Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

DYNAMIC MEMORY USAGE IN PARALLEL SIMULATION:
A CASE STUDY OF A LARGE-SCALE MILITARY LOGISTICS APPLICATION

C.J. M. Booth
D. 1. Bruce
P. R. Hoare
M. I. Kirton
K.R. Milner

L. J. Relf

Defence Research Agency,
St. Andrew’s Road, Malvern,
Worcestershire WR14 3PS, UNITED KINGDOM.

ABSTRACT

We report on a comparative study of the performance of
shared and distributed memory parallel simulation algo-
rithms on a large-scale military logistics simulation, and
describe the nature of the application and its parallelisa-
tion in some detail. We demonstrate that the patterns of
communication in the simulation were such that a stand-
ard implementation of Breathing Time Buckets (BTB)
was unable to achieve any speed-up. New variants of BTB
were designed and implemented, and we were able to
achieve a speed-up of 7.4 compared to a critical path limit
of 16.9. The logistics simulation contained a number of
complex data structures and its parallel implementation
was highly memory-intensive. The resulting patterns of
memory access significantly degraded the shared memory
simulation performance relative to the equivalent distrib-
uted memory version. These results cast doubt on the ef-
fectiveness of the current generation of shared memory
parallel computers in dealing with optimistic simulations
of large, dynamic scenarios.

1 INTRODUCTION

The emergence of relatively low-cost shared memory par-
allel computers has been a significant development in the
last few years. Many manufacturers now offer multi-proc-
essor workstations with a global memory model. The ad-
vantage of a single address space is that data is
immediately visible to each processor and message-pass-
ing can be implemented by simply passing data referenc-
es. Although shared memory machines have distinct
advantages over distributed memory ones, developing ef-
ficient shared memory simulators presents a number of
problems, particularly for memory-intensive applications.

The logistics application consisted of about 16,000
lines of C++ code and simulated the activity of the British
Army’s Royal Logistics Corps during the first few days of

975

amilitary campaign. There were three main features asso-
ciated with the logistics application that made it worthy of
detailed study in the context of parallel simulation. First,
it was highly memory-intensive: the state associated with
many of the simulation objects contained dynamic data
structures of considerable complexity, thus generating a
large overhead associated with saving and restoring state.
Second, it exhibited poor lookahead by repeatedly gener-
ating events in the near future. Finally, there were a
number of ‘self-propelled’ objects—objects that moved
rapidly ahead in simulation time independently of all oth-
er objects in the system, needing to be repeatedly rolled
back unless the optimism in the underlying simulator were
constrained in some way.

A major aim of our research programme was to build
general-purpose simulators capable of dealing with fully-
interconnected objects with no pre-determinable looka-
head. For these reasons, our work was based on optimistic
simulation protocols: BTB (Steinman 1992) and Time
Warp (Jefferson 1985). Our simulators were coded in C++
and all implemented the same simulation programmer’s
interface (SPI). Our shared and distributed memory com-
puters were both SPARC-based and ran the same operat-
ing system (Solaris 2.3), enabling us to make a direct
comparison between simulators.

The remainder of this paper is arranged as follows. In
section 2, we describe the logistics simulation. Our shared
and distributed memory simulators are described in sec-
tions 3 and 4, respectively; extensions to the standard BTB
algorithm are detailed in section 5. We present our results
in section 6 and summarise our work in section 7.

2 LOGISTICS APPLICATION

2.1 Major functional components

Our logistics model (Hoare et al. 1995) simulated the de-
ployment of equipment during a military campaign. The

976 Booth et al.

re-supply model consisted of fixed first-line storage areas
(HQ and Division), intermediate storage areas (Brigade
and Battle Group) and front-line (Unit-level) dumps con-
nected by a network of links as shown in Figure 1.

Storage areas consisted of a number of separate areas
called circuits in which stacks of stores were arranged in
rows. Trucks in a given storage area traversed the stacks
collecting stores and were then assembled into convoys
for dispatch to a target storage area or dump where they
would unload. A dump consisted of a number of trucks in
the process of being unloaded as stores were required.
Trucks returned to their starting point when they were
empty. The base personnel were also modelled in that they
were required to rest for a minimum number of hours per
day.

