
Proceedings of the 1996 Winter Simll.lation Confer-ence .
ed. J. M. Charnes, D. J.]vIorricc, D. T. Brunner, and J. J. Swaln

SIMULATOR FOR THE EVALUATION OF DISTRIBUTED NETWORK-SYSTEM PERFORMANCE

Toshio Komatsu
Yukihiro Nakamura

NTT Information and Communication Systems Laboratories
Nippon Telegraph And Telephone Corporation

1-2356 Take Yokosuka-shi Kanagawa 238-03 JAPAN

ABSTRACT

The INSYDE siInulator was developed as a tool for
estimating the perfonnance of large-scale, complex
computer systems using graphical type figures to
describe system operations. This paper provides an
overview of an enhanced version of INSYDE that can be
applied to distributed network systems. The model
description method and a number of application
examples are also presented. A major challenge in
simulating distributed network systems that interconnect
multiple computer systems over a network is how to
describe the intricate, complex model conditions of
computer systems including task processing and
interrupts on the one hand, and network-related model
conditions (e.g., specifying protocol, media access
method, congestion control, broadcast communication,
and so on) on the other in the most parsimonious fashion
with the least amount of modeI description. In this work,
the complex and intricate conditions of distributed
network systems are simply ,described by creating a
protocol media access method library, realizing packet
splitting/merging and broadcast communication functions
as nodes, adding system infonnation that can be checked
for congestion control, and multiplexing task processing.

INTRODUCTION

The simulator INSYDE was developed as a tool for
evaluating the perfonnance of large-scale, complex
computer systems. The simulator has already been
applied to estimate the perfonnance of a number of
actual system developed in-house, and the evaluation
results were reflected in the system designs. Focusing on
the flow of transaction processing, fNSYDE describes
system operations as processing flows in a flowchart-like
fashion. Remaining open to modify and extend the model
later, hardware and software resources conditions are
separated out from the process flow and defmed in tab Ie
format. The descriptive power of an earlier version of

1222

Junro Nose

NTT Software Corporation
4-40 Hon-cho Naka-ku

Yokohama-shi Kanagawa 23 1 JAPAN

INSYDE presented at the 1994 Winter Simulation
Conference (See Komatsu, Nose, and Wakayama 1994)
has been markedly enhanced by providing support for
indirect indication of upper level equipment by files,
introducing variables to node parameters, and by
implementing definitions of variables in table fonnat.

Now in our most recent work, we have extended
INSYDE giving it the capability to very simply represent
descriptions of complex and intricate conditions of
distributed network systems.

One of the major difficulties of simulating distributed
network systems that interconnect multiple computer
systems across a network is how to represent intricate
and complex computer model conditions (inter-task
processing and interrupts) and network model conditions
(specifying protocol, media access method, congestion
control, broadcast communication, etc.) simply with the
least amount of description. When computers are
deployed in distributed topologies, this raises the issue
that, even when the transaction flows are identical, if the
processing computer systems are different, then a
different number of process flows must be represented.

The extended version of INSYDE also represents the
operations of distributed network systems as flowchart­
like process flows, with the distinguishing characteristics
of resources, number of distributed units, performance,
and so 00, represented in a graphical fonnat and using
tables. However, four extensions had to be implemented
before network-specific conditions could be represented
as process flows in the same way as computer systems:
(1) CSN1AICD(carrier sensitive multiple access with
collision detection), FDDI(fiber distributed data
interface), and other lower-layer protocol media access
methods were organized as a library.
(2) Network-specific processes including packet
splitting/merging and broadcast communication functions
were defined as nodes.
(3) System information accessible within fNSYDE was
added to make it possible to describe congestion control,
and the abilities to dynamically modify device

Evaluation of Distributed NetT,vork-S.ystem Performance 1223

performance and to tenninate transactions were
implemented as nodes.
(4) Finally, the ability to represent buffer controls and
other functions within devices was implemented.

