Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

A SIMULATION-BASED CONTROLLER BUILDER FOR FLEXIBLE MANUFACTURING SYSTEMS

Fernando G. Gonzalez

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
1406 W. Green Street
Urbana, Illinois 61801 USA

ABSTRACT

This paper discusses a new simulation and control proto-
type software package that can be employed as a control-
ler for a simple FMS. In developing this software, we at-
tempted to achieve a compromise between the program-
ming flexibility of a general-purpose language like C++
and the convenience of a simulation language like SIMAN®
(see Pegden et al. [1995]). In particular, we desire to pro-
vide standard programming features within the model such
as recursive function calls while providing a single model
which can be used to simulate and control a real-world
system. To test the efficacy of the developed simulation
tool, we developed a simulation model which can control
a physical emulator of an FMS which has been constructed
in our research laboratory.

1. INTRODUCTION

When writing a simulation model, one can either employ a
dedicated simulation language like SIMAN or a general-
purpose programming language like C++. The simulation
language has the advantage of being easy to use which
usually hastens model development. Consider the SIMAN®
simulation language. It provides a set of basic modeling
elements which can quickly be assembled to build your
model. It also provides the essential software elements
that are needed to execute the model and to perform the
requisite statistical analyses. If one elects to program a
simulation model using a general-purpose language, then
one must also provide the software needed to execute these
auxiliary functions.

However, simulation language like SIMAN have their
limitations. SIMAN is not a general purpose program-
ming language like C++, and therefore, cannot provide full
modeling flexibility. One is limited to programming within
the constraints of the set imposed by the provided model-
ing elements. For many modeling situations, the provided
set of modeling elements is sufficient, and using a simula-

1068

tion language like SIMAN is an optimal choice over de-
veloping the simulation model in a language like C++.
However, to model more complex systems like an FMS,
the set of modeling elements provided by most simulation
languages impose severe modeling constraints, particularly
when one attempts to assess the impact of the control ar-
chitecture upon the system. Using a general programming
language becomes essential. (Davis et al. [1993] discussed
in detail the numerous restrictions that entity flow-based
simulation languages impose upon the modeling of an FMS.
Mize et al. [1992] further discuss the inaccuracies that en-
sue from the use of current simulation languages to model
an FMS.) Although SIMAN and other simulation lan-
guages do permit C subprograms to be included within the
model, there is only so much that one can accomplish with
these patches. Furthermore, these patches invariably make
the model more difficult to verify.

This capability to control an FMS using simulation
has already been demonstrated in the literature. Smith et.
al. [1994] presented their RapidSIM effort where they en-
hanced SIMAN with additional constructs to make it pos-
sible to implement the physical control of equipment. They
added a TASK block and modified the DELAY, ROUTE,
MOVE and TRANSPORT blocks. The modeling approach
discussed in this paper has some similarities to the approach
discussed by Smith et al. It too employs a basic set of
SIMAN:-like modeling elements and introduces new blocks
to manage the modeled system. The presented approach
also expands the general modeling flexibility of the lan-
guage to permit standard features such as recursive func-
tion calls to be employed in the modeling. This added
flexibility is essential when modeling complex systems
such as an FMS.

In this paper a set of objects are developed to provide
the minimum necessary modeling elements that one must
use in every simulation and controller regardless of the
methodology being used. Care has been taken to ensure
that the software does not impose on the methodology the
designer may have. That is, whether one chooses to write

Simulation-Based Controller Builder for FMS 1069

the controller using an entity-flow based method or a mes-
sage-flow based method, this software gives the flexibility
to implement either one.

For this study, the modeled and controlled system will
be a physical emulator for an FMS which we have con-
structed. The study will also demonstrate some new fea-
tures which could be provided within simulation languages
to increase their modeling flexibility.

For discussion purposes in this paper, an event repre-
sents the action taken between simulated or actual physi-
cal events. For example, a delay event is the action taken
when a delay is finished, and a QUESEIZE event is the
action taken when the resources needed for executing the
event are allocated. Please note also that time does not
advance while an event is being executed.

2. THE EXPLORED MODELING FRAMEWORK

The goal for this research effort was to develop a simula-
tion approach using C++ which could provide the model-
ing convenience of a simulation language like SIMAN
while providing the additional capability needed to con-
trol a real-world system. This paper concentrates first on
defining a set of basic modeling elements using C++ and
then adapts these blocks to model the controller of an FMS.
Each included modeling element is represented as an ob-
jectin C++. As with most simulation approaches, this ap-
proach is also event driven, and an execution object man-
ages the simulation by the sequential processing of events.
Anevent list is maintained where the scheduled events are
stored in chronological order based upon the time that they
are scheduled to occur.

