Proceedings of the 1996 Winter Simulation Conference

ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

A HYBRID SIMULATION-QUEUEING MODULE
FOR MODELING UNIX I/O IN PERFORMANCE ANALYSIS

Barry L. Nelson

Department of Industrial Engineering

and Management Sciences
Northwestern University
Evanston, Illinois 60208, U.S.A.

ABSTRACT

LEXIS®-NEXIS® frequently develops simulation
models to estimate the computer system capacity re-
quired to deliver on-line information services. The
load imposed by Unix Input/Output (I/O) processes
is a key factor in many of these models. However,
the I/O processes themselves are seldom of interest,
and explicitly modeling them results in simulations
executing much slower than real ttme. This paper
presents a hybrid simulation-queueing module that
can be inserted into any simulation to accurately
model /O resource consumption and queueing de-
lays without explicitly modeling each individual I/O
process. This module is in use at LEXIS-NEXIS to-
day (LEXIS and NEXIS are registered trademarks
of Reed-Elsevier Properties, Inc., and are used under
license).

1 INTRODUCTION

LEXIS-NEXIS uses a diverse collection of computer
systems to deliver on-line information services world-
wide. An important part of the development of new
information services is estimating the system capac-
ity required to support the product. Even for existing
products, it 1s important to estimate capacity require-
ments for services experiencing growth.

At LEXIS-NEXIS, capacity estimates are typically
based on a simulation of the processes involved in
preparing and delivering a new service. Usually sim-
ulation models describe processes in great detail and
include such tasks as computation of specific sub-
processes, input/output (I/O) of data, remote pro-
cedure calls (RPC’s), etc. The data used to describe
time delays and resource consumption (CPU, mem-
ory, etc.) are based on historical data for familiar,
well-understood processes. For an unfamiliar or com-
pletely new process, it is often necessary to estimate
time delays and resource consumption based on ex-

1238

William S. Keezer
Thomas F. Schuppe

LEXIS-NEXIS
Dayton, Ohio 45401, U.S.A.

pert opinion, since no data are available.

For 1/0 operations in Unix environments, no sys-
tematic collection of data had been done prior to
1994, so I/O times and resource consumption data
were based on expert estimates. Most estimates were
constants or simple functions of I/O size. These
methods were used because they produced reasonable
results and no better information was available. In
1994, however, extensive controlled testing was done
on both HP and Sun servers to gather precise data on
I/O times and resource consumption. At about the
same time the modeling effort described in this paper
was initiated to develop a better method for simulat-
ing resource consumption and time delays caused by
I/O. The concept was to produce a portable module
that could be inserted into any LEXIS-NEXIS per-
formance simulation that required modeling local (as
opposed to network) Unix I/O. The module needed
to be customizable to the actual physical configura-
tion of the hardware, and to simulate resource con-
sumption and delays with high fidelity but minimal
additional computational burden on the simulation.
Ultimately, the HP and Sun laboratory tests were
used to parameterize and validate this module. The
remainder of the paper describes the processes used
to develop, validate and apply this improved model-
Ing process.

2 SYSTEMS MODELED

Both the HP and Sun systems of interest to us had
similar overall architectures: Multiple CPUs are con-
nected to memory modules via a high-speed back-
plane (about 240-960 megabytes per second). All
I/O data passes through a converter that contains
buffering to match the speed and the protocol of the
peripheral bus to that of the backplane. SCSI con-
trollers are connected to a peripheral bus with speeds
on the order of 30-50 megabytes per second. The
actual I/O devices are then attached to the SCSI de-

Modeling UNIX I/0O in Performance Analysis 1239

vices. The DASD (disk) devices for both systems had
very similar architectures with on-board CPUs and
buffers, as well as look-ahead capability. The details
of each of the main components differs considerably
between the two systems despite the similarity of the
overall architectures.

The details of the architecture of the HP9000
Model T500 may be found in the article by Alexander,
et al. (1994). The main concerns for our work were
not the internals of the system, but rather the rates
at which various modules process data and various
buses and paths transmit data. The HP9000 back-
plane operates at a rate of 240-960 MB/s (megabytes
per second), and our system had the maximum ca-
pability. Because of the high speed and the use of a
packet-switching protocol on the bus to transfer data,
we assumed that there would never be any queueing
on this device, only transfer delays. Hewlett-Packard
(HP) uses a device called a bus converter to pro-
vide an interface for the peripherals to the backplane.
This device has two 64 MB/s Precision Buses, each
of which can have 1-7 SCSI adapters attached to it.
The actual data transfer rate after protocol overhead
is about 42 MB/s. In our experience, this data band-
width is sufficient to present no detectable queueing
delays.