-
gim

N

o Batile
Divisions Brigades Groups Units

HQ

—

Figure 1: The Basic Layout of the Logistics Scenario

The model operated on a daily cycle; at the beginning
of the simulation half of the trucks in the storage areas
were already loaded awaiting dispatch. For each simulat-
ed day, the loaded trucks were dispatched to destinations
to satisfy actual requirements and the remaining empty
trucks were loaded with the predicted requirements for the
next day. In the results we report on, the model was simu-
lated for a period of two days.

We used two configurations based on Figure 1 which
we will refer to as single-division and twin-division, in
which the single HQ provided orders for one and two hi-
erarchies respectively.

2.2 Simulation Objects

The storage areas and dumps were treated as simulation
objects, and each had a significant amount of associated
state and processing. For the results reported in section 6,
the simulation objects were distributed across the proces-
sors in a round-robin fashion.

A major factor affecting the writing and debugging of
large-scale optimistic simulations is state saving. The lo-

gistics application contained a number of complex data
structures which needed to be recoverable in the event of
a rollback. Neither full state saving nor incremental state
saving offered attractive solutions—in particular, it was
not possible to determine before an event was processed
just how many elements in a particular data structure
would change.

In order to minimise the programming effort associated
with the saving of state, we developed a prototype data
structure manager which maintained its own time-depend-
ent state information. Its implementation as a C++ class
hid the details from the model writer but was only a half-
way solution to the problem as it only dealt with list types.
We shall report elsewhere on our results using a version of
logistics in which state saving was carried out transparent-
ly for all data types using persistent data structures
(Bruce 1995).

2.3 Event Distributions

Within the hierarchical structure depicted in Figure 1, a
simulation object only communicated externally with its
immediate ancestor and descendants; communication be-
tween objects at the same level in the hierarchy did not
take place. Excluding start-up messages, the ratio of intra-
to inter-object messages was about 5:1.

Many of the events were concerned with the move-
ment, loading and unloading of trucks around the Battle
Group storage areas. In fact, for the single-division con-
figuration, these types of event that the sixteen Battle
Groups scheduled for themselves accounted for about
45% of the total number of generated messages.

Each of the 48 unit-level storage dumps independently
generated a re-order event for itself every simulated half-
hour. The unit-level storage dumps were therefore essen-
tially self-propelled objects.

The major interaction between storage areas at differ-
ent levels arose from the sending and returning of trucks:
on the outward journey the trucks were filled with sup-
plies, unloaded at pre-determined stacks and returned to
the storage area that dispatched them. At the unit-level
dumps, supplies were consumed at pre-determined rates.
The units could also send urgent requests to the next level
up in the hierarchy for supplies.

In Figure 2, we present the measured distribution of
lookahead times for the single-division scenario, where
we define the lookahead to be the difference between the
receive and send times of an event. Over half of the events
were generated with time stamps less than two simulated
minutes into the future. At an even finer level of granular-
ity, nearly ten thousand events were scheduled with times
less than 0.01 simulated minutes. The events at thirty min-
utes corresponded to the re-order events fired off by the
unit-level storage areas.

Dynamic Memory Usage in Parallel Simulation 977

20 —

Number of Events (000's)
5 &

L8]

An [T o H

0 10 20 30 40
Lookahead (mins.)

Figure 2: Distribution of Lookahead Times for the
Single-Division Configuration

20

Number of Events (000's)
3 >

w
T

o =1 H [

10us 100us ims 10ms 100ms 1s
Process Time

Figure 3: Distribution of Event Processing Times
for the Single-Division Configuration

Figure 3 shows that the distribution of event processing
times was very broad—ranging from about 10 ps to 1.0s—
though the overwhelming majority resided in the range
0.1—10 ms. The larger granularity events were involved in
searching a storage area for supplies—this search in-
volved iterating over heavily-nested loops. The granulari-
ty of these types of event was very data-dependent and
also led to the consequence that an event processed for the
second time following a rollback sometimes required a
significantly different amount of CPU time than was need-
ed to process it initially.