In the development of this modeling environment, only
a minimal set of modeling elements have been included.
The decision of which elements were to be provided was
based upon whether the object required an event to be
scheduled on the event list or requires the allocation of
resources. Since the proposed modeling environment will
provide an increased capacity to include C++ program-
ming elements, we decided to provide for the other model-
ing requirements, like the TALLY block, by defining a li-
brary of C++ functions. Some of the more trivial model-
ing elements like the COUNT, BRANCH and ASSIGN
are not implemented since they can be trivially imple-
mented in C++.

A simulation executive object manages the chrono-
logically-ordered event list, controls the processing of the
events and manages the allocation of resources. After each
event is processed, the executive object pops the event with
the smallest event time off of the event list and then in-
vokes the proper function to manage its execution. Given
this streamlined approach, there are two basic types of
events that occur: QUESEIZE, where the event occurs as
aresult of resources becoming available and DELAY where

the event occurs when a delay is finished. There are also
other types of events that provide an expanded modeling
flexibility for this simulation environment which are not
considered in most simulation tools including the PEND-
ING, GOSUB, and RETURNTO elements. These will be
discussed later.

Each modeling element object is instantiated from an
object subclass for the element type. A feature of all of
these element subclasses is there ability to store (queue)
the pointer of the entity which enters the element. Within
a system’s model, a given modeling element may be used
several times. For example, a particular model may have
several DELAY elements. Each use of an element within
a model will assign a unique Label which will also be at-
tached to every event that is instantiated using that ele-
ment. For example, the seventh QUESEIZE employed in
the model would be assigned the label QUESEIZE7. A
DELAY32 label would be attached to the thirty-second
DELAY element included in the model. Whenever an en-
tity enters a given modeling element an event object of the
particular type may be instantiated, depending on whether
the element is of the type that needs to schedule an event.
Among the event object’s attributes are its event label (e.g.
DELAY32) and the scheduled event time. For example,
an event may be DELAY37, 3:15. This means that a DE-
LAY37 eventis to occur at 3:15. This simulates the comple-
tion of the process that is being modeled with the DELAY37
element.

To enhance the capability of the user to include C++
functions, either from the modeling tools library or a spe-
cial user-provided function, the modeling tool makes a sig-
nificant deviation from the approach employed in most
simulation. Usually, the list of modeling elements included
within the model specification are assumed to be sequen-
tially attached to each other unless otherwise specified via
modifiers such as DETACH or NEXT(Label). That is, the
entity will usually flow from one model element to the
next model element in the model’s statement. Under our
framework, this assumption is not made. Instead, the mod-
eler can insert a set of C++ statements in-line between any
two modeling elements. The C++ code can then perform
any function upon the entity that is required, including tally
statistics from its attribute list or return resources allocated
to the entity. Note that neither of these actions has conse-
quences upon the evolution of time. The modeling ele-
ment that follows the last statement of the inserted C++
code will then receive the entity after the intervening C++
statement have been executed upon it. An event ends when
the next modeling element is encountered. At this point,
the entity is stored inside of the modeling element’s object
until the event associated with it occurs. When this event
occurs, the entity is removed from the element’s object
and processing of the event starts. The following is an
example of a DELAY37 event. Notice that the first step in

1070

the event is to remove the entity from the DELAY37 ele-
ment and the last step is to store the entity inside of the next
element’s object.

case DELAY37:
ent = Motor_d37.remove();

get_machine_q42.insert(ent);
break;

Note: Motor_d37 is the name of the DELAY37 modeling
element’s object and likewise get_machine_q42 is the name
of the QUESEIZE42 element’s object.

The following provides a brief outline on how model-
ing element objects and the simulation executive object are
implemented. The DELAY block is an object that consists
of a priority queue used to store the position of the entity’s
pointer, a pointer to a random number generator that can
generate random numbers from a prespecified probability
distribution, and an event label. The priority among the en-
tities in the queue is based upon the time that the entity is
due to be removed from the DELAY block. That is, its order
is determined by the entities' remaining delay time. This
way the order of the entities in the queue is synchronized
with the order of the DELAY events that are scheduled for
that particular DELAY block. The random number genera-
tor is used to compute the delay time. Each entity entering a
delay block is given a random number from this generator
and is used as the delay time. When an entity is inserted into
a DELAY block, the block generates the delay time, com-
putes the time when the delay will finish, stores the pointer
to the entity in its queue using the time it will finish as the
priority and finally schedules a delay event for that particu-
lar DELAY block in the event list. The element label associ-
ated with the modeled element in the model statement is also
stored as an attribute within the instantiated entity object.
This permits the executive program to know at what loca-
tion the entity object currently resides in model network.

