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ABSTRACT

Statistical analysis is often used in medical studies to
provide evidence for an association between a treat­
ment and a patient condition. The work in this paper
is motivated by a recent medical study which analyzes
the temporal association between a treatment (i.e., an
implant procedure) and the rare autoimmune disor­
ders, polymyositis and dermatomyositis (PM/DM).
To address this association mathematically, this pa­
per develops a probability model based on the multi­
nomial distribution that can be used to make statis­
tical inferences about the timing of incidences of a
treatment/condition pair. This paper details an em­
pirical study of this model using Monte Carlo simula­
tion. It also describes some analytical results devel­
oped in subsequent research efforts. Data from the
medical study illustrate the application of this model
and its results.

1 INTRODUCTION

Medical studies often provide statistical data as ev­
idence for an association between a treatment (e.g.,
medical procedure, drug, therapy) and a subsequent
patient condition (e.g., disorder, syndrome, disease).
Frequently reported statistics such as the number or
proportion of a treatment condition pair are inher­
ently static and fail to capture an additional dimen­
sion often found in patient data: the timing of the in­
cidences of a patient condition after the treatment has
been administered. The latter is referred to as tempo­
ral association (Cukier et al. 1993). Approaches de­
signed to detect temporal association are potentially
more powerful than static approaches in establish­
ing connections between treatments and patient con­
ditions. Whereas a static approach might consider
the number of incidences in a given population of pa­
tients statistically insignificant, a temporal approach
applied to the same data might find the timing of the
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incidences to be extremely rare. For example, while
the total number of patients who develop a particular
condition any time after receiving the treatment may
be very close to the expected number, these patients
may do so much sooner than expected.

This paper develops a mathematical model to
study temporal association in a problem encountered
in a medical study conducted by Cukier et al. (1993).
Their study is designed to determine the existence of
an association between the uncommon autoimmune
disorders PM/OM and an implant procedure used to
correct wrinkles due to aging, acne scars, and other
superficial skin defects.

Other literature exists on the modeling of event
timings in medical data. This research considers
problems such as estimating failure time distribu­
tions, constructing regression models for censored
data, and comparing survival time distributions be­
tween multiple groups of patients in clinical trials.
(see, for example, Kalbfleisch and Prentice 1980 and
Fleming and Harrington 1991). None of this work,
however, directly addresses the temporal association
problem considered in this paper.

To examine the temporal association, Cukier et
al. (1993) conducted a retrospective cohort study that
included approximately 345,000 patients who had re­
ceived the implants over an eight year period. Of the
345, 000, 9 patients developed one of the autoimmune
disorders. Table 1 contains the timings of the disease
diagnoses after the implants were given. A case is
recorded in month 1 if it is diagnosed in the interval
(0,1] months, month 2 if it is diagnosed in the inter­
val (1,2] months, and so on. Months not included in
the table had no new cases diagnosed.

Cukier et al. (1993) also construct a conditional
probability distribution that reflects the temporal
likelihood of a patient developing at least one of
the autoimmune disorders in each one month post­
implant period over a 96 month time horizon (96
months are considered because the maximum post-
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Figure 1: Temporal Probability Distribution of Pa­
tients Expected to Develop Coincidental Autoim­
mune Disorders

(1)

In the multinomial framework, there are vari­
ous ways to characterize the temporal association
between the disorders and the implant procedure.
Cukier et a1. (1993) identify the discrete random vari­
able

to be appropriate for their study and purpose, where
R can assume the values N, N +1, ... , QN. Although
other measures could be used to characterize tempo­
ral association, R is a natural quantity to consider
for the medical study because it measures the mean
latency period for a particular sample of patients. In
other words, it can be interpreted as the cumulative
number of patient-months until all patients in which
the disorder occurred actually developed the disorder
after receiving the implant treatment. For example,
from the data in Table 1, the observed value of R is
61. In other words, it took a total 61 patient-months
for all 9 patients to develop an autoimmune disorder
after the implant treatment. Therefore, R is a way