Finally, we note that many of the events in the logistics
simulation needed to pass lists of data values (for exam-
ple, a truck contained a list of the pallets it was carrying).
Due to the inherent difficulties in passing dynamic data
structures between different memory spaces, these lists

were implemented as fixed-size arrays. This made the
copying and movement of the events straightforward, but
added to the memory consumption of the simulation. In
practice, we found the event sizes to be grouped around 1
Kbyte, 8 Kbytes and 16 Kbytes.

3 SHARED MEMORY SIMULATORS

3.1 Hardware

The shared memory computer we used was an 8-processor
SPARCserver 1000 (SS1000) manufactured by Sun Mi-
crosystems. It contained 50 MHz SuperSPARC proces-
sors with 1 Mbyte of external cache per processor and a
64-bit wide packet switched XDBUS operating at 40
MHz, giving a peak bandwidth of 320 Mbytes/s to its 256
Mbyte memory. The Solaris threads library provided the
necessary parallel programming support.

3.2 Memory Management

Our early performance experiments revealed that the dy-
namic memory routines of the compiler scaled very poor-
ly. Since our parallel simulators made considerable use of
dynamic memory we found it necessary to implement our
own dynamic memory algorithm, which we did by means
of a C++ MemoryManager class. Moreover, these ex-
periments demonstrated the significant effect data locality
could have on performance cf. (Fujimoto and Panesar
1995), and thus each processor had its own MemoryMan-
ager.

In the interests of access speed, memory within a Mem-
oryManager was maintained using a set of free-lists.
We used a BSD-style algorithm, in which a free-list was
maintained for each power of 2. Memory returned by the
MemoryManager was also aligned on cache-line
boundaries and no block returned was smaller than the
cache-line size (64 bytes in our case). These restrictions
were designed to prevent the problems associated with
false sharing (Torrellas et al. 1994) that can occur with
multi-processor cache-based machines. Dynamic memory
management on a given processor was also completely in-
dependent of all other processors: there were no shared
variables and no concatenation of blocks or merging of
free-lists. In addition, free-lists operated a ‘last-in first-
out’ policy, which meant that memory returned from a
free-list had a good chance of residing in the local cache
of its processor.

In our current version, the MemoryManager class
had no mechanism for preventing a net transfer of memo-
ry from one processor to another, which could be a prob-
lem if the simulation contained net source or sink objects.

978 Booth et al.

3.3 Breathing Time Buckets

Despite requiring synchronisation at the end of each cy-
cle, the Breathing Time Buckets (BTB) algorithm (Stein-
man 1992) has the advantages of simplicity coupled with
a certain elegance and robustness. BTB consists of a
number of distinct phases: event processing and local
event horizon (LEH) exchange; global simulation time
(GST) determination; event committal and exchange;
sorting and merging event queues; local rollback and
housekeeping. On the SS1000, we used the Solaris threads
library to bind one ‘main loop’ thread to each processor.

Each processor maintained its own separate event
queue and was responsible for a subset of simulation ob-
jects. Output messages from a given processor were in-
serted directly into the input queues of the appropriate
nodes. GST was determined via a set of shared variables
arranged in a tree structure. As each processor crossed its
LEH it informed its parent of the crossing and wrote its
LEH value into a single global variable if it was less than
the value recorded thus far. Once the root node was in-
formed that all LEH’s were crossed, it set the global
Boolean al1lCrossed to true, allowing all processors to
move on to the next phase of the BTB cycle. We used a
tree-based algorithm to ascertain when event exchange
was completed, since this was substantially faster than us-
ing a shared counter.

3.4 Time Warp

Our implementation of Time Warp was similar in spirit to
the BTB implementation described above. A ‘main loop’
thread was run by each processor. Again, there was no
global input queue; output messages were inserted into an
unsorted input buffer residing on the receiving processor.
The input buffer was scanned by the receiver and messag-
es extracted and placed into its pending queue in time
stamp order. After an event was processed, it was inserted
into the processed event queue associated with its simula-
tion object. Rollback was implemented using direct can-
cellation (Fujimoto 1989).