Moreover, in order for the new version of rNSYDE to
represent distributed topologies with relatively few
process £lavIs, inter-task processing and variable
defmition capabilities were extended. Finally, INSYDE
was extended so it could represent various
communication processes between computer systems.
Implementing these various methods, we ended up with
73 types of nodes for representing process tlows, and 8
types of defmition tables, giving us the ability to simply
describe the complex and intricate conditions associated
with distributed network systems using a combination of
process flows and definition tables.

In the network field, there are a number of fairly good
tools available that are capable of representing the
minute conditions of netvlorks in graphical and tab Ie
fonnat, but when computer systems are factored in
together with networks, it is exceedingly difficult to
represent a detailed internal process model of a computer
system (See Bharath and Kennani 1984, Marsan et a1.
1990, and Dupuy et a1. 1990). There are quite a number
of simulation tools available in the computer field as well,
but none of these are very good at representing some of
the most characteristic processes of computers such as
interrupts, inter-task processes, and so on. Of course,
computer-specific tools are also incapable of
representing network model conditions (See Okada and
Tanaka 1991).

These were some of the considerations motivating our
efforts to extend the lNSYDE system platfonn. The rest
of the paper will be organized as follows. Section 2 will
outline some of the unique attributes of distributed
network systems. Section 3 'will layout the issues
involved in model description, which will be followed in
Section 4 with the approach to model description that we
have adopted in the extended version of INSYDE.
Finally, Section 5 will present a number of application
examples and the results that were achieved using the
enhanced INSYDE simulator.

2 DISTINCTIVE FEATURES OF DISTRIBUTED
NETWORK SYSTEMS

A typical distributed network system configuration is
illustrated in Fig. 1. Let us brietly consider four
distinctive features of this topology in terms of how these
features affect simulation.
(1) Topologies in which multiple computer system are
interconnected by a LAN generally include a range of
devices including processors and file storage devices and
various software resources such as tasks, tables, and files.

In addition, the variety and number of these hardware
and software elements is usually quite large.

Com uter system

/"--.......----"
Network

\--..-...--
ws

FDDI: Fiber Distributed Data Interface
WS Work Station
~fEM: Main Memory
CPU Central Processing Unit
CH Channel Device
DK Disk Device

Figure 1: Overview of Distributed Network System

(2) The transactions flowing through networks and
computer systems assume many different varieties and
are multiplexed. And even when the same transactions
are being processed, the nwnber of resources accessed
and the amount of processing will vary depending on the
nature of the transaction.
(3) There are also various distinctive kinds of processing
associated with networks such as processing associated
with protocols, routing, broadcast communications,
congestion control, and so on. Other kinds of distinctive
network-related processing support inter-center
communications.
(4) There is distinctive processing in computer systems
to handle interrupts, exclusive control, inter-task
communications, and other functions.

3 MODEL DESCRIPTION REQUIREMENTS

Having looked at the distinctive attributes of network
systems, here we will list some of the requirements in
order for INSYDE to simply represent the intricacy and
logical complexity of networks and distributed network
systems.

3.1 Requirements to Represent Networks

(I) Integrate the network model descriptive method with
that of the computer model.
(2) In order to reduce the number of processing flows, if

1224]{omatsu, Nakanlura, and Nose

the processing flows are the same. make it possible to
represent them as a single processing flow, even though
the number of LAN devices being accessed and amount
of processing may vary.
(3) Enable LAN-specitic functions such as retry control
after collisions, congestion control, and broadcast
communication to be represented by process flows.
(4) Enable buffer control and other detailed device
internal operations to be described.

3.2 Requirements to Represent Distributed Systems

(1) Integrate the distributed network model descriptive
method with that of the computer model.
(2) If processing flows are the same, make it possible to
represent those flows as a single processing flow, even
though the hardware and software configurations making
up the computer system are different.

