Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

SCALABLE SIMULATION MODELS FOR CONSTRUCTION OPERATIONS

Photios G. Ioannou
Julio C. Martinez

Civil & Environmental Engineering Department
University of Michigan
Ann Arbor, Michigan 48109-2125, U.S.A.

ABSTRACT

Construction operations are often repetitive not only in
terms of time (the same tasks are performed over and
over) but also in terms of space (the same tasks are
repeated at several places, such as different floors in a
high-rise building). Thus, construction simulation models
in general must be cyclic to represent temporal
repetitions, but also scaleable to represent spatial
repetitions. This paper presents the mechanisms for
preprocessor replacement and automatic code generation
that have been designed and implemented to facilitate the
development of scaleable simulation models in
STROBOSCOPE, a general-purpose discrete-event
simulation system developed by the authors. A relatively
complex simulation model for the vertical transportation
of people serves as an example to illustrate how to
develop a completely scaleable model for the operation
of an elevator in a building with any number of floors.

1 INTRODUCTION

Construction operations are typically repetitive in nature
and have traditionally been modeled using simulation
systems based on cyclic activity networks. Thus,
repetitive construction processes are most often
represented as cycles through the same set of nodes of a
simulation network.

There is an entire class of problems, however, for
which this approach does not work. A typical example is
the vertical transportation of people (e.g., construction
labor) in a high-rise building (e.g., with more than 50
floors) using multiple elevators that may or may not span
the entire height of the building. In such cases, the
queuing behavior at each floor, although similar to that
of other floors, needs to be modeled separately. For
example, to collect statistics about the number of people
waiting for elevator service at each floor and for each
direction of travel, the model must include two queues
per floor, one for the people waiting to go up and another

1329

for those waiting to go down. Thus, a building with 50
floors would require the arduous task of defining 98
queues (the 1" and 50" floors only need one queue) and
at least 196 links (one link for entering and another for
leaving each queue). Lumping all these queues into two
global queues (one for all the people waiting to go up
and one for all the people waiting to go down) trades this
problem for another. While it eliminates the need to
define multiple queues and links, it also prevents the
automatic collection of any per-floor statistics. Thus, the
problem now requires the definition of two statistics
collectors per floor, while ensuring that these collectors
receive the correct data every time a person enters or
leaves the global waiting queues at a particular floor.

The same type of problem occurs when modeling a
horizontal transportation system, such as the inter-
terminal bus service at an airport. As the number of
repetitive units increase (such as the floors in a building
or the number of terminals at an airport), simulation
models must be augmented with new modeling elements
to represent the new floors or terminals.

A convenient solution to this type of problems is to
create scaleable simulation models at the “meta” level
that can create detailed simulation models at the
simulation language level. Thus, a scaleable simulation
model must have the capability to generate simulation
code that defines any number of simulation elements
(e.g., activities, queues, links, etc.) as necessary to match
their real counterparts. This paper describes the facilities
for statement preprocessing and automatic code
generation provided within STROBOSCOPE (STate and
ResOurce Based Simulation of COnstruction ProcEsses),
a simulation language developed by the authors based on
activity-scanning. The elevator problem is used as an
example to illustrate these capabilities.

2 MODELING ELEVATOR OPERATIONS

The facilities for creating scaleable simulation models
will be described by using as an example a building

1330 Ioannou and Martinez

served by a single elevator. This fairly complex problem
has been adapted from (Law and Kelton 1991) and is
used to illustrate the effectiveness of preprocessing and
automatic code generation to create a scaleable model
that once verified (and even animated) can provide an
accurate representation of the elevator’s complicated
control logic for any number of floors.

The problem is of interest in high-rise building
construction (50+ stories) as subcontractors add money
to their bid to account for lost time in hoisting personnel.
If at the bidding stage a general contractor can show the
subcontractors a video (or an animation) and supporting
documentation that the proposed hoisting system has
been optimized and that waiting times will be as short as
possible, there may be cost benefits to all parties
(including the owner). In order to do this, project
managers have expressed the need for models depicting
the movement of labor that can provide queue-related
statistics for different hoisting policies. In general, such
models should be able to analyze and optimize the
operation of multiple elevators and hoists (some of
which may or may not span the entire building height) in
very tall buildings.