We used a version of the global virtual time (GVT) al-
gorithm described in (Fujimoto and Hybinette 1994). This
algorithm makes use of the fact that on a shared memory
computer there are no messages in transit and has the ad-
vantage of being able to operate without closing the sim-
ulation down. Also, there is no need to acknowledge
messages or perform rounds of token passing.

4 DISTRIBUTED MEMORY SIMULATORS

4.1 Hardware

We used a 22-processor Meiko CS-2 containing 50 MHz
SuperSPARCs with 1 Mbyte of external cache and
64 Mbytes of memory per processor. Two of the proces-
sors were I/O nodes with file systems mounted and con-
nections to ethernet; the remaining 20 processors
effectively operated as diskless workstations served by the
/O nodes. Each processor had its own dedicated interface
to a high-performance communications network—a
Meiko designed communications processor named
Elan—which provided 50 Mbytes/s bisectional band-
width over a physical link operating at 0.6 Gbit/s in each
direction. For a 64 byte message, the latency (including
transfer) and effective bandwidth between UNIX process-
es on different processors was 12 us and 5.54 Mbytes/s;
for 64 Kbyte messages the corresponding figures were
1.491 ps and 43.95 Mbytes/s.

The CS-2 also supported a global data space, and very
efficient message transfers were achievable by the direct
memory access (DMA) transfer procedures supported by
the Elan processor. Also, there was direct support in hard-
ware for processor synchronisation.

4.2 Breathing Time Buckets

The parallel BTB program comprised the same executable
running on every processor. The BTB processes interacted
via message passing and hardware synchronisation. In or-
der to perform the LEH broadcast as efficiently as possi-
ble, we used the global memory provided by the CS-2.
Thus when a processor crossed its LEH, it broadcast this
value via low-level DMA’s to all other processors. When
all LEH’s were crossed, each BTB process was able to de-
termine independently the global simulation time.

During the event committal stage, each BTB process
stored its generated events and placed them in an array of
message buffers, according to their destination. Message
sending was accomplished using the Elan Channel Proto-
col, which provided a fully robust yet very efficient tech-
nique for sending variable sized messages. After sending
its messages, each BTB process performed a hardware
synchronisation and blocked until all processors reached
this point.

5 EXTENSIONS TO BTB

During the course of our work on logistics, we developed
three variants on the basic BTB algorithm, which we
named limited, extended and limited-extended. Limited
BTB stops processing events as soon as its local event ho-
rizon (LEH) is crossed. This can significantly reduce the

Dynamic Memory Usage in Parallel Simulation 979

number of potentially costly rollbacks but reduces the op-
timism of the simulator. Extended BTB folds back into the
event queue events generated for objects on the same
processor. Such events are not in general considered for
the LEH calculation and for applications like logistics,
this can greatly reduce the number of BTB cycles required
for a given end simulation time.

There is a slight subtlety in the implementation con-
cerning the way in which extended BTB interacts with op-
timistically processed events. A processor may continue
to process beyond its LEH in the hope that optimistically
processed events will not need to be rolled back. Unfortu-
nately, a local event may cause one of these optimistically
processed events to roll back; if this is the case, the local
event must contribute to LEH—if it did not, then any op-
timistically processed events that should have been rolled
back may be incorrectly committed.

Another consequence of extended BTB is that in simu-
lations which consist entirely of local events, no BTB cy-
cles will be triggered and therefore no dynamic memory
will be recovered. Extended BTB therefore requires an ad-
ditional synchronisation mechanism, akin to GVT in Time
Warp, in which memory recovery is forced at regular in-
tervals.

As its name suggests, limited-extended folded events
back into the event queue but stopped processing after the
LEH was crossed.

6 RESULTS

The following results were obtained using simulators that
had already demonstrated good speed-up on the queuing
network application described in (Damitio et al. 1994).
For example, the distributed memory BTB simulator
achieved a maximum speed-up of 17.5 on 20 processors
and achieved significant speed-ups over a range of param-
eters. There was also no significant difference in perform-
ance between the shared memory and distributed memory
simulators using the synthetic application.