The DASD devices are connected to fast, wide
SCSI adapters that have a nominal transfer rate of
20 MB/s. These adapters can accept up to 12 de-
vices daisy-chained along a single data path. The
data path from the device to the adapter has the ca-
pability of handling up to 20 MB/s for data buffered
at the device. The details of the HP DASD devices
may be found in Ruemmler and Wilkes (1993). Their
paper gives the necessary details for calculating the
device level delays and accounting for the effects of
the on-board cache and the look-ahead algorithm of
the device. More importantly, it provides an algo-
rithm for calculating seek time that is much better
than anything used previously.

At the operating system level, the HP9000 uses
HP’s version of Unix called HP-UX. This is a version
of Berkeley Unix. The most important consideration
here is that 1/0 is handled by a set of cache buffers
that have their own management system. This be-
came a major performance concern in trying to vali-
date our module against the benchmark data. Based
upon our results, the space devoted to I/O cache
is divided into blocks of predetermined size, in our
case 8172 bytes, and evenly distributed among buffer
Queues. The number of queues appears to be 128 plus
the number of application files. To find out if a block
of data is in cache, the operating system hashes to
the correct queue and then sequentially searches the

queue for the desired block. The implications are
that the larger the cache is relative to the number
of application files, the more time will be spent in
sequentially searching the queues.

The Sun Microsystems SPARCcentera
2000 (SPARC 2000) is fully described in a white pa-
per produced by Sun (1992). The main difference of
importance in our model is that the backplane trans-
fer rate is 640 MB/s. This still appears to be suf-
ficiently fast that it creates no measurable queueing
delay in the system. The internal architecture of the
conversion module is considerably different from the
HP9000, but only the timing is of importance. The
Sun equivalent of the HP Precision Bus is the SBus.
This bus has a transfer rate of 50 MB/s and can ac-
cept up to four SCSI adapters.

The SCSI adapters are labeled as differential, wide
devices and have a transfer rate of 22 MB/s. Each
adapter can accept up to 6 devices on a data path
that transfers buffered data at 22 MB/s. From our
viewpoint, there are no differences in the disk devices
between the HP9000 and the SPARC 2000.

The operating system is Sun’s proprietary version
of Unix, SUNOS. It is different from HP-UX in its
handling of I/O cache. In the SPARC 2000, cache
1s simply a part of memory and i1s handled by the
memory manager. The overhead to access any block
of cached data is a constant and the same as the
overhead to access any other block of memory. This
means that performance does not depend on the
amount of cache versus the number of application

files.

3 BENCHMARK DATA

The benchmark data used to validate the module
and provide the values for some of the parameters
was originally obtained during a stress test of the
two different systems that were being considered for
I/O-intensive applications. Nominally, the bench-
mark created a series of totally random READS of
random length (1-64 kilobytes with an average of 32
kilobytes) at varying rates up to the maximum sus-
tainable rate. A number of different configurations of
SCSI adapters and DASD devices were tested. 1/Os
per second, CPU utilization, and response times were
measured. In the case of the HP9000, several rela-
tively complete throughput-response curves were ob-
tained for the various configurations, and eventually a
set of parameters was developed for our module that
gave an error of 5% or less compared to the bench-
mark data. In the case of the SPARC 2000 tests, the
system was greatly over-stressed, the goal being to
see what the maximum throughput was. As a conse-

1240 Nelson. Keezer, and Schuppe

quence, not all parameters could be as carefully de-
fined as for the HP9000. However, useful data were
obtained.

4 THE UNIX I/O MODULE

This section describes the Unix I/O module. The
module is a collection of Fortran subroutines that can
be used in isolation, or can (more typically) be added
to simulation models that need to account for local
I/O resource consumption and queueing delays. A
conceptual presentation of the module is shown in
Figure 1; each box in the figure corresponds to a
queue in the module. The philosophy of the mod-
ule is to randomly sample processing times (service
times, in queueing terminology) as a function of I/O
size, but compute expected queueing delays based on
systemn load as characterized by recent CPU utiliza-
tion, read/write rates and the current probability of
a memory cache hit. In this way the module achieves
a high degree of fidelity without incurring the pro-
hibitive computational cost of explicitly simulating
each 1/0.