Table I: Functions of Nodes for Processing Flow Description

Type of Node tNwnber Functions

Time delay 9
These delav rransactions with resources in
Ithe reserved or unreserved status.

Stal1. End
lThese mdic~He the begmnang or end of
!processing tlow, For terminanon,continuous

8 Irestart and quc:umg to other processes IS

1P0sslble,~xcc=pc when the transactIon is
k1e1e(ed.

tuncondiuonal branching and branchtng
lBranch 14 ~ccord.ing to vanous conditions is possible.

Ie onditlons can be set for the work Mea of
w.Jch tTJnC\acrion or variahle etc

Processing lThese rransfer proceSSing berween system
Concrol Transfer 9 !processes and task processes or berween

ask orocesses,

Resource :These handle resource reservation and

management 13 elease. Multiple rc:sources can be reserved
lOr released simultaneously.

rT"hese split transactionS into multiple

Splining.
tprocesses that may proceed in the same

8
kiireetion or In different directions. It is

Merging pOSSible ro ~ecify that the split transaction
[be complece reiDtegr.1ted or partiaJly re-
~nterred.

LAN 4 rrhc:se split/merge packets. support broadcast
ommuniCJoon.etc.

User I lThis is defined by the user.

Macro 2 [ThIS calls a pre-defined macro process flow.

Measurement 3 rI"hese collect stanstlca1 data over a freely
fspeclfied measurement Interval.

Connection Node 2 !These mruca(e the processmg tlow
~nrerconnecaon on mput screen.

... DISTRIBUTED NETWORK SYSTEM MODEL
DESCRIPTION METHOD

4.1 l\'lodeling Overview

In order to integrate the representation of networks with
that of computer systems, we focus on the transaction
flow of system operations, and describe them as
processing tlows. Processing tlows are described in two

tiers: as system processing flows covering an entire
process from the time a transaction is created until it is
tenninated, and as groups of task processing flows that
execute individual work processes.

Processing flows are described through the use of 73
different kinds of nodes as shown in Table 1. In addition,
to facilitate unified modification and correction of
models, the full range of model conditions including load
conditions, device conditions, task and other software
conditions, and LAN conditions are defined using eight
tables that encompass types of items.

4.2 Network Description Method

In the extended version of fNSYDE, lower-layer
protocol network descriptions are provided in the fonn of
a library, while higher-layer protocol network
descriptions are supported with additional functions
enabling processing flows to be simply described.

,,(.2.1 Creating a Lower-Layer Library

The various functional capabilities of the protocol media
access method including CSN1AJC0, token passing, and
FDDI will be provided in the form of a library. Figure 2
shows that the access method is not directly described in
the LAN node, but rather is defmed using a LAN
definition table. The detailed parameter items will differ
depending on the access method.

f SYS1" LAN-I, 20KE,YES

f ACCM
6 END

7 WW-XX~YY,ZZ: Media access and packet splitting
WW: LAN name
~X: LAN number
YY: Data length
ZZ: Specifies packet merging

X ACCM: Combines packet segments of the same generation

Figure 2: Example of Using a LAN Library

(1) CSMA/CD : The main defming parameters of the
CSN1AJCD method are slot size, frame interval, number
of retransmissions, and cable length. When a frame is
sent, frame collisions are detected. If a collision occurs,
the frame is retransmitted a prescribed number of times
according to the prescribed algorithm. If the number of
retransmissions exceeds the prescribed value, statistical
processing is invoked, the number of retransmissions is
reset, and the frame is resent

Evaluation of Distributed Net,,'ork-S.ystem Performance 122S

4.2.3 Defining Detailed Device Configurations

Figure 4: Example of Routing Description

(4) Congestion Control : In order to simply represent
congestion control in a process flow, two additional
things are required: system information that can be
referenced, and nodes for terminating and dynamically
modifying the performance of devices. These capabilities
are illustrated in Fig. 5 where a stay situation is observed,
device perfonnance in incrementally modified, and the
transaction is tenninated.

