Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

SIMULATING LYME DISEASE USING PARALLEL DISCRETE EVENT SIMULATION

Ewa Deelman
Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180

ABSTRACT

Lyme Disease affects many people in the northeast-
ern United States. One of the most important mech-
anisms that sustains the epidemic is the interac-
tion between white-footed mice (Peromyscus leuco-
pus) and deer ticks (Izodes scapularis). When mice
move around in their territory they carry diseased
ticks to new locations. Our system simulates the dif-
ferent developmental stages of the tick through its
active spring/summer period. The system uses the
optimistic protocol for Parallel Discrete Event Sim-
ulation. In this paper, we present the model of the
spread of the disease. We describe how we parallelize
the problem, and we sketch a new global virtual time
algorithm used in our system. We present perfor-
mance benefits resulting from a parallel platform.

1 BIOLOGICAL OVERVIEW

Lyme Disease is caused by a spirochete (Borrelia
burgdorferi) which is most commonly present in ticks
(Barbour and Fish 1993, Miller et al. 1990). When an
infected tick feeds on an animal or human, the spiro-
chete may be transferred into the host’s blood stream,
causing an infection. Since the ticks are practically
immobile, the spread of the disease is driven by their
mobile hosts, such as mice and deer. An infected tick
might infect a mouse, which in turn may infect an
uninfected tick at a new location.

The life cycle of ticks encompasses several stages
over a period of two years. The eggs hatch in the
summer and become larvae. If a larva is successful
in feeding on a host, it molts into a nymph. The
nymphs that survive the winter, and that are able to
find a blood meal during the spring, molt into adults.
Adult female ticks deposit eggs. Ticks are assumed
to hatch uninfected. The ticks in their larval and
nymphal stages prefer to feed on mice whereas the
adults prefer deer. Ticks that are unable to find a

Thomas Caraco

Department of Biological Sciences

State University of New York at Albany

1191

Albany, NY 12222

uninfected
ticy lawval Gck Y_ﬁection

infected

nymphal tick

irgfe‘cbt\ unifected)/tiCk bite
mouse

Figure 1: Infection Cycle

host die off. Since the mouse-tick interaction is at
the heart of the Lyme disease cycle, our simulation
is currently modeling only mice and ticks (Figure 1).
The duration of the simulation is 180 days, starting
in the late spring. This time is the most active for the
ticks and mice. Mice, during that time, are looking
for nesting sites and may carry ticks a considerable
distance (Ostfeld et al. 1996).

2 SIMULATION MODEL

Our goal is to understand the mouse-tick interaction
at the lowest level, so we treat mice as individu-
als. We have chosen to use discrete event simulation
(DES), because it lends itself well to individual-based
modeling (Deelman, Caraco, and Szymanski 1996).
It allows one to model the behavior of an individual
through events that comprise the individual’s life his-
tory. DES is also appropriate because of the temporal
and spatial aspects of the physical system. We might
have an area where there are no ticks or mice, and
therefore no events. Time-step simulation methods
might unnecessarily have to check the “empty” areas
for activity. Also, DES can progress through simu-

1192 Deelman, Caraco, and Szymanski

lated time quickly during episodes where the simula-
tion objects are practically inactive, such as during
the winter months.

Mice, as mentioned, are treated as individuals.
We discretize the space, which results in a two-
dimensional lattice, wrapped in both directions. The
node size is assumed to be the size of a mouse home
range (400m?). Ticks and mice can be present at
any node of the lattice. Ticks, because of their sheer
number (as many as 1200 larvae/400m?, Ostfeld et
al. 1996), are viewed as background. Ticks are im-
mobile. Mice move as a result of the occurrence of a
Move Event. Other events associated with mice are:

1. Disperse Event, the mouse starts looking for a
nesting site. This event triggers a new Move
Event.

2. Kill Event, the mouse is removed from the sim-
ulation.

3. Tick Bite, when a mouse is in an area occupied
by ticks, the mouse will be bitten by a tick with
a predefined probability. The type of bite (larval
or nymphal) depends on the type of ticks present
in the area. When this event occurs, a number of
ticks are removed from the location and placed
on the mouse. This event creates the event Tick
Drop, since after a blood meal, a tick drops off.
If the mouse moves out of the area before the
ticks drop off, the ticks will be deposited at the
new location during the Tick Drop event.