The QUESEIZE element also contains a queue to store
the pointer of the involved entity object and an element la-
bel, but no random number generator. When an entity is in-
serted into the QUESEIZE block, it simply puts the entity
into the rear of the queue. No event is scheduled since the
entity is waiting for resources to become available. After
the execution of every event, the executive object checks
each QUESEIZE element to see if any waiting entity needs
the available resources to continue. If so, a QUESEIZE
event is scheduled to occur immediately. That is, it sched-
ules it into the event list with the current time as the time to
occur.

The CREATE element is similar to the DELAY but func-
tions automatically without an entity flowing into the ele-

Gonzalez

ment. When a create event occurs, it automatically creates a
new create event object and schedules it on to the event list.
Since a new create event is scheduled every time one oc-
curs, there is always a create event scheduled to occur in the
future. This models the constant flow of entities entering a
system. Within the C++ library, there is also a function which
can create a duplicate entity at any point while a given entity
is flowing through the modeled network.

The resource object is used to manage the resources.
Only the executive object can interact with this object. This
private object is invoked by the QUESEIZE element when it
either checks or seizes some resources or by the Release func-
tion when it releases some resources.

The executive object starts its cycle by processing the
event object from the event list with the minimum sched-
uled event time. It begins the processing of each event ob-
ject by removing it from the event list. The simulation time
is then set to the event's scheduled event time. After the
model executes the event, it is possible that resources may
have been released, so the executive object checks each
QUESEIZE element to see if any entity can now allocate the
required resources. If so the corresponding QUESEIZE event
is scheduled to occur at the current simulation time and is
placed in the front of the event list. After the event object is
processed, it is destructed, and the next event is removed
form the event list thus starting a new cycle.

In Program 1, an example of a simulation using
this developed simulation tool is provided. This model
simulates a simple M/M/1 queue where the arrival rate is
LAMDA and the service rate is MU. This simulation
estimates the average queue size.

3. FURTHER MODEL ENHANCEMENTS

In addition to implementing the basic set of SIMAN like
blocks, additional modeling elements not found in most simu-
lation language have been added to enhance the software’s
capacity to provide expanded control over the flow of enti-
ties and to permit the model to function to as a controller of
the real system.

3.1 Flow Control Enhancements

To provide enhanced control over the flow of entities, sev-
eral new features have been incorporated. Each modeling
element object contains three public functions. The first func-
tion is the Insert function. This function permits the mod-
eler through the use of C++ code to insert an entity into any
other modeled element object within the model. The inserted
entity object would then begin to flow from its new location.
The second function is the Remove function. It permits the
modeler to remove an entity object from the modeled ele-
ment object where it currently resides. The modeler can then
Insert the element elsewhere or the entity will continue to

Simulation-Based Controller Builder for FMS 1071

#define SERVER 0

int total_ent;

ResourceStruct resources[50] = { “Server”, 1};

RandomExp arrival(1/LAMBDA),
service_time(1/MU);

QueSeize server_q1(“Server Que”, SERVER,1);

Release server_rl;

Delay service_d1(&service_time);
Create arrivals_al(&arrival);

Tally TIS_t1(“time in sys.”);

void

perform(int EventNumber)
Entity *ent;
switch (EventNumber)

{
case CREATEL:
if (get_TNOW() > 150)
break;
ent = arrivals_al .create();
ent->attr[0] = get. TNOW();
server_ql.insert(ent);
break;

case QUESEIZE1:
ent = server_ql.remove();
service_dl.insert(ent);
break;

case DELAY1:
ent = service_d1l.remove();
server_rl.release();
TIS_t1.tally(get_TNOW() -
ent->attr[0]);
total_ent++;

delete ent;
break;
default:
cout << “Oops. Did a boo boo\n”;
break;
1
void
main()

InitializeResources(resources);
total_ent = 0;
sim(arrival.get());
PrintResults();

}

Program 1: Sample Model for M/M/1 Queue

flow from the position where the Remove function was
invoked. A third public function, Display, provides the
pointers of the entity objects that currently reside at a given
modeled element object. It returns a null pointer if no en-
tity objects currently reside at that element.