x SET(ATR 1),?DLEG :Set data length in the call work area
XX : Resource name
& : Display of variable
YY : Resource number
ZZ: Processing amount

• XX.&YY,ZZ : Time delay at the specified resource
ATR 1 : Transaction work area
? DLEG : Function indicating packet length

o WW-&XX(YY,ZZ) :Task processing request

WW : Host name
x,,-X : Host number
YY : Task queue name
ZZ : Task name

*ENTER-l : Point of return from task processing

If &NW=l at a 10%
probability, &NR= 1

Variable Definition Table
I

&NW Probability &NR

1 10 1

2 90 2

3 30 3 ~

a router, the current packet length for each transaction is
set by the SET node.
(3)Broadcast Communication: Broadcast
communications can be represented using the PARA,
BROAD, and SPLT nodes, which correspond to different
broadcast topologies. For example, where there are
relatively few broadcast destinations, a topology can be
represented with a branch splitting off at the PARA node.
Or, in cases where there are many broadcast destinations
and a simple flow is involved, the topology can be
described with the BROAD node. In cases where
processing will continue after the broadcast, a transaction
that is first split and then continues in the same direction
can be represented with the SPLT node.

\J SYS

~ WS-o/~NW,4KS
1
~ LAN-l,20KB,YES

LSET(ATRI),?DLEG

i ROlJTER-&NRATR1

LA1~-&2.,NO

I
x Acetyt9HOST-&NH(QT,TASK)

* ENTER-l
I

6 END

4.2.2 Higher-Layer Capabilities

? SYS;-- t LAN-I,20KB,YES

i-1 ON,2KB,YES
~-x ACCMf ACCM

6. END

x orv,)G~YY:DIV t x..,.X, YY: Divides a packet
XX: Packet partioning size
YY: Specities packet merging

Figure 3: Example of Nested Packet SplittinglNterging

(2) Routing : In cases where the processing flow is the
same (i.e., where the same kinds of devices are passed
through the flow), Fig. 4 shows that the routing can be
represented by a single process flow and vanab Ie
definition tables even though the number of devices
accessed and the amount of processing differs. One will
observe in Fig. 4 that, in order to process split packets at

Higher-layer capabilities that can be represented in the
extended version of INSYDE include the following.
(1) Packet SplittinglMerging : The LAN node not only
has media access capability, that is also endowed with a
packet splitting function. The DIV node is also supported
that only does packet splitting. The user can then specify
whether packets split by either node are to be merged by
an ACCM node. Using these nodes, packet splitting and
merging can thus be represented in nested fashion as
illustrated in Fig. 3. Since generation management is
imposed when packets are split, there is no need to
describe merged packets at the ACCrvt node in terms of
merge packet number and generation parameters.

(2) Token Pass jng : Both token bus and token ring
topologies are supported by INSYDE's library. Here, the
main defming parameters are THT (token-holding time)
and the repeat extension bit. In order to allocate tokens in
the proper order in the LAN interconnection node, the
hierarchical position of the interconnection node must be
specified. INSYDE approximately allocates tokens to
interconnected nodes in the order in which LAN nodes
are execured.
(3) FDDI : The token allocation rules and link delay
time-related provisions are largely the same as in • for
token passing. In addition, a TRT (token rotation time)
value is employed to support both synchronous and
asynchronous transmission. In order to achieve efficient
transmission of files and ~ther data, rNSYDE provides
that the token is not released until all the data have been
transferred.