4. Tick Drop, the ticks that are present on the
mouse drop off. We assume that ticks molt just
before the drop. Larvae that fed on the mouse
drop off as nymphs. If the type of ticks on the
mouse were nymphs, they drop off as adults.
Also, a new Tick Bite of the same type (larval or
nymphal) is triggered.

When a mouse starts moving in a certain direction,
it will continue moving in the same direction until it
settles at a nesting site. With each move, the mouse’s
survival probability diminishes. If a mouse cannot
find an empty site within a certain number of steps, it
dies. A mouse can also die of other causes, which are
modeled by the random selection of the life span for
each individual. Figure 2 shows a diagram of possible
events associated with a mouse.

Although ticks are not modeled as individuals,
their densities are updated at the time mouse events
occur. It is possible that there are ticks at the lattice
nodes where no mice are present. In this case the up-
date of densities is done periodically. For simplicity,
we update these densities during the fossil collection

> 7

e
h i o

s

Figure 2: Possible Events for a Mouse

described below. We do not count all individual tick
bites, since studies show that there can be as many
as five individual larval bites per day. Accordingly,
we combine multiple bites into one: ten larval bites
or five nymphal bites at one time.

At the beginning of the simulation we have only
nymphs that have over-wintered. They are then
questing nymphs. At about the 90** day eggs hatch,
larval ticks enter the simulation, and the number and
type of ticks at each spatial node are updated. When
a mouse is bitten by ticks, the number of ticks at the
lattice node where the mouse is located is decreased
by the number of ticks that bit the mouse. When the
ticks drop off the animal, the tick densities at the lat-
tice node are increased. We also make the assumption
that when the mouse dies, the ticks (if any) present on
the mouse die as well. We assume that mice are bit-
ten by ticks as long as there are enough questing ticks
on the node of the lattice. This assumption implies
that there is a threshold for both larval and nymphal
ticks below which we do not “notice” any new bites.

3 IMPLEMENTATION ISSUES

The model is implemented on a parallel platform, the
IBM SP2, a MIMD machine (below, we present the
results of runs on up to 16 processors). The imple-
mentation is written in C++ to take full advantage

Simulating Lyme Disease 1193

__

Figure 3: Strip Decomposition for 4 LPs

of the object-oriented nature of DES. In Parallel Dis-
crete Event Simulation (PDES), the physical system
is divided into several physical processes. The behav-
ior of each physical process is simulated by a Logical
Process LP (Fujimoto 1990). In general, an LP con-
sists of a state, event queue, and clock. The simula-
tion progresses as events are removed from the queue
and are processed. The event causes a state change,
and the simulation clock advances. The MPI message
passing library (Gropp, Lusk, and Skjellum 1994) is
used for communication between LPs. We use a strip
decomposition in the dominant direction to divide the
space (Figure 3). The number of strips is equal to the
number of processors. We assign one LP per strip.
We chose this decomposition as the starting point for
the system. As the research progresses, we will add
other spatial decompositions.

Each LP is composed of three logical components:
the Event Scheduler, which is responsible for process-
ing events, the Message Handler, which carries out
the communication between LPs, and the Space Man-
ager, which oversees the movement of objects on the
lattice (Figure 4). The Space Manager indicates to
the objects if the space is occupied or not. Based
on this information, the individual makes a decision
whether to continue to move or to stay and, in the
case of a mouse, to nest. The Space Manager also
checks if the object is moving outside of the area as-
signed to the LP. If it does, control is given to the
Message Handler, which sends the object, the Move
Event, and all the future events associated with the
object to the appropriate LP.