There are times in a simulation that a section of the
model needs to be repeated several times. For example, in
our emulator of an FMS, the submodel that models the
movement of the automated guided vehicle (AGV) is re-
peated several times through out the model, i.e. once to
take the part to the machine and then once again to pick up
the part and so on. Languages like SIMAN provide little
support for recursive submodel calls. The submodels sim-
ply allow one to organize the model into groups of blocks.
These submodels always return entities to a specific loca-
tion. In order to support recursive submodel calls, two new
blocks have been added. The GOSUB and the
RETURNTO blocks allow a submodel to be called from
anywhere in the model and always returns to the location
where it was called, much like the recursive function calls
in C or any general programming language.

The GOSUB block is used to call a submodel. An
example is gosub(ent, MOVE,7), where ent is the pointer
to the entity, MOVE is the name of the submodel and 7 is
the return address or the return event. In this example, the
entity is passed to the block via the variable ent that points
to the entity, the first event in the submodel is called MOVE
and the next event to execute when the submodel is done
is called RETURN7. The RETURNTO element is the last
block in the submodel. It sends the entity back to the re-
turn event. An example is returnto(ent), where ent points
to the entity. Parameters can be passed to the submodel by
using a space in the entity object called param. This is like
the space for the attributes but is designated for parameter
passing.

The ability to return the entity to the location where it
was called from is provided by storing the return address
inside of the entity itself. Each entity has a return address
stack. Since there may be several entities within the
submodel at the same time, each entity must hold there
own return address unlike a general programming language
that usually has only a single process operating and there-
fore, uses the system stack to hold the return address.

When GOSUB is called, it stores the entity in a hold-
ing area and pushes its return address onto the entities re-
turn address stack. It then sets a flag which signals the
executive object that an event must be executed before fin-
ishing the cycle and provides it with a pointer to the next
event, the first event in the submodel. The RETURNTO
block works in much the same way, but it pops the return
address off of the return address stack in the entity and
uses this address to tell the executive object where to go to
next. The following is an example of a section of a model
where the recursive submodel called MOVE_AGV is called

1072

to move the AGV from the machine to the port. It has just
finished turning the machine's motor needed to load the
AGV with the part. Notice the passing of the parameters
through the “param” spots 5 and 6. Param 5 holds the
location of the AGV and param 6 hold the destination.

case PENDING35:
ent = turn_motor_p35.remove();
Motor_r9.release();
ent->param(5] = PORT;
ent->param[6] = MACHINE,;
gosub(ent, MOVE_AGV,7);
break;

case RETURNTY:
ent = get_ent();

case MOVE_AGYV:
ent = get_ent();
move_from = ent->param[5];
move_to =ent->param|[6];

returnto(ent);
break;

3.2 System Control Enhancements

The original desire for developing this simulation tool was
to permit the simulation model to function as the control-
ler for the system. To accomplish this goal, the controller
must send commands to the physical machine to execute a
task. A new model element called the PENDING block
has been included to allow the model to synchronize itself
with the hardware.

The execution of the PENDING event requires a ma-
jor redefinition of the manner in which the executive ob-
ject manages the simulation. First, the clock must run in
real-time instead of simulated time. That is, instead of
extracting the next event from the event list and setting the
current time to the time that event is to occur as is done in
simulation, the controller waits until that time arrives be-
fore it executes the event. So if the event is to occur at
5:00 the controller waits until 5:00 before it executes it as
opposed to simply setting the current time to 5:00. The
controller looks at the computer system'’s clock to get the
current time. When a PENDING element is active, the
simulation object must wait for a feedback signal from the
hardware to indicate that the requested task has been com-
pleted. Hence the occurrence of the PENDING event can-
not be scheduled. While the executive object is waiting
for the PENDING event to occur, the real-time clock will
continue to advance. The executive object also knows that
there are additional scheduled events on the calendar. Since
one or more of these events could occur before the PEND-
ING event occurs, it is essential that the simulation execu-

Gonzalez

tive object continuously compare the real-time clock against
the earliest event time for an event object on the event list.
Whenever the real-time equals the earliest event time, the
associated event is processed.

When a machine is simulated, the DELAY block cal-
culates the time it will be when the task is complete based
on its duration and schedules a “task is finished” event for
that time. However, when the machines actually exist and
the model is to employ control of the system, the control-
ler sends a signal to the machine to perform the task. It
then waits until the machine signals that it has completed
the task before the “task is finished” event is executed.
The PENDING block in control mode does precisely that.
However when a PENDING block is executed the event is
put into a list of events that are pending for signals from
the hardware before it can execute. This list is called the
pending event list. So instead of scheduling events onto
an event list where each event has an associated time of
occurrence, the PENDING block puts events into a pend-
ing event list where there is no time associated with the
events. In this list, the events simply wait until the hard-
ware signals the controller that the requested task is done.
The corresponding event is then pulled off of the list and
executed.