Each subsection below describes one component of
Figure 1, including the inputs that the component re-
quires. Each component returns a (possibly randomly
sampled) processing time and an expected queue-
ing delay. Throughout the section, notation such as
iolam indicates the name of a Fortran variable, and
“ms” indicates milliseconds.

4.1 Cache
The CPU cache model has the following inputs:

Ao = overall rate of reads and writes in MB/ms;
this parameter may be dynamic (iolam).

Ary = rate at which data is reused in MB/ms; can
also view 1/Ar, as the expected time between
requests for the same data; this parameter is not
dynamic (rulam).

¢ = cache size in units of the average 1/0 size, aj/o
(avsize); in Fortran cache size is c.

Phit Pr{memory cache hit}; this parameter can

be specified or computed dynamically (phit).

Whether or not there is a local cache hit is mod-
eled as a Bernoulli (0 or 1) random variable, where
the probability of a hit, pnit, on each trial is indepen-
dent of the previous trial. This random variable is
sampled.

The modeler can specify a value for py;;, or it will
be computed by a simple Markov-process model. The

1/0 Reguest (first open, read, async write, final close,
open, sync write, close)

hit?

CPU Memory
cpu, cdelay Backplane Cache
cache, cchdel [backp

3
/ hot? hot?
Adapter Adapter Adapter
adapt, adela
A
Data Path
path, pdelay

2T\

device cache

device cache device cache

Device Device Device

device, delay

Figure 1: Conceptual View of the Unix I/O Module

Markov-process model assumes that data requests ar-
rive to cache according to a Poisson process at a rate
of A;jo0, and data are reused at a rate Ap,, with the
time between reuse being exponentially distributed.
A data quantum is pushed out of cache when it is
the oldest quantum in cache and something new is
pushed in. These assumptions allow a steady-state
value of pyi; to be calculated analytically,

Phit =1 (Ao)c
p=1—-{ —4=—
l /\ru + /\I/O

4.2 CPU
The CPU model has the following inputs:

pcpu = utilization per CPU for tasks with which I/O
has to contend (i.e., other system calls); this pa-
rameter is dynamic (crho).

k = number of CPUs (k).
Hcpu = service rate of CPU in MIPS (cmu).

Acpu = Kpicpupepu = the effective arrival rate to the
CPU in the same units as pcp, (clam).

For each task performed, the constants v and 7,
such that the total CPU processing time con-
sumed by that task is given by ¢(I/O size) = vo+

Modeling UNIX I/O in Performance Analysis 1241

(I/O size)/y1, where there are different values of
0 and 7y, depending on task and whether or not
there was a cache hit, if appropriate (in Fortran
gammaO(task,hit) and gammal(task,hit)).

1/pcache = the expected time to read the cache
buffer (cacherd), which is a function of the num-
ber of pages in a string (cachstrg) and the time
to read one page (pagerd).

Mcache = A1jo/arjo = arrival rate to the cache-buffer
queues in units of I/O’s per time (cchlam).

The model returns a total CPU processing time
and an expected total delay waiting for the CPU; the
same quantities are returned for contention and use
of the cache-buffer queues.

The collection of CPUs is modeled as an M/G/k
processor-sharing queue. Processing times at the
CPU are calculated as a deterministic function of
overhead plus a linear function of I/O size, depend-
ing on I/O task and whether or not there is a cache
hit. Expected delays waiting for the CPU are pro-
portional to the total processing time for a processor-
sharing model, and depend only on the service rate
and not the distribution (Cooper, 1981).

Contention for the cache-buffer queue is modeled
as an M/G/1 queue. The actual processing time de-
pends on whether or not there is a cache hit or miss;
when there is a hit then the time to search out the
appropriate page is sampled.

4.3 SCSI Host Adapter

The adapter model has the following inputs:
n = number of adapters (n).
n* = number of “hot” adapters (nhot).

fhot = is as measure of imbalance between “hot” and
not “hot” adapters, given as a fraction of all I/O
requests routed to the “hot” adapters (fhot).

/\adpt = arrival rate to the adapter that is used in
the current calculation in MB/ms (alam). This
value is computed as an appropriate fraction of
/\I/O-

Padpt = service rate of adapter in MB/ms (amu).