In addition to being interesting, this problem was also
selected because the ‘““classical” elevator problem (even
with simplified control logic) is one of the most difficult
problems for simulation languages to model and verify.
It has been estimated, for example, that the elevator
problem (with much simpler control logic than the
example described below) requires an expected modeling
effort of 20-30 hours of work (Chisman 1996).

3 EXAMPLE PROBLEM STATEMENT

A five-story building is served by a six-person elevator.
People arrive to the ground floor (floor 1) with
independent exponential interarrival times having a mean
of 1 minute. A person will go to each of the four upper
floors with probability 0.25. It takes the elevator 15
seconds to travel up or down one floor. For simplicity it
will be assumed that the elevator loading and unloading
time at any floor is zero. The length of stay of a person at
a particular floor 1s distributed uniformly between 15 and
120 minutes. When a person leaves floor i = 2, 3, 4, 5, he
or she will go to floor 1 with probability 0.7, and will go
to each of the other three floors with probability 0.1. A
person coming down to floor 1 departs from the building
immediately.

When the elevator is going up, it will continue in that
direction if a current passenger wants to go to a higher
floor or if a person on a higher floor wants to get on the
elevator. When the elevator is going down, it will
continue in that direction if it has at least one passenger
or if there is a waiting passenger at a lower floor. When

the elevator stops at floor 1 = 2, 3, 4 while going up
(down), it picks up only those people at that floor that
want to go up (down). If the arriving elevator does not
have enough room to get all the people waiting at a
particular floor, the excess remain in queue.

The elevator decides at each floor what floor it will go
to next. It does not change directions between floors. At
the start of the simulation the elevator is at rest at its base
floor. This is the same floor the elevator returns to
whenever it is idle. The best choice for the base floor is
made by minimizing the average of individual delays
over all floors and all people. An integral part of the
modeling requirements for this problem is the collection
of statistics about the number of people waiting and the
corresponding waiting times at each floor and for each
direction of travel.

4 SIMULATION METHODOLOGY

A scaleable simulation model for this problem has been
developed using STROBOSCOPE, a general-purpose
simulation programming language based on activity-
scanning.

A complete description of STROBOSCOPE appears
in (Martinez 1996). Example applications can be found
in (Martinez, Ioannou, and Carr 1994; Martinez and
Ioannou 1994, 1995; Ioannou and Martinez 1995, 1996a,
1996b). The STROBOSCOPE program, its
documentation, and several examples are available via
anonymous ftp from “grader.engin.umich.edu.”

5 SIMULATION MODEL NETWORK

The STROBOSCOPE cyclic activity network for the
elevator problem is shown in Figure 1. From a tactical
point of view, this network can be divided into two parts.

The eight queues enclosed by the dashed lines (Q1U,
02U, Q3U, 04U, 02D, Q3D, 04D, and Q5D) as well as
the 16 links that enter and depart these queues represent
the scaleable portion of the network. The four queues
ending in U represent the people waiting at the
corresponding floor for the elevator to go up. Similarly,
the four queues ending in D represent the people waiting
for the elevator to go down. Thus, each of these queues is
specific to a particular floor and a direction of movement
(up or down). To increase the number of floors in the
building it is necessary to define additional network
elements: two queues and four links per floor.

The remainder of the simulation network represents
the cycle of loading and moving the elevator from one
floor to the next. The main network elements in this
cycle are the activities EnterElev and MoveElev. Notice
that this cycle is not specific to any particular floor, nor
does it depend on the number of floors.

Scaleable Simulation Models for Construction Operations

1331

- N
{ | Scaleable Portion of
| the Simulation
PQ5D1 QsD etwork
' !
| PQ4U1 _ — 2\
| R
Q4u E1 @ e
7
| PQ4D2 %
/ Attach Detach
| GLJ P1 People People
VisitFloor Q3u P2l ErierEey Eone MoveElev
\
X 2 PQ3D2 1
Q
; People VisitOr
| Q2D Q2u | De Leave
i PQ2D2 |
~— |
| |
PeopleArrive PQip1 Qlu PQju2
‘ |
—_——

Figure 1: STROBOSCOPE Network for the Elevator Model

There are two types of resources in this model, the
elevator and people. For convenience both are defined as
compound characterized resources. Although people
could have been modeled just as well as simple
characterized resources with no static properties,
compound characterized resources are easier to define in
this case because there is no need to define subtypes.
Furthermore, compound resources provide a base to
which other resources (generic, simple characterized, or
compound characterized) can be attached and detached.
Thus, defining the elevator as a compound resource
makes it extremely simple to model a loaded elevator as
an elevator with people attached.