Since the model is used for simulation as well as for
control, the driver runs in two modes; simulation and con-
trol mode. In the simulation mode the clock runs in simu-
lated time and the PENDING block operates in an identi-
cal fashion to the DELAY block. In this mode, there is no
difference between the DELAY and PENDING block. In
the control mode the system clock runs in real-time, and
the PENDING block performs as indicated above. So one
only sets the mode of operation, and the model either con-
trols the system or simulates it. Note, in control mode one
can still use the DELAY block. It always operates as a
DELAY block but the delay is measured in real-time, not
in simulated time. It is only the PENDING block that
switches modes. This is useful when controlling an emu-
lator where some of the machines exists and must be con-
trolled while others are simulated. Also note that one must
introduce the code to send commands to the hardware and
provide checks so that the commands are not sent in simu-
lation mode. This requirement is easily achieved in C++.
The following example shows a section of the model com-

municating a command to turn the motor by 1 unit after
seizing the motor.

case QUESEIZES9:
ent = Motor_q9.remove();
if (control_mode)

send_msg(“TURN");,

turn_motor_p3S5.insert(ent);
break;

case PENDING35:
ent = turn_motor_p35.remove();

Simulation-Based Controller Builder for FAS

4. THE FMS EMULATOR.

1073

5ft. by 10 ft. Table

8
13 & s p .
i Sie Al N —a—3
To develop an educational and research 141029 >0 ; e
laboratory for the coordination of dis- Carousel , Stations

crete-event systems, the Manufacturing 1 Méchine 2 Machine 1 g‘ 2

iversi ter 3)
Systems Laboratory at the University RN [7| Machine & o4),

7 VAR (~~d 0
of Illinois has constructed an FMS | D Controller £ v |,
emulator (see Davis et al. [1994]). To 126 " : 1 5 - s
insure safety and economy, all physi- 16 A] z 24 33; _ A
i i 13 . 30 44

cal processing has been omltted. We Machine 3 B " Machine 4 = cﬁraéﬁiel
have also constructed physical analogs Centi; Center 2 0
for the material handling systems ” 13 ST 2/2 3 y

i - - 4. -
(MHSs). . The. contrpller for this sys HO-Scale Tram Tr—"‘ack - —='0—l7 27 20 _3.2 42_3.]/ 410
tem is built using this package. | Dedicacd LAN + i

The schematic for the constructed To Network Server Eniry Point it Doint

FMS emulator is depicted in Figure 1. Cell [3] MHS (PLC) from Shop Level 10 Shop Level
Figure 2 provides a photograph of the ~ Controller | b2 24| Controller

emulator. The emulator has four Pro-
cessing Centers, numbered 1 through
4. Each Processing Center (PC) is a
cell containing one primary subordinate processing re-
source (the Unit Process) and a dedicated MHS.

Figure 1: Schematic Layout for FMS Emulator

In Figure 3, we show the constructed PC. Its MHS is
represented by a carousel with six electromagnets which

Figure 2.: FMS Emulator under Construction

1074

Figure 3: The Emulated Processing Center

hold the jobs (represented by color-coded steel washers)
residing in either the input or output queues of the PC.
The movement of the carousel is controlled by a dedicated
Programmable Logic Controller (PLC). The PC control-
ler is a lap-top UNIX workstation which is placed on a
rostrum atop each PC. This controller is connected to the
MHS PLC via a dedicated RS 232 link, and its display
provides the summary status for the MHS.

The PC Controller summarizes each task as it is being
implemented by the subordinate unit process. Future plans
provide for the inclusion of another Unix computer at each
PC to animate the operation of the unit processes. Soft-
ware packages such as Deneb Robotics' Virtual NC can
provide the desired animation for machining processes.
(These packages are very expensive and are not critical to
current implementation of the emulator.)

Within the emulated FMS (see Figure 2), another sub-
ordinate process is the Fixturing Center (FC) which also
represents a cell. The structure and emulation of the FC is
very similar to that of a PC. The FC has a dedicated MHS
consisting of a primary carousel capable of holding six-

Gonzalez

teen jobs and two smaller carousels for loading and un-
loading jobs from the AGVs. The movement of these car-
ousels is controlled by a dedicated PLC. The FC has two
fixturing positions which represent the unit processes. A
dedicated lap-top UNIX workstation provides the real-time
status information for each fixturer. This same worksta-
tion also issue control messages to the dedicated PLC for
the FC's MHS.