For each task performed, the constants ao and
a1 such that the total adapter processing time
consumed is given by t(I/O size) = a0 +
(I/O size)/a; (in Fortran alphaO(task) and
alphai(task)).

Whether or not the current I/O requires a hot
adapter is a Bernoulli random variable with fhot as
the probability of requiring a hot adapter. The con-
cept of a “hot” adapter is included to account for
nonuniform load across devices. If a hot adapter is
required, then

Aadpt = frotAjo/n”

otherwise
Aadpt = (1 = fhot)Aijo/(n —n")

The model returns a total adapter processing time
and an expected total delay waiting for the adapter.
Each adapter is modeled as an M/D/1 queue. Pro-
cessing times at the adapter are calculated as a de-
terministic function of overhead plus a linear function
of I/0O size, depending on 1/0O task. Since two delays
are experienced at the adapter (outbound to the data
path and inbound from the data path), the total delay
1s

9« /\adpt/#adpt -)\adpt/ﬂadpt
Q(ﬂadpt - /\adpt) Hadpt — /\adpt

4.4 Data Path

The data-path model has the following inputs:

Xadpt = arrival rate to the adapter that is used in
the current calculation in MB/ms (alam). This
value is computed as an appropriate fraction of

)\1/0.

For each task performed, the constants wp and
wy such that the total data-path processing
time consumed is given by ¢(I/O size) = wq +
(I/O size)/w; (in Fortran omegaO(task) and
omegal(task)).

Ppath = service rate of the data path in MB/ms
(pmu).

The model returns a total data-path processing
time and an expected total delay waiting for the
data path. The data path is modeled as an M/D/1
queue. Processing times are calculated as a deter-
ministic function of overhead plus a linear function
of I/O size, depending on I/O task. Since two delays
are experienced (outbound to the device and inbound
from the device), the total delay is

/\adpt/#path /\adpt/,upath

2 x =
Q(I-lpath -)‘adpt) Hpath — /\adpt

1242 Nelson, Keezer, and Schuppe

4.5 Backplane

For each task performed, the backplane model
requires constants 3y and 3; such that the to-
tal backplane processing time consumed is given
by t(I/O size) = fo + (I/O size)/3; (in Fortran
betaO(task) and betal(task)).

The backplane is modeled as pure processing time
(overhead plus a linear function of 1/O size) with no
contention (queueing). Backplane time accounts for
all transmission time down to the adapter level and
back up from the adapter level.

4.6 Device

The disk storage device model has the following in-
puts:

d = number of devices per adapter (d).
Pdnit = probability of a device cache hit (pdhit).
r = total rotation time, in ms (rotate).

Pshort = probability of a short head movement
(pshort).

tshort = time to make a short head movement and
settle, in ms (short).

tiong = time to make a non-short head movement
and settle, in ms (long).

ajjo = size of the average I/0 (avsize).
b = size of a block in the same units as ay/o.

bo = seek time + rotational latency: this value is
sampled.

61 = time to transmit data in MB/ms on a physical
read/write (deltal).

no = set-up time for I/O when a device cache hit
occurs, in ms (eta0).

m = marginal transmission time when a device
cache hit occurs, in MB/ms (eta1).

The device is modeled as an M/G/1 queue for the
purpose of calculating delay. The service time at the
device is composed of seek time, rotational latency
and transmission time when there is a cache miss: it is
composed of a set-up time and marginal transmission
time when there is a cache hit.

The seek time is modeled as a two-point distribu-
tion on {shore and tong. The expected value and vari-
ance of this random variable are used in the queueing
model, but a sampled value is returned.

The rotational latency is modeled as a random vari-
able that is uniformly distributed on the time to com-
plete one rotation of the disk. The expected value
and variance of this random variable are used in the
queueing model, but a sampled value is returned.

The transmission time for a physical 1/O is mod-
eled as a linear function of the I/O size. The size
of a block is used in the queueing model, but the
actual transmission time is returned. Specifically,
t(I/0 size) = g + (I/O size)/é;, where 6y = seek +
rotational latency.

When a cache hit occurs, the device processing time
is t(I1/0O size) = ng + (I/O size)/n:.

4.7 Task Models

The Unix I/O module can simulate the seven 1/0O
tasks described below.