3.1 Optimistic Protocol Aspects

The major challenge in PDES is to make sure that
causality between events is preserved. There are
two major approaches to the problem: conservative
(Chandy and Misra 1979) and optimistic (Jefferson

r) ()
Event Handler Space Manager

Event List
Processed Event List Two-Dimensional Lattice
Clock Tick Information for

___ y each node

Objects
(Message Handla Ghost List
__Message List j L J

Figure 4: Components of an LP

1985). In the conservative approach, causality errors
are avoided by making sure that no LP processes an
event for time ¢ unless all events in the system with
a timestamp less than t are already processed. In the
optimistic approach, causality errors are allowed to
occur. When an event with timestamp ¢, is received
by an LP with a clock of t. > ¢t,, the LP has to restore
its state to that just prior to time ¢, and restart the
computation from there. An event causing a rollback
is known as a straggler. Obviously, the state of an LP
has to be saved frequently. The more frequently the
state is saved, the more memory is used; however, if
the state is saved infrequently, the cost (in terms of
time) of the rollback grows.

Our parallel simulation uses the optimistic proto-
col. Since the state of an individual LP consists
of several lattice nodes (each with a number of in-
dividuals) and “background” information, it is pro-
hibitively expensive in this application to save the
state of the LP after each event, especially so because
a single event affects at most only two lattice nodes
(the Move Event). Therefore, we are using incremen-
tal state saving, described by Steinman (Steinman
1993). Each simulation event is augmented with in-
formation about the subset of state variables it has
changed.

When an event is processed, we place it on the pro-
cessed list. If the event causes a message to be sent to
another LP, as in the case of a Move Event between
two lattice strips, we place the message on the mes-
sage list. We use aggressive cancellation; therefore,
when a rollback occurs, antimessages are sent im-
mediately to minimize the progress of the erroneous
computation on other LPs. Antimessages are used to
cancel the original messages that were sent between
the logical time to which we have to roll back and
the current logical time. The set of such messages is
easily determined by scanning the message list. Next,
we remove events from the processed list and “undo”
them. When an event is undone, the data which were

1194 Deelman, Caraco, and Szymanski

changed during its processing are restored. This is
possible because each event is augmented with this
information.

Processing a Tick Bite event involves calculating
the number and type of ticks that will bite the mouse
based on the number and type of ticks present at the
lattice node where the mouse resides. We “place”
that number and type of ticks on the mouse. If there
are some infected ticks present in the biting sample,
the mouse, if not already infected, will become in-
fected with the spirochete. In order to be able to
“undo” the bite, the Tick Bite event “remembers”
the infection status of the mouse before the bite, as
well as the number and type of ticks present at the
lattice node. When the Tick Bite is undone, the ticks
present on the mouse are returned to the lattice node
in their original infection status. If the mouse was
originally uninfected, it will be returned to a healthy
state.

If a Move Event which involved a move from one
LP to another is undone, we have to put back the
object at the old location and place all the events
that were sent out with it on the event list. This
is done with the support of the ghost list. When an
event causes the object to be removed from an LP’s
space, for example, due to a move or death, the object
and all its future events are placed on the ghost list.
When the events are undone, it is very easy to restore
the object and its events from that list. The original
move to a new LP is cancelled during the antimessage
phase previously mentioned.

3.2 Global Virtual Time

A very important part of optimistic protocols is the
global virtual time (gut) calculation. The gut is the
minimum time of all the local virtual times (lvt) of all
the LPs and of all the timestamps of the messages in
transit (Jefferson 1985). Since there are no events in
the system with a time smaller than the gut, all in-
formation that refers to events that happened before
the gut can be removed from memory. This prop-
erty is very important because optimistic simulations
use large amounts of memory to save state informa-
tion necessary to support rollback. When reclaiming
memory (also called fossil collecting), we can remove
“old” events from the processed list, “old” messages
from the message list, and “old” objects and their
events from the ghost list.