Number of Cases
Month

Table 1: Timing of Diagnoses for the 9 Patients After
the Implants Were Given

2 MODEL FORMULATION

exposure observation period for any of the patients
was eight years). This distribution is shown in Fig­
ure 1. These data reflect the likelihood of inci­
dences of PM/OM in a patient population that grows
from zero at the beginning of the study period to
345, 000 patients after eight years, assuming the in­
cidences were purely coincidental after the implants
were given. Finally, Cukier et al. (1993) assess the
likelihood of the incidence timings for the 9 patients
who developed the disorders against the temporal
probability distribution using Monte Carlo simula­
tion.

The objective of this paper is to formulate a math­
ematical model to describe the problem studied in
Cukier et a1. (1993), and to present the results of
a Monte Carlo study used to support the results in
Cukier et al. (1993). The paper also describes some
analytical results that extend the Monte Carlo simu­
lation study. The remainder of the paper is organized
as follows. In Section 2, the mathematical model is
formulated. The model is not restricted to the par­
ticular problem studied in Cukier et a1. (1993). In
fact, it is general enough to study the temporal asso­
ciation between any patient condition and treatment.
Section 3 describes the details of the Monte Carlo
simulation model and the results used in Cukier et
al. (1993). Section 4 describes some of the analytical
results that extend this research. Section 5, sum­
marizes the results and provides some concluding re­
marks.

The problem described in Section 1 can be restated
to facilitate the construction of the underlying prob­
ability model. Suppose the units in the sample are
balls (rather than patients who develop the disorder)
and the monthly cells on the time scale are urns. An
equivalent problem formulation is that of randomly
distributing N balls into Q urns where the balls act
independently. The probability of any ball falling into
the qth urn is 'U q, q = 1, ... , Q, where E~=l 'U q = 1.
Let Nq denote the number of balls placed in urn q

(E~=l Nq = N). The underlying probability distri­
butIon for the {Nq, q = 1, ... , Q} is the multinomial
distribution, (see Johnson and Kotz 1977, page 108).
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A small value for this tail probability provides evi­
dence for a strong temporal association between the
disorders and the implant treatment since this indi­
cates that disorders occur much sooner than expected
from the patient population.

Based on the properties of the multinomial distri­
bution, certain aspects of the distribution of R can
be easily quantified. The mean and the variance of R
are

to compare different patient group configurations on
the basis of temporal ordering.

In order to study the temporal association, one
must characterize the probability distribution of R
and then assess the likelihood of observed values of R
being generated from this distribution. For example,
Cukier et al. (1993) assess the likelihood of the dis­
orders occurring in the 9 patients as soon after treat­
ment as they did. Stated in terms of R, they assess
the likelihood of a randomly selected 9 patient group
(from the multinomial distribution with probabilities
given in Figure 1) having a total patient-month value
of less than or equal to 61, which is just the tail prob­
ability

and

P{R ~ 61}.

Q

E[R] = LquqN
q=l

(2)

(3)

Section 3 provides the details of the Monte Carlo
simulation model that was used to generate the re­
sults reported in Cukier et al. (1993). We demon­
strate that the model is able to produce a very precise
estimate of the tail probability in (2).

3 A MONTE CARLO SIMULATION AP­
PROACH

The relationship between the multinomial distribu­
tion and R results in a straightforward Monte Carlo
simulation model for this problem. The simulation in­
put was generated by the linear congruential pseudo
random number generator RAND from Law and Kel­
ton (1991), pages 449-450. According to the authors,
this generator is portable and well-tested (see also
Marse and Roberts 1983). In our Monte Carlo ex­
periment, nine pseudo uniform random variates were
transformed using inversion (Law and Kelton 1991,
page 469) to produce a sample of nine random vari­
ates from the multinomial distribution. Then, R was
computed from the multinomial sample. An estimate
of the probability distribution for R was generated by
performing 1, 000, 000 replications of this experiment.
The following algorithm summarizes the logic used in
a simulation program written in FORTRAN:

Algorithm 1 Initialize the Number of Samples,
N,Q, and the {u q }

Q

Var[R] = L q2 uq (1 - 'Uq)N - 2 L L qruqurN.
q=l q <r

(4)
Using the values for the {u q } shown in Figure 1, along
with Q = 96, and N = 9, yields E[R] ~ 229.056 and
Var[R] ~ 3226.70. An analytic upper bound for the
tail probability in (2) can be obtained from the one­
sided Chebyshev inequality (Ross 1988, page 352):

3226.70
P{R < 62} :5 3226.70 + (229.056 _ 62)2 :::::: 0.104.

(5)
Expression (5) illustrates that the tail probability,
P{R ~ 61} is bounded above by 0.104. This means
close to 90% of all possible 9 patient groups would
have a patient-month total of greater than or equal
to 62. While this indicates that the observed R for
the 9 patient group in Table 1 is somewhat rare, it
is far from definitive since statistical significance in
most studies is declared on a probability of 0.05 or
less. In most instances, the Chebyshev inequality is
quite conservative and does not provide a tight upper
bound. In fact, this will be demonstrated in Section 4
to be the case.

Compute the cumulative probability distribution, Cq,

foru q, q = 1,2, ... ,Q

For I = 1, Number of Samples

Set FR =0, for R = N, N + 1, ... , QN (initial­
ize the distribution of observed frequencies
for R to zero)

Set R =0

Set Nq = 0 forq = 1,2, .. . ,Q to zero

For J = 1, N

Sample U (Uniform(O,l) random variate)

Set K = 1
While U > CK do

K=K+l
End While

NK = NK + 1

EndFor J

ForL=I,Q

R=R+NLL

EndFor L

FR = FR + 1
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Figure 2: Observed Frequency for R from a Monte
Carlo Simulation Run of 1,000,000 Samples

EndFor I

Calculate the cumulative sum of FR for R =N, N +
1, ... ,QN

Output FR and the cumulative sums for R = N, N +
1, ... ,QN.

Figure 2 is a distribution of the observed frequen­
cies of values for R from the Monte Carlo simula­
tion run. This plot (suitably standardized) serves as
an unbiased estimate of the probability mass func­
tion (Law and Kelton 1991, page 362). It appears to
be symmetric about the approximate mean value of
229.056 with very little probability in the tails beyond
the value of R ~ 61.

The P{R ~ 61} was estimated by,

p = (# of samples for which the observed R:$ 61)
1,000,000 .

(6)
The data illustrates that the probability of observing
R $ 61 is extremely low. Out of the 1,000,000 repli­
cations, 92 fall at or below the value of 61. Therefore,

a point estimate for P{R $ 61} is P = 9.2 X 10-5 .

Since the sample size is large and (6) is a proportion,
large sample theory can be used to produce an ap­
proximate confidence interval for P{R ~ 61}. Using
the procedure found in Bickel and Doksum (1977),
page 160, an approximate (1-a) x 100%, (0 < a < 1)
confidence interval for P{R:$ 51} is

S+~±k JS('1-S)+~
2 ex '1 4

1] + k~

where S is the number of Monte Carlo simulation
replicates observed in the tail, kcx is the 1 - ~ per­
centile from the normal distribution, and 'fJ represents
the total number of simulation replicates. In this ex­
ample, S = 92, kcr = 1.96 (for a 95% confidence
level), and 1] = 1, 000, 000. Hence, the observed confi­
dence interval is (7.5024x 10-5 , 1.1282x 10-4). Bickel
and Doksum (1977) state that the use of this confi­
dence interval is satisfactory as long as the smaller of
(1,000, OOO)(P{R :$ 61}) or (1, 000, 000)(1- P{R :$
61}) is at least 5. For the example in this paper, the
value is estimated to be 92.