1226 Komatsu, Nakamura, and Nose

Figure 5: Example of Congestion Control Description

\J SYS
I

IF(?QUSE(RTR·l,Q..2) > 20) ; Condition determination

TIF(?QUSE(RTR-I,Q-2) > 40)

I
X SPEED(RTR),4rvm/S X CLRQ(RTR·l,Q-2)

6. END1END 1END

?QUSE(XX,YY) : Function indicating use state
XX : Device name
YY : Device queue name

X SPEED(XX),YY : Modify device perfonnance
~X : Device name
YY : Performance value

X CLRQ(XX, YY) : Reduce queuing transactions
~"X : Device name
YY : Devise queue name

System processing flows \J SYS

6I HOST-&NA(Q~

'V SYSI ~ I TASKA·&NT)

I * ENTER-I

o HOST(Q~TASKA) 6HOST-&NB(QB,I* ENTER-l I TASKB-&NB)

? * ENTER·2

HOST(QB,TASKB) 1END

* ENTER-2
Variable Definition Tables

1END I
t--

variables in table fonnat, and so on (See Komatsu, Nose,
and \Vakayama 1994). Building on this descriptive
approach, we have extended the INSYDE environment
to support multiple computer systems in distributed
topo fogies as fo Ilows.
(1) Resource Identification Method
In the majority of cases where the computational load is
distributed over a distributed computer system, each
interconnected computer exhibits the same kind of
processing flow. In order to reduce the number of
processing flows in cases such as these, we have
identified distributed equipment, tasks, tables, and other
resources with a resource name and a resource number.
Although the number of configured devices, the file
configurations, and the number of tasks will vary for
each computer system, and even though the processing
computer systems will differ depending on the
transaction, Fig. 7 shows that the processing flow can be
represented by a single processing flow and set of
variable defmition tables.

Output

~

Device

InPEffij EEEEer
Queuing chamber---

Input

~

In the process of investigating a new protocol or
configuration of a router, bridge, switch, or other piece
of equipment, there are many cases where a researcher
wants to model the internal aspects of a device in detail.
Figure 6 illustrates that a range of device characteristics
can be easily defined with a set of queuing compartments
and corresponding device defmition tables. The
management of input and output buffers can then be
represented using the tables.

~
Q=co

P=1

c=J
Q= 10
P=2

Process

N=2

Host transfers = 2 times

(Old distributed model
descriptive method)

(Extended version
descripti ve method)

Q : Queuing capacity
P: Device acquisition priority
N: Degree of multiplexing

Figure 6: Example of Detailed Device Modeling

4.3 Distributed Network Description Method

In earlier work we significantly enhanced the descriptive
power of INSYDE for modeling computer systems by
indirect indication of upper level equipment by files,
introducing variables as node parameters, defining

Figure 7: Reducing the Number of Processing Flows

(2) Communication Between Computer Systems
Since communications between computer systems
involves communications moving in both directions, two
types of communications are supported in the extended
version of INSYDE. Cases where a response is required
from the recipient of the communication and where no
response is required are represented by LINK nodes and
SEND nodes, respectively. Since each and every

Evaluation of Distributed Network-S~ystemPerformance 1227

communication is controlled by the initiator of the
communication, there is no need for the response
destination to be represented as a parameter in the LON
node which indicates that a response has been returned to
the communication initiator.

5 APPLICATION EXAMPLE

5.1 Model Conditions

We applied the extended version of INSYDE to a
distributed network system having the same kind of
topology as sho'NTl schematically in Fig. 1. The main
conditions of the model were that the distributed system
interconnected eight computers that were concurrently
executing ten different kinds of jobs. Here we assume
that the same kind of work would produce the same
processing flow. Among the various kinds of work that
were perfonned, the processing flow of one of the jobs is
briefly described as follows.

A transaction was generated at a workstation. The
transaction was divided into packets and sent via
Ethernet, router, and FOOl to host computer system
HOSTn where the packets were reassembled. The
destination HOST varies depending on the nature of the

transaction. Here n signifies the number of the HOST,
and the transaction is processed by transferring the task
from TASK 1 to TASK2 at HOSTn. After the processing
at HOSTn is completed, the packets are again split up
and transferred to HOSTm over an FOOl link for further
processing. Here, the value of m varies depending on
HOSTn and the nature of the transaction. After the
processing is completed, the transaction is terminated.
The processing of each task involves CPU processing
and file processing. Here, we have simplified the actual
flow which was longer and more complex in order to
facilitate the explanation.