The challenge of the gut calculation is to capture
information about the messages in transit. In our
system, the simulation messages are augmented with
information that the sender has about all the LPs.
This knowledge includes not only the known luts of

all LPs, but also basic information about messages
believed to be still in transit. We have designed a
new gvt algorithm for our simulation system. It not
only calculates the gut but also gives us a good view of
how the simulation progresses throughout the entire
system. Our Continuously Monitoring Global Virtual
Time (CMGVT) algorithm relies on two basic proper-
ties of our system: messages are received in the order
in which they were sent, and each simulation message
has a serial number. The first property holds in most
parallel systems. The second only requires that an
extra tag be attached to each message.

Each message and antimessage can be simply rep-
resented with four quantities: sender id, receiver id,
serial number and timestamp. We call this repre-
sentation of a message a forcing, since in optimistic
simulations, a message might “force” a process to roll
back. To indicate which messages are in transit, we
combine two data structures: one quantitative—the
Message Matriz (MM), which holds the knowledge an
LP has about the messages sent by itself and its neigh-
bors plus that LP's knowledge of other processes’
knowledge of messages sent by itself and its neigh-
bors, and the second qualitative-the Table of Forcing
Vectors (TFV), which indicates which messages are
still unacknowledged. The messages in the table are
described in terms of forcings. A sample MM and
TFV are presented in Eq.(1) and Eq.(2) respectively.
The data structures represent those of LP;, and the
system consists of four LPs.

MM, = (1)

NN W oo
o O O o
NN O

The columns of the MM refer to LP; (column 0,
counting from 0) and its neighbors (here in the strip
decomposition, each LP has two neighbors): LP,
(column 1) and LP, (last column). The rows of the
MM represent the knowledge each of the four LPs has
about the number of messages LP, and LP;’s neigh-
bors have sent. For example, the entry (1,0)=6 in
Eq.(1) shows that L P, knows that L P, has sent out 6
messages. Entry (1,2)=2 shows that LP; knows that
LP; has sent out 2 messages. The matrix also con-
tains the knowledge other LPs have. Entry (2,0)=3
shows that LP, knows of 3 messages sent by LP;.
Since row 0is 0, LP; does know anything about LP;’s
knowledge. Also, because column 1 is 0, LP; does
not know of any other LP that has any knowledge of
LPy’s messages.

Simulating Lyme Disease 1195

0 [F(5,1,4),F(7,1,5), F(10,2, 1)]
15

TFVi = |q [F(11,1,2)])
36 (F(10,1,3)] (@)

The TFV is used to keep track of all the messages
still unacknowledged as well as the latest known lut
of all the LPs in the system. The table is indexed
by the LP id. The first element in each row is the
lvt. In Eq.(2) LP,’s view of the system is as follows:
LP, is at time 15, LP> at 20, LP; at 36, and there
is no knowledge about LF,. The second entry in the
table is the vector of forcings. When a message is
sent to LP;, a forcing F(t, s, c), where ¢ is the times-
tamp of the message, s is the sender’s id, and c is
the serial number of the message, is entered in row
z. From Eq.(2) we see that LP; has sent two mes-
sages to LPy: one at time 5 with serial number 4 and
the other at time 7 with serial number 5. To LP;’s
knowledge there is also a message sent by LP, to LFP,
in the system (F'(10,2,1)). From Eq.(2) also notice
that the first message sent by LP, (F(¢,1,1)) was
acknowledged, since it is not present in the TF'V;.

The gut is easily calculated just by looking at the
TFV. The guvt is simply the minimum of the lvts
present in the table and of the timestamps present
in the forcings. In the above example, the guvt is 0
since there is no information about the progress of
LP,.

When a message is sent, the MM and TFV are
appended. When a message is received, the incom-
ing information is compared with local data and the
receiver updates its own information. The sender
might, for example, indicate that an LP (LP;) is
aware of m messages sent by LP,. If the receiver has
a forcing for a message n sent by LP, to LP;, and
n < m, then that forcing can be deleted, since that
message is indirectly acknowledged by LP;. Details
of the algorithm and the proof of correctness are pre-
sented in Deelman and Szymanski 1996. Similar algo-
rithms have been developed previously for systems in
which logical time is monotonically increasing (Ray-
nal 1996). We extended the idea of a matrix clock
to be able to account for the time going backward as
well as forward.