4 ANALYTICAL APPROACHES

The probability distribution for R can be determined
analytically by addressing the following combinato­
rial problem: find all possible values of {Nq , q =
1, ... , Q} such that

(7)

and
Q

EqNq = R. (8)
q=l

Once the possible combinations of {Nq } are known,
the probability that R equals some prespecified value
can be calculated analytically using the probabilities
from the multinomial distribution. Since we are inter­
ested in a cumulative tail probability, this procedure
would have to be repeated for each fixed value of R.
Total enumeration for all the {Nq , q = 1", .. ,Q} that
satisfy the above two constraints for different values
of R is quite difficult because the number of possible
combinations of the {Nq } grows exponentially in the
size ofQ,N, and R (see Jacobson and Morrice 1996).
Hence a total enumeration approach is impractical for
realistic sized problems such as the one considered in
Cukier et al. (1993).

Fortunately, this problem can be solved without
using total enumeration. In order to define this pro­
cedure, some additional notation is needed. Let n q
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and

Pq,n,r'

2. Pl,n,n=u1 fo r n=1,2, ... ,N.

Theorem 1 The probability Pq,n,r can be computed
using the recursion

1,2, ... ,N

QN

L VQ,N,r =QN.
r=l

r-l
Pq,n+l,r = E Pq,n,iUr-i

i=max(l,r-q)

for q =1, 2, ... , Q, n =1, 2, ... , N - 1, r =n +1, n +
2, ... , q(n + 1). The initial boundary conditions for
this formula are

{

U if r :5 q
Pq,l,r = Or ifr> q

Proof: See Jacobson and Morrice (1996).
The recursive procedure derived from Theorem 1

was implemented in FORTRAN. This program can
be used to characterize the entire distribution for R
in the Cukier et al. (1993) study. The probability
distribution is given in Figure 3. For R :5 61, the
P{R:5 61} = 1.0250 x 10-4 • This value validates the
Monte Carlo simulation results reported by Cukier et
al. (1993) and described in the last section, since the
confidence interval produced by the simulation covers
1.0250 x 10-4 .

Convolving the distribution in Figure 1 with itself
N times provides an alternative way to formulate the
probability distribution of R. This follows since R
is also the sum of sample of size N from the distri­
bution in Figure 1. The following theorem provides
a recursive procedure for calculating the probability
distribution of R using this convolution formulation.

Theorem 2 The probability Pq,n,r can be computed
using the convolution formula

1. Vqnr = 0 for q = 1,2, ... ,Q,n
a~d'r= 1,2, ... ,N-l.

2. V1,n,n=lforn =1,2, ,N.

3. Vq,o,o=lfor q=1,2, ,Q.

4. Vq,O,r = 0 for r = 1,2, ... , qN and q
1,2, ... ,Q.

Proof: See Jacobson and Morrice (1996).
To solve the recursion in (9) for all values of r

(r = 1,2, ... , QN), in the worst case, QN recursions
must be constructed for each value of r, where each
recursion has at most N + 1 parts in the summation.
Therefore, the computational effort needed to deter­
mine the entire distribution for R is polynomial in Q
and N, where the largest polynomial term is of order
Q2 N 3 . Solving the recursion in (10) for the number
of possible vectors requires the the same amount of
computational effort as solving the recursion in (9).
In addition,

Lemma 1
(9)

(10)
h(q,n,r) ( )

Vq,n,r = L Vq-1,n-m,r-qm ~
m=O

h(q,n,r) ( )

Pq,n,r = L Pq-l,n-m,r-qm ~ u';
m=O

q

Rq = LiNi
i=l

for q = 2,3, .. . ,Q, n = 1,2, .. . ,N, and r = n,n +
1, ... , qn , wh ere h(q, n, r) = min{n, rr / q1}. Th e in i­
tial boundary conditions for this recursion are

1. Pq,n,r =0 for q =1,2, ... , Q, n =1,2, ... , Nand
r=1,2, ... ,N-1.

Corollary 1 The number of vectors, Vq,n,r, can be
computed using the recursion

be the total number of balls in the first q urns,
q = 1,2, ... ,Q. By definition, nq = El=lNi. In
addition, let

Pq,n,r =P{Rq =r, nq =n}

for q = 1,2, ... ,Q, n = 1,2, ... ,N, r = n,n +
1, ... , qn. Finally, let Vq,n,r be the total number of
patient samples (or vectors) of size n that are possible
for the first q urns with Rq =rand n q =n balls.