5.2 Example of Model Description

As an example of the model description, portions of the
system processing flow and task processing flow
representing the job described in the previous section are
shown in Fig. 8. In the workstation generating the
transaction, since the device numbers will vary
depending on the nature of the transaction, it is defined
by variables. Descriptions are omitted, but since the
HOST number, the task number, and so on are described
using variables, the variables must be defined.

System processing now Task Processing Flow in HOST

V TASK1

\7 TASK!

6CPU. [OKS

, DK-&NA~ 4KB

~l ENQ(DQ, TASK2-&B)

1 END '

YSYSI

TWS-&NWS. 4KS

f LAJ."i-&L1, 20KE. YES

TSET(ATRl), ?DLEG

TROUTER·&R..ATRI

f LAN:&Ll. laKE. YES

x ACCM
I

>.< ACC~l

~ HOST-&Hl(DQ. TASKI·&NTl)

~ ENTER· I ~ ••••••..••I L-.-- ---'

~ LAN-&Ll, IOKB. YES
I
x ACCM .•••••~
• HOST-&H2(DQ. TASK2-&NT2) ."

~ ENTER·2 ~
~ END

o cpu.xx :CPU processing time, transaction c::xtension
XX : Processing amount

X ENQ(XX.YY·ZZ) : transfer of task processing
XX : Task queue name
YY : Task name
ZZ : Task number

Figure 8: Example of Processing Flow Description

1228

5.3 Application Results

Komatsu, Nakamura, and Nose

6 CONCLUSIONS

Although we are not able to generalize since the results
in any particular case will differ depending on the model
conditions, as a broad indication we will compare results
using the old version of INSYDE designed for computer
systems and the new descriptive method outlined here in
representing the work out! ined above in Section 5. 1.

5.3.1 Reducing the Processing Flow Number

Since there are two transfers to the host, the system
process flow number described by the old version is
given by the number of jobs X the number of hosts X

the number of hosts, or 10 X 8 X 8 = 640. In the
extended version of INSYDE on the other hand, since
the host number is defined by variables, the transaction
can be tenninated with a system processing flow number
equivalent to the job number of 10. Of course, the
variable definitions have to be added to this. Since there
are transfers of task processes, the task processing flow
number using the old version is given by the number of
jobs X the number of hosts X the number of hosts X

the number of times the task processing is transferred =
1,280. In the expanded version, using variable definitions
as in the previous exampIe, the transaction can be
terminated with a task processing flow number equal to
the number of jobs x the number of times the task
processing is transferred = 20. Although variables must
be defined in order to reduce the processing flow number,
and this increases the complexity somewhat, the
variables are represented in a table fonnat which reduces
the complexity.

5.3.2 Number of Processing Flow Nodes

In the older version of INSYDE, packet splitting and
merging must be represented using combinations of
existing nodes. In cases where the processing amount is
adversely affected by variables, programming is required
to effect the splitting, and this complicates the
description. Representing the protocol media access
method also becomes more difficult. In the extended
version of rNSYDE, however, these various aspects can
be represented using a small number of nodes; namely,
LAN, DIY, and ACCrvt nodes.

5.3.3 Easy Visualization of Processing Flows

Although variable defmitions are added in the extended
version of INSYDE, there are fewer tlows and fewer
nodes per processing flow, which makes the extended
version process flows much easier for users to visualize.

This paper has presented an overview of INSYDE, a
powerful simulation tool for evaluating the perfonnance
of large-scale, complex distributed network systems
using graphical figures and tables to represent system
operations. We have also discussed the model
description method and an application example. The
extended version of INSYDE greatly simplifies the
representation and the amount of description that is
required to represent the complex and intricate
conditions of distributed network systems by creating a
protocol media access method library, realizing packet
splitting/merging and broadcast communication functions
as nodes, adding system information that can be
referenced for congestion control, and multiplexing task
processing.