The CMGVT distinguishes itself from other guvt al-
gorithms (Steinman et al. 1995) since it does not re-
quire special synchronization rounds in order to cal-
culate the guvt. The CMGVT is computed by each
process based on the information currently available
toit. The gvt can be calculated when needed, for ex-
ample, when an LP is about to run out of memory, or
at some predetermined intervals. Here, we update the

Figure 5: Mice on Day 1

gut each time the difference between the lvt and the
gut goes beyond a threshold value GVT_DIS which
is an adjustable parameter of the simulation. Obvi-
ously, as in most gut algorithms, we calculate only
an estimate of the gut, since, to get an actual value,
the simulation would have to be suspended. It is in-
teresting to note that each LP can have a different
estimate of the gut, based on the information it has
received from other LPs. A problem might arise when
some LPs do not communicate often enough. In this
case, if one LP has not received any new information
from another, it just queries the noncommunicating
LP. Even though at first glance it seems expensive to
send additional information required by this protocol
along with the simulation messages, we are able to
achieve good results.

4 RESULTS

Initially we divide the space into as many sections as
we have processors. We calculate a new gut when the
simulation gets ahead of the previous guvt by 10 days.
For all the simulations we have the following initial
conditions: mice are placed on every other node of the
lattice (Figure 5) and ticks are positioned in a 20-node
wide “band” in which every fourth row is populated
with ticks, 15% of which are infected with the spiro-
chete. Figure 6 shows the infected ticks at the begin-
ning of the simulation. These initial conditions are
interesting, because we can see the spread of the dis-
eased ticks to areas previously devoid of them. The
spread is caused by mice carrying diseased ticks to
new locations and infected mice infecting uninfected
ticks.

Figure 7 shows the progress of the disease on day
86 of the simulation. The initial “lines” of ticks are
becoming “blurry” as the mice pick up infected ticks
and move them to new locations. Figures 8 and 9
show the final configuration of mice and ticks, re-
spectively. The data points at the top of Figure 9
represent infected ticks that the mice carried from
the lower part of the figure. This is possible because
the lattice wraps around its edges.

We are able to achieve good speedup for small data
sets: 2,400 lattice nodes with 800 mice initially. The

1196 Deelman, Caraco, and Szymanski

g

Figure 6: Infected Ticks on Day 1

e R

Figure 7: Infected Ticks on Day 86

results are shown in Figure 10. The speedup grows
with the number of LPs for up to 10 processors. With
12 processors the communication overhead becomes
large, decreasing the overall performance.

When the lattice size is increased to 32,000 nodes
and 8,000 mice, with the same distribution of mice
and ticks, the speedups are less impressive (Figure
11). This is caused by rollbacks whose cost is pro-
portional to the size of the lattice for which each LP
is responsible. With 4 processors, the lattice size per
LP is large—8,000 nodes. When a rollback occurs, all
the events that happened in the affected time in all
of the 8,000 nodes have to be rolled back.

We investigate several methods of reducing the pos-
sibility and cost of rollbacks.

First, we increase the number of strips into which
the lattice is divided, thus decreasing the area as-
signed to each LP. The processes are mapped by the
job scheduler of the IBM SP2; therefore, a process is
not aware if processes with which it exchanges data
are run on the same processor as it is running. Hence,
it always calls interprocess communication for such
exchanges, slowing the execution. The results of di-
viding the problem into as many as 20 LPs on up to 16
processors are presented in Table 1. The best times
for 4 processors are achieved when each processor has
5 LPs. Still, there is no speedup (the sequential time
is 227 sec.). The speedup with 8 processors and 16
LPs is very small, around 1.6. The speedup with 12
processors is best when 20 LPs per processor are used,

Figure 8: Mice on Day 180

’I tr

n 2t y%uq-’“ i"
A

Figure 9: Infected Ticks on Day 180

2 4 8 8 10 12
processors

Figure 10: Speedup for Small Data Set

and is equal to 2.2. With 16 processors the speedup
improves slightly to 2.8.