The problem is to determine the distribution for
RQ(= R), Le., PQ,N,r. The following theorem p~o­

vides the basis for a recursive approach to calculatIng

9. Pq,O,O = 1 for q = 1,2, ... , Q.

4. Pq,O,r = 0 for r = 1,2, ... , qN and q
1,2 ... ,Q.

Proof: See Jacobson and Morrice (1996).
The recursion in (9) can be successively applied,

starting with the values q = 2 and n = 1, until the
desired values for q(= Q), n(= N), and r are reached.
A recursive algorithm is described in Jacobson and
Morrice (1996).

A corollary to Theorem 1 can be used to determine
the number of vectors for each possible value of R.

for q = 2,3, .. . ,Q, n = 1,2, .. . ,N, and r = n,n +
1, ... , qn , where h(q, n, r) = min{n, rr / q1}. Th e in i­
tial boundary conditions for this recursion are
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Figure 3: Probability Distribution for R

torr= l,2, ... ,QN, q= l,2, ... ,Q.

Proof: See Jacobson and Morrice (1996).
When the convolution formula in Theorem 2 is set

up as a recursive algorithm, this algorithm requires
polynomial computational effort in Q and N to gen­
erate the entire distribution for R. To obtain this
distribution for Q alone, the largest polynomial term
is of order Q2 N2. However, if this distribution is
required for all q = 1, 2 ... , Q, then the largest poly­
nomial term is of order Q3N 2 .

The convolution formulation has the advantage
over the formulation in Theorem 1 in computational
speed if the distribution for R is required for the sin­
gle value Q. However, if the distribution of R is re­
quired for all values of q =1,2 ... , Q, then the Theo­
rem 1 formulation has the advantage over the convo­
lution formulation in computational speed. This fol­
lows from the order of the largest polynomial terms
for the two approaches.

Theorems 1 and 2 eliminate the need to perform
a Monte Carlo simulation to calculate the probabil­
ity distribution for R. In addition to being able to
produce exact results, the algorithms associated with

Theorems 1 and 2 are very fast relative to the sim­
ulation described in the last section. In particular,
the simulation takes about 21.6 CPU seconds on the
DEC AlphaServer 2100 4/275 to produce the data for
Figure 2. On the same machine, the algorithm from
Theorem 1 produces the data for Figure 3 in about
0.33 seconds of CPU time and the convolution ap­
proach produces the same results in about 0.14 sec­
onds of CPU time. Perhaps the only advantage of
the simulation over the results from Theorems 1 and
2 is that the simulation produces actual patient sam­
ples whereas the algorithms from the theorems do
not produce such samples explicitly. However, sam­
ple counts are provided by the results in Corollary 1
and Lemma 1.

5 CONCLUSIONS

This paper develops an analytical model for describ­
ing the temporal association between disorders and
treatments in medical studies. The model was in­
spired by a medical study conducted by Cukier et
al. (1993). A complete description of the Monte Carlo
simulation approach used by Cukier et al, (1993) has
been provided. In addition, a recursive procedure and
a convolution procedure that provide analytical solu­
tion to their problem have been described. The so­
lution algorithms using these formulations are very
efficient and can be used to solve realistically sized
problems.

The model formulation presented in this paper is
general and not restricted to the specific problem
given in the cited medical study. Studies similar to
Cukier et al. (1993) are common in the medical lit­
erature. Hochberg (1993) cites several examples and
specifically discusses Cukier et al, (1993) and Bridges
et al. (1993) as similar types of studies. The latter fo­
cuses on a possible connection between silicon breast
implants and rheumatic disease.
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