1. Open an unopened file without accounting for
prefetch:

(a) CPU processing and delay; always a mem-
ory cache miss

(b) adapter processing and delay

(c) data path processing and delay

(d) device processing and delay; always a device
cache miss

2. Read

(a) determine if memory cache hit or miss

(b) if memory cache hit, CPU processing and
delay

(c) if cache miss...

1. adapter processing and delay
1. data path processing and delay
iii. device cache hit or miss

iv. device processing and delay

3. Write; write-back version with no housecleaning.
That is, only a write to cache. Includes CPU
processing and delay.

4. Close; concluding close.
(a) CPU processing and delay; always a mem-
ory cache miss
(b) adapter processing and delay
(c) data path processing and delay

(d) device processing and delay; always a device
cache miss

Modeling UNIX 1/0 in Performance Analysis 1243

5. Open an already open file. Treated as always a
CPU cache hit. Includes only CPU processing
and delay.

6. Write; synchronous version, so always a CPU
cache miss.

(a) CPU processing and delay

(b) adapter processing and delay

(c) data path processing and delay
)

(d) device delay and processing time to write to
cache

7. Close, but not concluding close. Treated as al-
ways a cache hit. Includes only CPU processing
and delay.

Values are obtained by making calls to subroutine
io as follows:

subroutine io(cp,task,size,crho, iolam,p,
$ cache,cchdel,cpu, cdelay,backp,adapt,
$ adelay,device,ddelay,path,pdelay,hit,hot)

The inputs are the configuration platform cp, the
task type (as listed above), the size of the I/O in
MB, the current input/output rate iolamin MB/ms,
and the current CPU utilization 0 < crho < 1. The
dynamic parameters crho and iolam should not be
based on instantaneous snapshots, however, since the
delay values returned by subroutine io are based on
steady-state queueing models. Rather, average values
for a recent time period should be passed. In this way,
the I/O module can reflect current load on the sys-
tem. Some experimentation is required to determine
an appropriate time window for averaging.

5 PARAMETRIZATION

In its final form, the Unix I/0O module requires two
different types of parameters: (1) those that change
with each simulation scenario or group of scenarios
and deal with the configuration of the system and
the data layout on the devices, and (2) those that
deal with the internal operating parameters of the
platform. In a multi-system test, a different configu-
ration parameter file is required for each computer
system in the model, and a different internals file
for each type of system. For example, if a system
of two HP9000s and three SPARC 2000s was being
simulated, five different configuration files would be
required and two different internals files (one for HP
and one for Sun).

The system configuration values that might change
from scenario to scenario of the model are the amount

of cache defined (in the case of the SPARC 2000 it is
0); the reuse rate of data in cache (used to calculate
cache-hit probabilities if that value is not supplied);
the effective number of CPUs (since these are multi-
CPU systems); the total number of application files
(required for calculating buffer queues); the number
of adapters and the fraction defined as “hot” (this al-
lows the model to account for heavily-used devices);
the probability of a device cache hit (very important
In response-time modeling); the transfer block size;
and the total number of devices. All of these param-
eters may be defined by the Systems Administrator in
a real system or are part of the what-if testing when
trying to design a system. The only one that requires
calculation is the probability of a device cache hit.
In our applications, the size of the I/O and the to-
tally random access patterns created a probability of
a device cache hit of near zero, and we often used
zero for this value. In cases where there are a high
proportion of records shorter than a block and a high
degree of sequential access, the probability of a device
cache hit becomes quite high. Ruemmler and Wilkes
(1992) discuss this issue in detail.

System internals are values that change only with a
change of platform. They are implemented as perma-
nent reference files that are called as needed when the
overall computing environment changes its configura-
tion. Specifically, they are matrices of values, based
on various divisions of the model: CPU, backplane,
cache manager, SCSI adapter, data path from device
to adapter, and the device. For each component of
the Unix I/O module there is a set of seven parame-
ters, one for each of the I/O tasks. Each set of values
includes a base service time and a data-size depen-
dent rate for cache miss situations and the same pair
for cache hit situations. For those elements that do
not have dependence on the task or for those elemen-
tal parameters that are not task dependent, a single
set of parameters was created.