Another way to decrease the impact of rollbacks is
to curb the optimism by allowing each LP to process
events only within a limited time into the future. To-
ward this end, a process is allowed to advance only by
20 or 30 days ahead of the average lvt of others. Each
process knows this value from the information sent
by our CMGVT protocol. The results are shown in
Table 2. The performance of this method was better
than in the previous case only for 16 processors, with
the best speedup of 3.7 for the 30-day time cap.

We also tried to combine both the use of multi-

~

L L L L " " .
2 4 [] 8 10 12 14 18
numbes of processors

Figure 11: Speedup for Large Data Set

Simulating Lyme Disease 1197

Table 1: Runtime in Seconds for Multiple LPs per

Processor
Number of LPs

Processors 8 12 16 20
4 502.8 510.07 289.96 226.85
8 275.76 2804 139.7 249.29
12 - 149.42 116 103.7
16 - - 82 98.16

Table 2: Curbing the Optimism (time in sec.)

Processors 20 Days 30 Days

4 769.27 936
8 177.46 224
12 122 128.48
16 > 200 61.79

ple LPs per processor and curbing the optimism to
processing only up to 30 days ahead of the average
lvt. The results are shown in Table 3. The combined
method resulted in an overall improvement over each
of the component methods with the most significant
improvement for 12 processors.

Table 3: Multiple LPs and Curbed Optimism (time
in sec.)

Number of LPs
Processors 8 12 16 20
4 492,98 379.37 359.6 242.55
8 224.0 215.23 118.17 188.7
12 - 12848 88.81 100.27
16 - - 61.79 74.49

We checked if we were indeed reducing the number
of rollbacks by using multiple LPs and reducing op-
timism. The dramatic results of a typical run on 8
processors are shown in Figure 12. With the increase
of the number of LPs, the average number of rollbacks
per LP decreases significantly. However, the number
of rollbacks is not the only measure of performance.
For example, the average number of rollbacks for 20
LPs is smaller than for 16 LPs , but the runtime is
higher. This is because an increase in the number of
LPs per processor intensifies the contention for the
CPU, which slows the entire simulation. We have
also noticed that the average number of rollbacks de-
creased as we curbed the optimism of the simulation.
For 8 processors, 8 LPs, and an optimism cap of 30

350000

:

]

?

average number of rollbacks per LP

N\

18 20

?

12 14 18
number of Logcal Processes

Figure 12: Average Number of Rollbacks for 8 Pro-
cessors

days, we had on the average 136,355 rollbacks per LP;
for a 20 day cap, the average was 92,770.

We investigated if the size of the messages had an
adverse effect on the performance of the simulation.
Our messages have the overhead of adding the gut
information. The size of the Message Matriz is Cmp,
where Cp, is the connectivity of an LP (up to 8 for
spatially explicit two-dimensional problems), and p is
the number of LPs. The size of the Table of Forcing
Vectors is ¢;p, where c; is the maximum size of a
Forcing Vector and is set by the system (the results
presented here use ¢; = 10). Thus, the additional
message size is Cryp + ctp = O(p).

To see how the message size affects the performance
of the simulation, we have increased the messages by
an additional .5(Cp, +¢:)p. The sender packs the mes-
sage buffer up to its maximum size, but the receiver
just reads out the original information. The results
are shown in Figure 13. Increasing the message size
had an unexpected effect: it actually improved the
performance of the simulation! It reduced the number
of rollbacks and the number of messages sent between
LPs. This improvement might be caused by slowing
down LPs that send many messages, or slowing down
LPs that get ahead of others, thus allowing the slower
LPs to catch up. These results encourage us to in-
vestigate methods for controlling the progress of the
simulation in order to achieve better performance.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation under Grant BIR-9320264. The content
of this paper does not necessarily reflect the position
or policy of the U.S. Government—no official endorse-
ment should be inferred or implied.