All of the speed-up figures quoted in the results below
were calculated relative to an optimised sequential simu-
lator.

6.1 Distributed Memory

The speed-up figures obtained for the two logistics scenar-
ios (single-division and twin-division) on the CS-2 are
shown in Figures 4 and 5 respectively. Standard BTB was
unable to achieve any speed-up on the single-division con-
figuration (and this result was repeated on the SS1000).
The main reason for this was the large number of roll-
backs that occurred as a result of objects sending messag-
es a short distance into the future. These messages often

triggered costly rollbacks, severely degrading the overall
performance.

O———Climited BTB

G- - -Olimited, extended BTB
© - - O extended BTB

6" x xstandard BTB

2 4 é 8 “2 16 20

Number of Processors
Figure 4: Speed-up for the Single-Division Logistics
on the CS-2

O—-Olimited BTB . P
G- - -Olimited, extended BTB .7

speedup
b

6 8 12 16 20
Number of Processors

Figure 5: Speed-up for the Twin-Division
Logistics on the CS-2

Overall, the best speed-up was obtained with limited-
extended BTB; a speed-up of 4.1 was achieved on the sin-
gle-division logistics (out of a maximum possible speed-
up of 8.1) and 7.4 achieved on the twin-division scenario
(out of a maximum of 16.9). Our maximum speed-up fig-
ures were obtained using a critical-path analysis (Wieland
et al. 1992) in which the best possible completion time for
a simulation was calculated (neglecting state-saving and
message-passing overheads). The twin-division scenario
was so memory-intensive that the extended BTB simula-
tor would not run it to completion and the limited and lim-
ited-extended simulators could only do so using at least 8
and 6 processors respectively.

6.2 Shared Memory

The speed-up curves for single-division and twin-division
logistics simulations on the SS1000 are shown in
Figures 6 and 7 respectively. If we compare these results
with those obtained on the CS-2, we see that the speed-ups
achieved on 8 nodes were significantly worse than the
equivalent CS-2 values. For single-division logistics, the
speed-up was 2.3 on the SS1000 compared with 3.3 on the
CS-2; for the twin-division we obtained a speed-up of 2.7

980 Booth et al.

on the SS1000 and 4.0 on the CS-2. In terms of run-time,
the distributed memory simulator consistently outper-
formed its shared memory counterpart by about 50%.

4.0
©o—o limited BTB

35T o---alimited, extended BTB
© - - o extended BTB
30 &~ — o Time Warp

Number of Processors

Figure 6: Speed-up for the Single-Division

Logistics on the SS1000
4.0
o—o limited BTB
s ©o- - —o limited, extended BTB
© - - o extended BTB
3.0 - o~ — a Time Warp

Number of Processors

Figure 7: Speed-up for the Twin-Division Logistics
on the SS1000

A breakdown of overheads for limited BTB is shown in
Figure 8. ‘wait LEH’ represents the waiting time at the
end of a cycle when a processor has reached its LEH, and
1s waiting for all other processors to synchronize;
‘save state’ is the time spent saving the state associated
with each event; ‘commit’ includes memory recovery; the
main constituents of ‘housekeeping’ are the merging and
sorting of pending event queues; and ‘wait exchange’ is
the time spent awaiting messages from other processors at
the end of a cycle.

Much of the overhead associated with BTB was in the
wait LEH time at the end of a cycle. The different BTB
variants also exhibited quite different behaviour for the lo-
gistics application. Limited BTB (Figure 8) generated just
over 1800 BTB cycles in the example shown and had no
rollbacks; a substantial amount of time was spent waiting
at the end of acycle, but no time was wasted unnecessarily
processing events. Extended BTB generated just 40 cycles
for the same simulation, and it spent much less time wait-
ing for inter-processor synchronisation; however, it also
spent a considerable amount of time processing events

that were subsequently rolled back (this was roughly 20%
of the total number of events for extended BTB). The
overall effect was that limited BTB consistently outper-

formed extended BTB.
100 T
[] waitLEH

of]
° ? BXJ save state
g 5 §
3 80 commit
‘g 70 [N\J housekeeping T
$60t [wait exchange -
=
8 50 /
2 .
S 40T .
<
B 30}]
£
S 20F ;
o

10

LSS AL LLLLLLLLLLL.