The extended version of lNSYDE not only provides a
powerful tool for modeling and representing distributed
network systems, it also features an extremely user­
friendly man-machine interface. This user friendliness,
for example, pennits users to input other data outside of
the actual numerical values and resource names with the
click of a mouse, or to use the mouse to select a resource
name that was previously defmed as a table from a list.

We intend to follow up on this work by expanding the
media access topology library and by developing other
simple, intuitive simulation tools incorporating the
powerful capabilities of fNSYDE.

ACK1~OWLEDGMENTS

The authors gratefully acknowledge the support and
encouragement of their colleagues over the span of years
that the INSYDE simulator was in development. The
also express their appreciation to their coworkers for
valuable discussions in formulating the model conditions
of actual systems.

REFERENCES

BHARATH-KUMAR, K., and P.KERMANI. 1984.
Performance Evaluation Tool(PET): An Analysis
Tool for Computer Communication Networks, IEEE
lASC, VoI.SAC2, No.1: 220-225.

DUPUY,A., J.SCHWARTZ, Y.YEMINI, and D.BACON.
1990. NEST:A Network Simulation and Prototyping
Testbed, COlvllv/UN/CATION OF THE ACM, Vo!.33,
IVo.l0: 64-74.

Komatsu,T., J.Nose, and H.Wakayama. 1994. Model
Description in the INSYDE Simulator for Evaluating
Large-Scale Computer System Performance,
Proceedings of the 1994 Winter Simulation
Conference: 1272-1289.

Evaluation of Distributed Netlvork-S~ystemPerformance

MARSAN, fv1.A., G.BALBO, G.BRUNO, and F.NERl.
1990. TOPNET:A Tool for the visual Simulation of
Communication Networks, IEEE JSAC, Vol.B, No.9:
1735-1747.

Okada, Y., and Y.Tanaka. 1991. FES:A Toolkit System
for the Development of Visual Interactive Simulators,
Trans. fPC Japan, Vol.J2. No.6: 766-776.

AUTHOR BIOGRAPHIES

TOSHIO KOMATSU is a Senior Research Engineer in
the NTT Infonnation and Communication Systems
Laboratories. He received B.S. degree in 1972 and M.S.
in 1974 in electrical engineering from Kyushu Institute
of Technology. Since joining NTT in 1974, he has been
active in R&D on computer systems hardware
architecture and computer systems perfonnance
evaluation techniques. He is currently interested
especially in modelling and analyzing techniques and
tools for distributed computing systems. He is a member
of the Information Processing Society of Japan.

JUNRO NOSE is a Senior Manager in the Productivity
Innovation Promotion Headquarters at NTT Software
Corporation. He received B.S. degree in 1967 and M.S.
in 1969 in electrical engineering from Kobe University.
He joined NTT in 1969 and has been active in R&D on
fault diagnosis technique, videotex communication
system and systems evaluation techniques. He joined
NTT Software Corporation in 1993 and is now
responsible in the systems evaluation systems and
services. He is a member of the Infonnation Processing
Society of Japan.

YUKIHIKO NAKAMURA is an Excutive Manager in
the NTT Information and Communication Systems
Laboratories. He received the B.S., M.S., and Ph.D.
degrees in Applied Mathematics and Physics from Kyoto
Univercity in 1967,1969 and 1995 respectively. He
joined NTT in 1969, from 1969 to 1980, he was engaged
in R&D on computer systems hardware architecture,
and since 1981 he has been engaged in R&D of high­
level synthesis technology for parallel architecture design.
He is a member of the technical committee of the
ICCAD, ED&TC, ISSS and ASP-DAC.

1229