1198 Deelman, Caraco, and Szymanski

Figure 13: Speedup for Large Messages

REFERENCES

Barbour, A. and D. Fish. 1993. The biological
and social phenomenon of Lyme disease. Sci-
ence 260:1610-1616.

Chandy, K. M. and J. Misra. 1979 Distributed Sim-
ulation: A Case Study in Design and Verification
of Distributed Programs. IEEE Transactions on
Software Engineering, 5:440-452

Deelman, E., T. Caraco and B. K. Szymanski. 1996.
Parallel Discrete Event Simulation of Lyme Dis-
ease. In Pacific Symposium on Biocomputing 191-
202.

Deelman, E. and B. K. Szymanski. 1996 Continu-
ously Monitored Global Virtual Time. Department
of Computer Science Technical Report 96-18, Rens-
selaer Polytechnic Institute.

Fujimoto, R. M. 1990. Parallel Discrete Event Simu-
lation. Communications of the ACM 33:31-53.
Gropp,W., E. Lusk and A. Skjellum. 1994. Using

MPI. The MIT Press.

Jefferson, D. R. 1985. Virtual Time. Trans. Prog.
Lang. and Syst. 7:404-425.

Miller, G. L., R. B. Craven, R. E. Bailey and
T. F.Tsai. 1990 The epidemiology of Lyme dis-
ease in the United States 1987-1998. Laboratory
Medicine 21:285-289.

Ostfeld, R. S., K. R. Kirsten and O. M.Cepeda. 1996.
Temporal and Spatial Dynamics of Izodes scapu-
laris (Acari: Ixodidae) in a Rural Landscape. Jour-
nal of Medical Entomology. 33:90-95.

Raynal, M., and Mukesh Singhal. 1996. Logical
Time: Capturing Causality in Distributed Systems.
IEEE Computer 49.

Steinman, J. S. 1993. Incremental State Saving in
SPEEDES using C++. In Proceedings of the 1993
Winter Simulation Conference. 687-696.

Steinman, J. S., C. A. Lee, L. F. Wilson, and D. M.
Nicol. 1995. Global Virtual Time and Distributed
Synchronization. Workshop on Parallel and Dis-
tributed Simulation, pages 139-148.

AUTHOR BIOGRAPHIES

EWA DEELMAN is pursuing her Ph.D. in the
Department of Computer Science at Rensselaer
Polytechnic Institute. She received a B.A. in Math-
ematics at Wells College and a M.Sc. in Computer
Science at SUNY New Paltz. Her research interests
include designing algorithms for parallel scientific
computation and building tools and compilers for
parallel platforms. Her Ph.D. work focuses on new
paradigms for Parallel Discrete Event Simulation
and their use in biological applications. email: deel-
mane@cs.rpi.edu, http://www.cs.rpi.edu/~deelmane

BOLESLAW K. SZYMANSKI is a Professor of
Computer Science and a cofounder of the Scientific
Computing Research Center at Rensselaer Polytech-
nic Institute, Troy, NY. He received a Ph.D. in Com-
puter Science from the National Academy of Science
in Warsaw, Poland, in 1976 and was a post-doctoral
fellow at Aberdeen University in Aberdeen, UK.
His research interests include language and compiler
issues in large scale computing systems; analysis,
design and verification of distributed and parallel al-
gorithms; and simulation and modeling of computer
and ecological systems. email: szymansk@cs.rpi.edu,
http://www.cs.rpi.edu/~szymansk

THOMAS CARACO is an Associate Professor of
Biological Sciences at the University at Albany, State
University of New York. His research interests include
the effects of behavior on population dynamics, and
the landscape ecology of epidemics. Dr. Caraco is an
editor of Evolutionary Ecology and an advisory editor
for Behavioral Ecology and Sociobiology.