The internal parameters for consumption of CPU,
transfer on the backplane, adapter processing and
transfer on the data path from device to the SCSI
adapter each require a parameter for the fixed de-
lay (in some cases zero) and another for the transfer
rate for calculating data-size dependent delays. In the
case of CPU processing, an additional set of parame-
ters is created to account for the differences between
memory cache hit and cache miss. There are a pair
of these values for each of the seven 1/0O operations
modeled. The CPU values are for setting up the I/O
and not for doing the cache search, which was cal-
culated separately then added to the calculated CPU
time. These parameters were obtained primarily from
the manufacturer’s literature on the system. In the

1244 Nelson, Keezer. and Schuppe

case of the CPU, estimates were made of the fixed
delays for operations other than READ based on the
amount of work required to accomplish the operation.
The amount of CPU for the READ operation was de-
termined from the benchmark data. The module is
not critically sensitive to any of these values.

Caching of I/O data is an important constraint on
the performance of the systems in reality, and there-
fore requires considerable care to be represented prop-
erly in the module. To maintain integrity of the data,
only one processor may access the cache data at a
time. This means that when the CPU consumption
of cache access and management is equivalent to one
fully utilized processor, no higher throughput is pos-
sible.

In the case of the HP9000, the cache processing
was particularly important for obtaining a good fit
of the module to the benchmark data. Early plots
of throughput response curves from the benchmark
data indicated different curves at the device level for
different configurations. We found that the curves
were essentially the same for the same number of files.
Coupling this information with the cache buffer man-
agement scheme, we were able to understand that
this effect was due to the decrease in the sequential
search time on a buffer queue. After considerable
study of the benchmark data it was found that a good
approximation for the amount of CPU time due to
cache buffer processing could be obtained via a lin-
ear function of the number of application files. The
y-intercept of this equation is the time to process a
buffer when only one application file is present, and
the slope is negative indicating a decrease in process-
ing per buffer with an increase in the number of files.
The slope is multiplied by the number of files and
subtracted from the intercept to determine the delay
per buffer. This value is then multiplied by the num-
ber of buffers in a cache buffer queue to determine
the overall delay to search a single queue. This value
1s corrected for the probability of a cache hit and the
fact that on average half of the queue is required to
be searched to find the correct buffer.

In the case of the SPARC 2000, data were found
in the benchmarks that indicated that the limit had
been reached on cache processing. This information
was used to determine the cost per I/O for cache han-
dling. This is fixed for each I/O, regardless of config-
uration, because cache in Sun systems is handled as
part of general memory. Therefore, the parameters
for calculating cache buffer management were set to
zero, and only a fixed time was used to determine the
service time and queueing for this part of the module.

The individual disk devices presented the most im-
portant and sensitive portions of the module. Disk

access is usually described by three parameters, seek
time, rotational delay, and transfer time. However, as
Ruemmler and Wilkes (1993) point out, the seek time
is not linear, and is itself composed of several parts,
acceleration, linear travel, deceleration, and settling.
They provide an algorithm based on the distance the
arm has to travel for calculating the seek time. This
algorithm depends on the distance traveled, using one
equation for less than one third of the full width of
the disk, and a second for traveling the full width of
the disk. We chose to approximate this as a two-point
probability distribution using the values for a short
seek, a long seek, and the probability of a short seek.
The short seek time was set equal to that required
to move one track. The long seek time was set equal
to the time to move the distance from the middle of
the file nearest to the spindle to the middle of the file
farthest from the spindle in the benchmark test. The
probability of a short seek (which implies the proba-
bility for a long seek) was calculated using the average
response time for a very lightly loaded disk (essen-
tially no queueing), the average rotation and transfer
times, and the short and long seek times. The module
1s extremely sensitive to this value, because it directly
affects the variance of the service time and therefore
the queueing at heavy loads. Despite the sensitivity,
once this parameter is established and when the 1/0
is distributed relatively evenly across the disk surface,
the module will work for simulations other than the
one used to create it. The values we calculated work
quite well if the short and long seeks are correctly
estimated. Thus, if the device changes or the data
layout changes greatly, this parameter should be re-
calculated. Rotational delay and transfer rates are
obtained from the manufacturer’s literature. Other
than the differences in rotational delay and transfer
rates, both HP9000 and SPARC 2000 devices used
the same calculations for disk device performance.

