measure

Coefficient # Coefls.
Grouping Perturbed ADJSEV PCTDFLT PCTLOSS ONBOOKS
Transition

from Current 32 5% 86% 55% 66%
Transition

from Del. 30-89 8 0% 0% 0%
Transition

from Del. 90+ 8 15% 14% 5% 32%
Loss 11 27% 0% 40% 1%
Severity 2 0% 0% 0%
Total %: 100% 100% 100% 100%

2.3 Validation Experiment

A common concern when using first-order metamod-
els is that they may not adequately approximate the
response surface. To validate the results of Section
3.1 and 3.2 we performed a 64-run half-fraction ex-
periment, which allows us to estimate all main ef-
fects and two-way interactions. The larger number of
data points provides ample degrees of freedom for as-
sessing statistical significance, although the p-values
for positively correlated factor pairs will still be in-
flated. Both main-effect models and second-order
models were examined. For ADJSEV, the reduced
model contained the same three terms as the 8-run
metamodel: no interaction effects were present. MK-
TAPPR was significant for the other three perfor-
mance characteristics, and CONVRATE was signif-
icant for PCTLOSS and ONBOOKS. The effects due
to variation in economic conditions were thus better
identified in the 64-run experiment than in the 8-run
experiment. Few interactions appeared to influence
performance. Only three are significant using a = .05
(LTV by MKTAPPR, LTV by AMOUNT, and LTV
by INTRATE, all in the metamodel for PCTDFLT).
One more was present at a = .10 (LTV by AMOUNT
in the metamodel for ONBOOKS).

The transmitted variances are small for the factors
not found to be statistically significant in the 8-run
experiment, so leaving them in the model has little
impact on the noise factor assessment for the present
portfolio. However, statistical significance is difficult
to determine with so few degrees of freedom avail-
able for error estimation, and the full model provides
more accurate results if the economic forecasts change
or if the portfolio is segmented differently. The latter
is of interest for evaluating changes to current lend-
ing policies. In summary, it appears that the 8-run

metamodels suffice for noise factor assessment of our
mortgage portfolio example if all factors are retained
in the metamodels and transmitted variances are es-
timated using equation (3).

3 TOLERANCE EXPERIMENT: MODEL
SENSITIVITY

Recall from Table 1 that the comprehensive model
makes use of fitted values from multinomial logistic,
logistic, and regression analysis. For the 6508 loan
segment we analyze, a total of 61 coefficients are used
in the various model components. (Another 85 coef-
ficients are needed to run the forecasting model for
the full portfolio.) These coefficients are themselves
estimated from previous data, so the sensitivity of the
responses to errors in their estimation (or changes in
the relationships over time) is of interest. However,
since the model coefficients are updated quarterly to
reflect more recent loan histories and environmental
information, we prefer a method which is easily au-
tomated, even at the expense of some accuracy.

To this end, we modified the base forecasting pro-
gram so that the coefficients could be perturbed us-
ing a nearly saturated two-level fractional factorial
design with 64 runs. Each of the model coefficients
is coded as c; + f;s; where c¢; and s; are, respectively,
the mean and standard deviation of the ith coefficient
and f; is the coded factor level for the run. (For the
base model calculations, all f; can be set to zero.)
A shell script loops through all 64 design points and
iteratively calls the SAS forecasting program. Note
that this design treats the coefficients as independent
factors although they are correlated. Because of the
nature of the multinomial logistic structure, we ex-
pect the results from the tolerance experiment to be
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conservative (i.e., show wider variation) relative to
results that would be achieved by a method which
made use of the multivariate correlation structures.

The market conditions (unemployment, market ap-
preciation, and conventional interest rate) were fixed
at the nominal (center point) levels of the 8-run toler-
ance design experiment. This left four factors: orig-
inal loan-to-value, loan amount, interest rate, and
term. For efficiency purposes, we chose to run the
experiment using the four factor level combinations
of the scenario tolerance experiment augmented by a
center point, rather than using the full portfolio.

The results are summarized in Table 4. The coeffi-
cients for the ‘transitions from current’ state appear
to be the major source of variation for all four perfor-
mance measures, with transmitted variance percent-
ages ranging from 55% to 86% of the totals. This
represents the majority of the transitions which oc-
cur over the life of loans in the portfolio. Coefficients
from the ‘transitions from 90+ days delinquent’ com-
ponent account for 15% of the transmitted variance
for ADJSEV, 14% for PCTDFLT, and 5% for PCT-
LOSS. Since the majority of loans entering default
first pass through this late delinquency stage, the im-
pact on the overall model is not surprising. The sever-
ity coefficients appear to impact both ADJSEV and
PCTLOSS, but have little effect on the PCTDFLT or
ONBOOKS. The transmitted variance of the severity
coefficients is negligible relative to the other model
components.