The attachment of people (a compound resource) to
the elevator (another compound resource that serves as
the assembly base) is performed by the assembly node
AttachPeople. At the end of activity MoveElev, the
people that have reached their destination and need to
unload are detached from the elevator by the disassembly
node DetachPeople. The rest of the people inside the

elevator are in transit and remain attached to the elevator
which is then routed to the queue ElevQ ready to start
another cycle.

The people detached from the elevator are routed to
either the disassembly node PeopleDepart (i.e., to floor 1
and out of the building), or to the queue ReadyToVisit.
From there each person that exited the elevator starts a
separate instance of the combi (conditional) activity
VisitFloor where it spends time visiting the associated
floor.

The most crucial element of this model is to specify
the precise conditions under which the combi activity
EnterElev can start. This combi is preceded by nine
queues (eight people queues and one elevator queue).
Obviously, the only hard requirement for EnterElev to be
able to start is the availability of the elevator (i.e., that
the ElevQ queue be non-empty). This requirement,
however, does not hold true for the eight people queues.
Because the elevator should be able to move to another
floor even when all these queues are empty (this occurs

1332 Joannou and Martinez

when the elevator is idle and returns to its base floor). To
allow this, the Enough attributes of the links joining the
eight people queues to the EnterElev combi must be set
so that they are always true. Thus, from a resource
availability point of view, only the Enough attribute of
link E1 matters (by default this is determined by the
contents of queue ElevQ).

However, the availability of the elevator should not be
sufficient for EnterElev to start. In addition, at least one
of three conditions must also be satisfied: either the
elevator contains people in transit, or the total contents of
the eight people queues are nonzero (there are
somewhere people waiting for the elevator), or the
elevator is not at its base floor (and should return there).
These three conditions constitute the semaphore for
EnterElev. The semaphore for a combi activity is the
first logical condition that is evaluated every time the
combi activity attempts to start. If the semaphore is false
then the attempt fails. If the semaphore is true, then
STROBOSCOPE continues checking and evaluates the
Enough attributes for the links joining the combi to its
preceding queues. A combi is able to start only if its
semaphore and the Enough expressions for all these links
evaluate to true.

Once the decision to start EnterElev is made (because
its semaphore is true and the elevator is waiting in
ElevQ), the elevator is certain to move to another floor.
The issue now is to determine the direction of travel: up
or down? This decision is made on the beforedraws event
of the EnterElev combi (i.e., before the combi EnterElev
draws the elevator and possibly any people as new
passengers). On this event, the model sets the EDirection
property of the elevator to one of three values: “1” to
indicate “going up”, “-1” to indicate “going down” and
“0” to indicate “idle at base floor”.

The expression that gets evaluated to determine
EDirection at this event is a complex conditional
statement that implements the following logic: The
elevator keeps its current direction (up or down) if it
contains people in transit, or if there are people waiting
at higher/lower floors and the current direction is
up/down. If none of these conditions are true, then if
there are any people waiting to board, the elevator
switches direction; otherwise, it moves in the direction of
its base floor.

Once the decision has been made to move the elevator
in a specific direction (i.e., EDirection is set), the next
issue is to decide which one (if any) of the eight people
queues will be allowed to have the people waiting there
enter the elevator. This is accomplished by evaluating the
drawwhere attribute of the links from each of the eight
people queues to the EnterElev activity. The drawwhere
attribute of a link is a filter that is evaluated for each of
the characterized resources residing in the preceding

queue to determine those that can be drawn through the
link. Only those characterized resources that pass the
filter can pass though the link. Clearly, the statements
specifying the drawwhere attributes for these links are
repetitive and should be generated automatically as
described in the next section.