6 VALIDATION

Validation of the parameters was coupled with val-
idation of the module in an iterative process. The
data for validation came from the benchmarks, and
the comparisons were made to throughput-response
curves plotted from that data. The goal was to be
able to reproduce all the curves from a benchmark
run with one set of parameters. The process was
essentially trial-and-error. Multiple runs would be
made for a set parameters with varied throughput
and an empirical best fit obtained. When the behav-
tor of the module did not correspond to the bench-
mark system, further research into the details of Unix
and the hardware was done, and the module modified

Modeling UNIX I/O in Performance Analysis 1245

to account for the new findings. The process of fitting
parameters was then repeated. The module required
two modifications from the first edition, one to add
queueing behavior to the connection between the de-
vice and the SCSI adapter, and the second and more
important one to add the cache manager behavior.
Our final validation gave results that could be su-
perimposed on the HP9000 benchmark data with no
more than a 5% error at any data point.

Because of the difference in the quality of the
SPARC 2000 benchmark data when used for our pur-
poses, a fit such as we obtained for the HP data was
not possible. However, as mentioned above, the cache
processing delay could be obtained as well as the CPU
cost per READ 1/0. The manufacturer’s literature
and experience were used to complete the set of pa-
rameters for this platform.

7 AN APPLICATION

After the basic modeling concept was developed and
validated against the HP and Sun benchmark data,
the module was implemented in an existing simula-
tion model. At LEXIS-NEXIS the primary simula-
tion modeling tool used is SLAMSYSTEM. The ba-
sic simulation package has been supplemented with
about two dozen FORTRAN subroutines known as
the Data Driven Modeling System (DDMS). DDMS
was created at LEXIS-NEXIS to allow very large
models to be represented by data files and to allow
easy modification of these models. A detailed descrip-
tion of the process used at LEXIS-NEXIS is provided
by Robinson (1994).

DDMS operates by using a basic network diagram
that allows numerous options (await a resource, delay,
free a resource, return to a network diagram, etc.)
for each step in a process. The option selected is
controlled by attribute values read in from a data file.
This data file also provides all parameters required
to accomplish a step or call additional subroutines to
compute other required values.

The I/O module is a collection of three Fortran sub-
routines, and calling subroutine io one time pro-
vides estimates of the queueing delays and resource
consumption for one I/O process. All information
passes between subroutines via calling arguments and
common blocks. To make the I/O module work in
the SLAMSYSTEM/DDMS structure, it was neces-
sary to incorporate these three subroutines into this
structure by specifying five new attributes to carry
additional information to the I/O subroutines.

The simulation model chosen to test the Unix I/O
module was one that had been developed to provide
capacity estimates for a new product. This new prod-

uct requires that a large number of documents be
processed and stored and that sets of relevant docu-
ments be prepared and shipped to customers each
day. When the number of I/O’s per document is
scaled up to the number of documents and customers
processed per day, we obtain a very large number of
I/O’s, on the order of 1,000,000 per day. These I1/Os
are accomplished on two servers, an HP hosting a
Sybase database and a Sun acting as a file server.
Four different scenarios representing different lev-
els of business volume were run for both the old I/O
method and the new I/O module. While each run of
the simulation using the new I/O module took longer
than the corresponding run using the old I/O method,
the time delays and resources consumed as generated
by the new Unix I/O module were much more real-
istic. For example, the time required to process a
batch of documents was now sensitive to the over-
all loading (utilization of the CPUs) of the system.
Formerly, I/O processing times were assumed to be
independent of current CPU utilization rates.

8 DISCUSSION

The potential for the Unix I/O module is substan-
tial, since the simulation of every 1/O to the de-
tail accounted for in the module requires prohibitive
amounts of simulation execution time. Because the
module is parameter-driven, considerable attention
must be paid to establishing the parameters. Many
of the parameters may be obtained from manufac-
turers’ literature. However, for critical parameters,
thorough testing and understanding of the workings
of the operating system and the hardware is required.
The most critical areas are cache management and
the disk device. In our experience, a combination
of manufacturers’ literature, a detailed description of
the operating system (Lefller, et al. 1990), and care-
ful analysis of benchmark data to understand cache
management was required. Ruemmler’s work (1992,
1993) provided the needed information on modeling
the physical devices.

To fully and adequately parametrize the module,
good benchmark data is essential. We were fortunate
to obtain the HP9000 benchmarks, since they were
designed for a different purpose. In the case of the
Sun data, we obtained usable data but not as com-
plete as the data for HP. We strongly recommend that
specially designed benchmarks be commissioned for
proper parameter determination. The characteristics
of a good benchmark include systematically varied
loads and configurations, with careful measurements
of CPU utilization, response times, I/O rates, ser-
vice versus user time, interrupt counts and memory

1246 Nelson, Keezer, and Schuppe

utilization.