The final subordinate process is the Cell MHS. Auto-
mated Guided Vehicles (AGVs) are employed as the MHS
and are emulated with a HO-scale electric trains. The train
layout is diagrammed in Figure 1 and pictured in Figure 2.
In this layout, there are over forty track segments which
can be individually powered. Sensory switches are pro-
vided on each track segment to detect the presence of an
AGV (see Figure 3). A Petri net has been developed to
insure that no more than one AGV ever occupies a single
track segment at a time.

A dedicated PLC receives directives from the Mate-
rial Handling controller to move a given AGV from one
location to another using the incorporated Petri net logic.
The dedicated PLC returns the location of each AGV as it
enters each track segment to the Material Handling con-
troller. The Material Handling controller is also respon-
sible for determining which of the pending material han-
dling transfers will be processed and which AGV will be
assigned to complete the requested transfer.

The cell controller is implemented by another UNIX
workstation. It 1s connected to each of the subordinate
PCs, FC and MHS controllers (and a network server) via
an ether network. Various commands and feedback infor-
mations flow across this network. The role of the cell
Controller is to orchestrate the flow of the entities of all
types (jobs as well as supporting resources) among the sub-
ordinate processes within the cell.

5. CONCLUSION

Presented here is a simulation and control software that
has the following properties:

1. The simulation is written in C++ providing the full
modeling flexibility of a general purpose language.

2. The set of basic SIMAN like blocks are available to
provide ease in modeling.

3. The package itself is a C++ library of routines and
objects. The package is portable and may be run on
any platform that has a C++ compiler.

4. This package supports subroutines not just submodels.
Subroutines can be called from anywhere in the model

Simulation-Based Controller Builder for F MS 1075

and returns to where they were called. You can even
call them recursively. Submodels do not do this.

5. The package can run in “control” mode. In this mode,
with the hardware drivers written, your simulation can
actually control the system. The simulated-time be-
comes real-time and the event list includes a pending
event list where the events are waiting for signals from
the hardware drivers. You can write a controller for
your system using SIMAN like blocks.

The system was also successfully tested on the physi-
cal FMS emulator. Future research is being done to build
an intelligent controller for this emulator using real-time
simulation and controller concurrently. That is, the con-
troller will run real-time simulations concurrently in order
to provide feed-forward information used for making in-
telligent control decisions.

REFERENCES

Davis, W. J., D. Setterdahl, J. Macro, V. Izokaitis, and B.
Bauman. 1993. Recent Advances in the Modeling,
Scheduling and Control of Flexible Automation. Proc.
of the 1993 Winter Simulation Conference, eds. G.W.
Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles,
143-155, The Society for Computer Simulation, San
Diego, CA.

Davis, W.J., B. Bauman, J. Macro and D. Setterdahl. 1994.
Constructing an Emulator for Research and Education
in the Control of Flexible Automation. Proceedings
of the ORSA Technical Section on Manufacturing Man-
agement Conf., eds. J. Buzacott and C.A. Yano, 151-
157.

Mize J. H., H. C. Bhuskute, and M. Kamath. 1992. Mod-
eling of Integrated Manufacturing Systems. //E Trans-
actions , 24(3):14-26.

Pegden, C.D., R.E. Shannon and R. P. Sadowski. 1995.
Introduction to Simulation using SIMAN (second edi-
tion). McGraw-Hill, New York.

Smith, J. S.,R. A. Wysk, D. T. Sturrock, S. E. Ramaswamy,
G. D. Smith and S. B. Joshi. 1994. Discrete Event
Simulation for Shop Floor Control. Proc. of the 1994
Winter Simulation Conference, Eds. J. D. Tew, S.
Manivannan, D. A. Sadowski, and A.F. Seila, 962-969.

AUTHOR BIOGRAPHY

MR. FERNANDO G. GONZALEZ is doctoral student
in Electrical and Computer Engineering at the University
of Illinois. He received his B.S. in computer science and
M.S. in electrical engineering at Florida International Uni-
versity. His current research addresses the real-time man-
agement of discrete-event systems. He is a recipient of an
NSF Support for Under Represented Groups in Engineer-
ing (SURGE) Fellowship and a GTE Minority Fellowship..