Two SaveProps (i.e., assignable properties) for the
people compound resource are CurFloor and Direction
(i.e., the floor on which the person is now and the
direction he/she wants to move to). The drawwhere
attribute of the links simply states that only those people
that are on the same floor as the elevator and want to
move in the elevator’s current direction should be
allowed to board. The number of people allowed to
board is regulated by the link’s drawuntil attribute. The
expression for this attribute is the same for all links and
allows loading people until the number of passengers
equals the capacity of the elevator. Again, the drawuntil
statements are repetitive and their specification in a
generic manner is presented in the next section.

After the elevator loads the people currently waiting at
the same floor and wishing to go in its own direction (up
to its capacity), the combi activity EnterElev can start.
Upon start-up, the elevator property EPeopleCount is
updated to reflect the current number of passengers
inside the elevator.

The EnterElev combi has zero duration and terminates
immediately after it starts. Its termination leads to the
assembly node AttachPeople where the newly loaded
passengers are attached to the elevator compound
resource (and join the rest of the passengers already
attached). The loaded elevator is then routed as one
compound resource to the MoveElev activity where it
spends an amount of time equal to the duration of a one-
floor move.

Just before the MoveElev activity ends and releases
the elevator, the elevator property ECurrentFloor is
updated to reflect its new current floor position. The
elevator is then routed to the disassembly node
DetachPeople. Here all passengers are for a moment
detached from the elevator compound resource to allow
those people that have reached their destination to depart
and flow through link P2. The releaséwhere attribute of
link P2 compares each person’s NextFloor property to
the elevator’s ECurrentFloor property. Those that match
flow through P2 and leave the elevator. The remaining
passengers are in transit. They are reattached to the
elevator compound object and are released to the ElevQ
queue via link E5 to start another cycle.

If the elevator is on floor 1 then the departing
passengers are routed by the fork VisitOrLeave to the
disassembly node PeopleDepart where they are
destroyed (there are no exit links). Otherwise, they are
routed to the ReadyToVisit queue where each person

Scaleable Simulation Models for Construction Operations 1333

starts a separate instance of the VisitFloor combi. On
release through link P2, each person’s CurFloor property
is updated to reflect the floor he/she is currently on. On
flow through link P4, each person’s next floor
destination (at the conclusion of the visit to the current
floor) is determined through simple Monte Carlo
sampling and is assigned to its NextFloor property. At
the same time, a person’s Direction property is
determined based on the values of NextFloor and
CurFloor.

When an instance of the VisitFloor combi activity
finishes, it releases the person it holds to one of the seven
people queues that follow. The recipient queue is
determined by the releasewhere attributes of the seven
links out of VisitFloor. The releasewhere attribute for
each of these eight links allows a person to flow through
only if its current floor (CurFloor) and direction of
movement (Direction) match those of the succeeding
queue. Thus, exactly one of these links will allow the
person to flow through. It should be obvious that the
specification of the releasewhere attributes of the links
out of VisitFloor are repetitive and can be generated
automatically as described below.

6 STATEMENT PREPROCESSING AND
AUTOMATIC CODE GENERATION

For the elevator model to be scaleable, there is clearly a
need to generate automatically the STROBOSCOPE
statements that define all the up and down queues (two
queues per floor), as well as all the links in out of these
queues (two links per queue). The number of floors in
the building should be the only variable that controls the
size of the model. However, in addition to these
statements (that have an obvious effect on the size of the
simulation network), we must also be able to generate
statements that define the necessary queue or link
attributes (drawwhere, drawuntil, etc.) as well as those
statements necessary for the collection of statistics and
the communication of the results.

In STROBOSCOPE this is accomplished by using the
preprocessor operator $<Arg>$, where Arg stands for the
preprocessor replacement expression. A simulation
model file is a text file that is read, pre-processed, and
executed one statement at a time. As each statement is
read, STROBOSCOPE searches for the two-character
sequence “$<” (i.e., a dollar sign immediately followed
by a less than sign). If the sequence “$<” is found, then
what follows is treated as the preprocessor replacement
expression. This expression extends to but does not
include the next occurrence of “>$” (i.e., a greater than
sign followed by a dollar sign). The entire preprocessor
replacement expression is treated as a mathematical
formula, which is then evaluated, truncated to an integer

number, and used to replace the entire sequence
$<Arg>$ as a string. After this substitution, the resulting
statement is parsed and executed like any other ordinary
STROBOSCOPE statement.