When the module was tested by including it in the
DDMS model, the run times for a single simulation
of each scenario increased by 33-70%. However, the
I/O module replaced two lines of SLAM code with a
large subroutine. Furthermore, the results obtained
with the Unix I/O module could not have been ob-
tained in any reasonable computation time with a
fully simulated I/O model. There are also a num-
ber of improvements that could be made to increase
the efficiency of the module in the DDMS environ-
ment, most of them focusing on the interface between
DDMS and the module. We estimate that about 50%
of the current increase in run time could be elim-
inated, resulting in a 15-35% increase in run time
over deterministic methods.

9 SUMMARY

A hybrid queueing-simulation module was developed
for modeling Unix I/O. This module is parameter-
driven and allows great flexibility in modeling both
varying system hardware configurations and varying
workloads. We found that cache management and
the physical disk devices were the most important
factors influencing the accuracy of the module. We
also found that manufacturers’ literature could pro-
vide many, but not all, of the necessary parameters.
The remaining parameters had to be obtained by
iterative validation and modification of the module
against benchmarks. As might be expected, bench-
marks are a vital link, and should be custom designed
and run for this purpose. The hybrid module runs
longer than a deterministic model of I/O, but pro-
vides results that could only be obtained from pro-
hibitively long simulation runs.

REFERENCES

Alexander, T. B., K. G. Robertson, D. T. Lind-
say, D. L. Rogers, J. R. Obermeyer, J. R. Keller,
K. Y. Oka, and M. M. Jones, II. 1994. Corporate
business servers: An alternative to mainframes for
business computing. Hewlett-Packard Journal 45:
8-30.

Cooper, R. B. 1981. Introduction {0 queueing theory,
2d ed. New York: North Holland.

Leffler, S. J., M. K. McKusick, M. J. Karels, and
J. S. Quarterman. 1990. The design and im-
plementation of the 4.35D Uniz operating system.
New York: Addison-Wesley.

Robinson, J. N. 1994. Capacity and performance
analysis of computer systems. In Proceedings of the
1994 Winter Simulation Conference, ed. J. D. Tew,

S. Manivannan, D. A. Sadowski, and A. F. Selia,
34-41. Institute of Electrical and Electronics En-
gineers, Piscataway, New Jersey.

Ruemmler, C., and J. Wilkes. 1992. Unix disk ac-
cess patterns. In USENIX Winter 1993 Technical
Conference Proceedings, San Diego, California.

Ruemmler, C., and J. Wilkes. 1993. Modeling disks.
HP Laboratories Technical Report HPL-93-68, re-
vision 1.

SPARCcentera 2000. 1992. Technical White Paper,
Sun Microsystems, Inc.

AUTHOR BIOGRAPHIES

WILLIAM S. KEEZER has been with LEXIS-
NEXIS for ten years and is currently a Staff Sys-
tems Engineer focusing on mainframe system storage
management and performance issues. He has also
done considerable work at LEXIS-NEXIS on main-
frame and Unix platform application and communica-
tion performance. Before coming to LEXIS-NEXIS,
he was an in-house consultant on OLTP system per-
formance problems for the Data Pathing Division of
NCR. He holds B.S. and Ph.D. degrees from the Uni-
versity of Oklahoma, and is a member of ACM and
CMG.

BARRY L. NELSON is an associate professor in
the Department of Industrial Engineering and Man-
agement Sciences at Northwestern University. He is
interested in the design and analysis of computer sim-
ulation experiments, particularly statistical efficiency,
multivariate output analysis and input modeling. He
1s the simulation area editor for Operations Research
and will be Program Chair for the 1997 Winter Sim-
ulation Conference.

THOMAS F. SCHUPPE is the Manager of Sys-
tem Integration at LEXIS-NEXIS. He received a B.S.
in Mechanical Engineering from the University of
Wisconsin, an M.S. in Systems Engineering from the
Air Force Institute of Technology, and a Ph.D. in Op-
erations Research from The Ohio State University.
His primary research interest is in simulation model-
ing of complex man-machine systems. He is currently

a member of INFORMS and SCS.