The transmitted variance percentages in Table 4
are based on full regression models. For comparison
purposes, stepwise regression was used to obtain sim-
pler models. The numbers of terms in the reduced
metamodels dropped from 61 to 38, 30, 27 and 36 for
ADJSEV, PCTDFLT, PCTLOSS, and ONBOOKS,
respectively, but the transmitted variance percent-
ages did not materially change.

4 INHERENT VARIANCE ESTIMATION

Recall that the base program relies on expected val-
ues rather than discrete event simulation to reduce
the computational effort. We wished to estimate the
variability of the means to determine whether or not
reliance on expected behavior was reasonable. To ac-
complish this task, we modified the forecasting pro-
gram to run as a discrete event simulation. For ex-
ample, in the base program we calculate probabilities
for each of the five states one year out, two years out,
and so forth up to 30 years out. For the discrete-
event version, we calculate the state probabilities on
an individual loan basis to create multinomial dis-

tributions for the the loan state after one year ha:
elapsed. SAS’s internal random numbers routines are
then used to determine which multinomial outcome is
realized. Similarly, loss transitions are randomly de-
termined with probabilities calculated from the com-
prehensive forecasting model. If the loan does not
enter a terminal state at the beginning of year ¢, then
transition probabilities for the year t + 1 are recalcu-
lated after accounting for the amortization.

We provide estimates of the performance measures’
variability obtained using discrete event simulation in
Table 5. Three different portfolios are used as the ba-
sis for simulation: (1) 1,000 replications of the center
point loan from Section 3. (2) 200 replications for
each of the five loans used in the sensitivity analysis
experiment of Section 3, and (3) 16 replications of the
6508 loan portfolio. In all cases, standard deviations
are normalized to represent the standard error of the
mean for 6508 loans.

Table 5: Standard Error Estimates for 6508 Loan
Portfolio

Simulated Portfolio
Performance Center Pt. 5 Design 6508

Measure Loan Pt. Loans Loans
ADIJSEV 60.60 141.06 518.35
PCTDFLT 0.234 0.669 0.327
PCTLOSS 0.007 0.065 0.058
ONBOOKS 0.045 0.101 0.056

We anticipated that the standard deviations com-
puted by discrete event simulation of very small port-
folios (the center point loan, or the five design point
loans) would be conservative estimates of the stan-
dard deviations resulting from the entire 6508 loan
simulation, in part because the larger portfolio has
loans closer to maturity and thus fewer potential
paths through their remaining life. If so, and if the
resulting bounds were sufficiently narrow, then future
estimation of the inherent variability could be accom-
plished efficiently using a reduced portfolio. Unfortu-
nately, the standard deviation of ADJSEV was not
approximated closely by either the center point sim-
ulation or the five design point simulation. The stan-
dard deviations estimated from the five design points
are conservative for the other three performance mea-
sures. Discrete-event simulation of the center point
loan underestimated the standard deviations for all
four performance measures, so for our example it
would not provide adequate bounds on the expected
performance variability.
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5 CONCLUDING REMARKS

We have examined three causes of variation for four
performance measures in the base forecasting model:
variation due to uncertainties about future economic
conditions and new loan characteristics, variation due
to the use of estimated coefficients for component
models, and inherent variation due to the stochas-
tic nature of loan behavior within the portfolio. The
central limit theorem means the inherent variation is
less a concern for large portfolios. Similarly, if the
coefficients in the component models are estimated
from a large number of loans, their standard errors
will tend to be smaller and their effect will be damp-
ened. However, the noise factor assessments from tol-
erance analysis do not directly depend on the size of
the portfolio for which scenario analysis is conducted.

Taken together, these three causes of variation can
be used to provide bounds around the expected per-
formance measures computed from the base forecast-
ing model. When this is done for the five design
point loans, the overall performance variance com-
puted during tolerance analysis was the major source
of uncertainty for ADJSEV, the inherent variance
was the major source of difference for PCTDFLT and
PCTLOSS, and the uncertainty concerning the coef-
ficients had the major impact on ONBOOKS. This
indicates that all types of variation should be con-
sidered in order to obtain bounds on the expected
portfolio performance.

We have investigated methods for efficient response
variability assessment. Small experimental designs
were be used to augment or replace extensive dis-
crete event simulation to predict the performance of
home mortgage portfolios. We found that strong cor-
relations between factors must be considered when
designing and analyzing these experiments in order
to obtain accurate noise factor assessments. In ad-
dition to one-time insights into a particular portfolio
segment’s behavior, these methods hold promise for
adaptation to an ongoing process of model refitting
and revision.
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