For example, the following statements:

QUEUE Q$<Log[10]>$U People;
LINK PQ$<Sin[3.14/2]1>$U2
Q$<Cos[0]1>$U EnterElev;

are equivalent to:

QUEUE Q1U People;
LINK PQlU2 QlU EnterElev;

Statement preprocessing when coupled with control
statements that implement While-Wend loops provide
STROBOSCOPE with a powerful mechanism for
automatic code generation. This mechanism is best
illustrated with an example. The following short snippet
of STROBOSCOPE code uses a While-Wend loop
(controlled only by the number of floors in a building) to
define the scaleable elements of the simulation network.
These are the 4 “going up” queues (Q1U to Q4U), the 4
“going down” queues (Q2D to Q5D), the 8 incoming
links (PQ1U1 to PQ4U1, and PQ2D1 to PQ5D1), and the
8 outgoing links (PQ1U2 to PQ4U2, and PQ2D2 to
PQ5D2). Thus, for a building with N+ floors this short
set of statements defines 2N queues and 4N links:

VARIABLE nFloors 5;
SAVEVALUE I 1;
WHILE I<=nFloors-1;
QUEUE Q$<I>$U People;/ Ith Up Queue
IF I==1; /lst floor links (exception)
LINK PQlUl PeopleArrive QlU;
LINK PQ1lU2 QlU EnterElev;
ELSE; /Intermediate floor links (rule)
LINK PQ$<I>$Ul VisitFloor QS$<I>S$U;
LINK PQ$<I>$U2 Q$<I>$U EnterElev;
ENDIF;
QUEUE Q$<I+1>$D People;/ (I+1l) down Q
LINK PQ$<I+1>$D1 VisitFloor Q$<I+1>$D;
LINK PQ$<I+1>$D2 Q$<I+1>$D EnterElev;
ASSIGN I I+1;
WEND;

Similarly, the following While-Wend loop defines
several STROBOSCOPE statements that specify the
behavior of the above nodes and links. In particular,
these statements set the Enough attributes of all the links
entering activity EnterElev to true; define drawwhere
filters that allow only the correct people to board the
elevator; define drawuntil attributes to allow people to
board for as long as there is room in the elevator; define
statistics collectors for each queue and supply data for
the number of people that could not board the elevator

1334 Ioannou and Martinez

because it was full; collect statistics about each person’s
overall waiting time; and define filters that route each
person that wants to leave a floor to the correct waiting
queue at the elevator. The following statements include
detailed comments and should be self-explanatory:

ASSIGN I 1;

WHILE I<=nFloors-1;
/set the ENOUGH for links PQxU2 to TRUE
ENOUGH PQ$<I>$U2 !FALSE;
/Define statistics collectors NoFitxU
COLLECTOR NoFit$<I>S$U;

/Before EnterElev draws any resources
/ collect in NoFitxU the number of people
/ at QxU that do not fit to board.

/ (provided people do wait at QxU
/ and the elevator is going up
/ and the elevator is at floor x)

BEFOREDRAWS EnterElev COLLECT NoFit$<I>$U
PRECOND ‘Q$<I>$U.CurCount &

EDirection==1 & ECurFloor==$<I>$"’

Max [Q$<I>$U.CurCount-SpaceLeftInElev, 0] ;

/Draw via link PQxU2 only those people

/ whose floor and direction match those

/ of the elevator:

DRAWWHERE PQS$<I>$U2
'EDirection==Direction &
ECurFloor==CurFloor’;

/When drawing a person through link PQxU2

/ collect in OverallWait the waiting time

/ for that person in queue QxU

ONDRAW PQ$<I>$U2 COLLECT OverallWait
SimTime-Timeln;

/Keep drawing people through link PQOxU2
/ until there is no space in the elevator
DRAWUNTIL PQS$S<I>S$U2 !SpaceLeftInElev;

/ Release through link PQxUl (x<>1)

/ (to queue QxU) only those

/ people that are currently

/ at floor x and want to go up

IF I'=1;

RELEASEWHERE PQS$<I>$U1 ‘CurFloor==$<I>$
& Direction== 1‘;

ENDIF;

/****From here down “x” means “I+1”***x

/set the ENOUGH for links PQxD2 to TRUE
ENOUGH PQ$<I+1>$D2 !FALSE;

/Define statistics collectors NoFitxD
COLLECTOR NoFit$<I+1>$D;

/Before EnterElev draws any resources
/ collect in NoFitxD the number of people
/ at QxD that do not fit to board.

/ (provided people do wait at QxD
/ and the elevator is going down
/ and the elevator is at floor x)

BEFOREDRAWS EnterElev
COLLECT NoFit$<I+1>$D
PRECOND 'Q$<I+1>$D.CurCount &
EDirection==-1 & ECurFloor==$<I+1>$"
‘Max [Q$<I+1>$D.CurCount-
SpaceLeftInElev,0];

/Draw via link PQxD2 only those people

/ whose floor and direction match those

/ of the elevator:

DRAWWHERE PQ$<I+1>$D2
EDirection==Direction &
ECurFloor==CurFloor;

/When drawing a person through link PQxD2

/ collect in OverallWait the waiting time

/ for that person in queue QxD

ONDRAW PQS$<I+1>$D2 COLLECT OverallwWait
SimTime-Timeln;

/Keep drawing people through link PQxD2
/ until there is no space in the elevator
DRAWUNTIL PQ$<I+1>$D2 !SpaceLeftInElev;

/ Release through link PQxD1

/ (to queue QxD) only those

/ people that are currently

/ at floor x and want to go up

RELEASEWHERE PQ$<I+1>$D1
'CurFloor==$<I+1>$ & Direction==-1"';

/ Increment the counter I and loop
ASSIGN I I+1;
WEND;

The above examples are not the only places where the
elevator model requires the use of preprocessing and
automatic code generation. This capability is also needed
to produce the required output at appropriate points
during simulation run-time and after the simulation is
completed. For example, automatic code generation is
used to generate STROBOSCOPE statements that
produce animation instructions for PROOF Animation
(by writing to a text file at appropriate points during
simulation run-time). Similarly, at the end of simulation,

Scaleable Simulation Models for Construction Operations 1335

AL

\
W
AR

7

Figure 2 - PROOF Animation of Elevator Model

automatic code generation provides a convenient way to
create statements that print the desired statistical results
on a per-floor, or per-queue basis. In both cases, the
necessary STROBOSCOPE statements are repetitive in
nature (i.e., they repeat over the queues, their links, or
both). Thus, generating these statements with a While-
Wend loop is a natural solution to the problem of making
the model scaleable.

7 ANIMATION

The STROBOSCOPE simulation model for the elevator
problem described above was designed to be scaleable
with respect to animation as well. By simply changing a
single parameter that represents the number of floors in a
building, it is possible to produce the correct animation
trace file (ATF) that could then be processed in playback
mode by Proof Animation to show the operation of the
elevator for the selected number of floors.

Figure 2 shows a snapshot of the animation for a
building with 5 floors. The building in this figure is part
of the layout background, whereas the elevator (shown as
a box with six slots) and the people (shown as colored
squares) are instances of classes defined in the animation
layout file. Every time a new person enters the building a
new square is created and placed on a “line path” (a
predefined trajectory) where it queues waiting for the
elevator. When the elevator arrives, a person going in the
same direction is moved from its “path queue” to one of
the empty six slots inside elevator. A person exiting the
elevator is placed on another “path queue” on the right-
hand side of the corresponding floor where it stays for
the duration of the person’s visit to that floor. At the end
of this visit, a person is removed from the “path queue”
on the right-hand side of the floor and is placed on

another “path queue” on the left-hand side of the floor
where it waits for the elevator to pick it up. Figure 2
shows two people inside the elevator, two people waiting
for the elevator at floors 1 and 4 and one person waiting
at floor 3. In addition, there are two, four, one, and three
people still visiting floors 2, 3, 4, and 5. Even a short
playback of the animation makes it obvious that the
elevator policy has been implemented correctly.

The only and rather obvious difficulty in scaling the
entire animation is that the background drawing
representing the building itself must also be scaled to
have the correct number of floors. Fortunately, PROOF
Animation stores the layout file as a CAD drawing in
text format and this makes it possible to produce a layout
file with the correct number of floors in the building as
part of the output of a completely scaleable simulation
run.

8 CONCLUSION

After a parametric model’s accuracy is verified through
statistics collection and animation, scaling it to represent,
for example, a 50+ story building becomes just a matter
of changing a single number to define the required
number of floors.

The model presented above is not the only way to
make the elevator problem scaleable. As mentioned
earlier, it is possible to lump the separate “up” and
“down” queues for each floor into two global “up” and
“down” queues for the entire building (or even just one
queue with unspecified direction). In this case,
automated code generation would be necessary to define
many statistics collectors that provide the same statistical
information on a per floor basis as provided
automatically by the deleted queues.

1336 Toannou and Martinez

Alternatively, it is also possible to eliminate entirely
the use of collectors (i.e., STROBOSCOPE objects) for
gathering per floor statistics. For the elevator problem,
for example, it is possible to store statistical information
on a per floor basis in one- or two-dimensional arrays.
In essence, this approach uses arrays to perform
manually the functions that collectors do automatically.
No matter what approach is used, however, it is very
difficult to create completely scaleable models that do
not have any need for statement preprocessing and
automated code generation.

ACKNOWLEDGMENTS

The development of STROBOSCOPE has been
supported by the University of Michigan Horace H.
Rackham School of Graduate Studies and the National
Science Foundation (Grant No CMS-9415105).

REFERENCES

Chisman J.A. 1996. Industrial cases in simulation
modeling, Duxbury Press, ITP, Inc.

Ioannou, P. G., and J.C. Martinez. 1995. Evaluation of
alternative construction processes using simulation. In
Proceedings of the 1995 Construction Congress, San
Diego, CA, October 22-26, ASCE.

Ioannou, P. G., and J.C. Martinez. 1996a. Animation of
complex construction simulation models. In
Proceedings, Third Congress on Computing in Civil
Engineering, Anaheim, CA, June 17-19, ASCE.

Ioannou, P. G, and J.C. Martinez. 1996b. Comparison of
Construction Alternatives Using Matched Simulation
Experiments. Journal of Construction Engineering
and Management, ASCE, (122) 3.

Law A.M., and W.D. Kelton. 1991. Simulation Modeling
and Analysis, 2nd ed. McGraw Hill, New York, NY.
Martinez, J. C., Ioannou, P. G., and R. I. Carr. 1994.
State and resource based construction process
simulation. In Proceedings of the First Congress on

Computing in Civil Engin., ASCE, Washington, DC.

Martinez, J.C., and P.G. Ioannou. 1994. General purpose

simulation with STROBOSCOPE, In Proceedings,

1994 Winter Simulation Conference, Orlando FL,
December 11-14, IEEE, Piscataway, New Jersey.

Martinez, J.C., and P.G. Ioannou. 1995. Advantages of
the activity scanning approach in modeling complex
construction processes. In Proceedings, 1995 Winter
Simulation Conference, Washington, DC, December
3-6, IEEE, Piscataway, New Jersey.

Martinez J.C. 1996. STROBOSCOPE—State- and
resource-based simulation of construction processes,
Ph.D. thesis, Civil and Environmental Engineering
Dept., Univ. of Michigan, Ann Arbor, Michigan.

AUTHOR BIOGRAPHIES

PHOTIOS G. IOANNOU is Associate Professor in the
Dept. of Civil and Environ. Engin. at the Univ. of
Michigan. He received a Diploma in Civil Engin. from
the National Technical Univ., Athens, Greece, in 1979;
and a SMCE and Ph.D. from MIT in 1981 and 1984. He
has just completed a six-year term as Chairman of the
Computing in Construction Technical Committee of the
ASCE. He co-developed the UM-CYCLONE
construction process simulation system with R.I. Carr,
supervised the design and development of COOPS by
L.Y. Liu, and served as chairman of J.C. Martinez’s
Ph.D. dissertation committee. His research interests are
primarily focused on the areas of construction decision
support systems and construction process modeling.

JULIO C. MARTINEZ is Post Doctoral Research
Fellow in Civil Engineering at the University of
Michigan. He designed and implemented the
STROBOSCOPE simulation language as part of his
Ph.D. dissertation research. He received a Civil
Engineer’s degree from Universidad Catolica Madre y
Maestra (Dominican Republic) in 1986, an MS in Civil
Engin. from the University of Nebraska in 1987, and an
MSE and a Ph.D. in Construction Engineering and
Management from the University of Michigan in 1993
and 1996. His research interests are in computer
applications to construction engineering and
management.