) 4 6 8
Number of Processors

Figure 8: Breakdown of Overheads for the Single-
Division Logistics Simulation on the SS1000 using
limited BTB

6.3 Degradation of event processing time

When we analysed the breakdown of the overall run-time,
we discovered that on the SS1000, the average time to
process an event degraded significantly with increasing
numbers of processors (Figure 9). Similar degradation
was not observed on the CS-2 (Figure 10) and this is the
main reason for the performance difference between our
shared and distributed memory simulators.

There is also a difference between the event processing
time for the sequential simulator and the parallel simula-
tors running on one node. This is due to the overhead of
the state-saving implementation, which is absent for the
sequential simulator. Also, memory access times were
slightly better on the CS-2, compared to the SS1000,
which meant that the absolute run-times for the sequential
simulator were consistently 10% less than on the SS1000.

Before we consider possible explanations for the deg-
radation in event processing time on the SS1000, we
should note that this behaviour is observed both for BTB
and Time Warp; it is not specific just to BTB (or its vari-
ants). The event processing time is being averaged over
committed events, so that a comparison is being made
over exactly the same set of events. Also, the memory
management allocator used was designed to avoid false
sharing effects, in which two or more independent varia-

Dynamic Memory Usage in Parallel Simulation 951

375 T T y —
o——o limited BTB

325 o - - 0 limited, extended BTB
o- — ¢ extended BTB

275 - O&—20 Time Warp

225

175

average processing time/ms

<+— sequential simulator

1.25 - : y -
seq 1 2 4 6 8
Number of Processors

Figure 9: Average Event Processing Time for the
Single-Division Logistics Simulation on the SS1000

3.25

o——o limited BTB
o - - o limited, extended BTB
o~ — ¢ extended BTB

275 -

225

175
<+— sequential simulaYor

average processing time/ms

126 Lo L . "
seql 2 4 6 8 12 16 20
Number of Processors

Figure 10: Average Event Processing Time for the
Single-Division Logistics Simulation on the CS-2

bles share the same cache line. Moreover, it is worth bear-
ing in mind that our synthetic queuing network
application did not show any such degradation in event
processing time.

Our hypothesis is that the shared memory performance
is being affected by the bus traffic generated, since logis-
tics is a very memory-intensive application, typically con-
suming 50 Mbytes or more in a typical run. One of the
difficulties in programming shared memory machines is
in analysing and diagnosing performance bottlenecks.
Unfortunately, reliable and accurate tools for monitoring
cache miss rates were not available, and therefore in order
to test whether it was the bus traffic causing the problem
we introduced random delays into our shared memory
BTB simulator, immediately prior to an event being proc-
essed. The rationale here is that as the delay was progres-
sively increased, the bus ftraffic density would be
correspondingly reduced, as each processor spent more
and more time waiting. The results of applying delays to
the SS1000 BTB simulator are shown in Figure 11.

The average processing times for extended and limited-
extended decreased significantly as the wait time was in-
creased. This effect was less marked for limited BTB, but
under normal conditions (i.e. without any artificially in-

N O—COlimited BTB
O - - Olimited, extended BTB

O — Oextended BTB

average processing time/ms

125 L . T R
0O 50 100 150 200 250 300 350 400 450 500

Average wait time (ms)

Figure 11: Average Processing Time as a Function
of Wait Time on the SS1000 (all data points were
generated using 8 processors with wait times
normally distributed and variance = mean/2)

troduced waiting time), limited spends considerably long-
er waiting for synchronisation at the end of a cycle,
compared to either extended or limited-extended. Under
normal conditions it would therefore generate less bus
traffic and hence be less prone to degradation in event
processing time than either extended or limited-extended.

The explanation for the lack of degradation in event
processing time for our synthetic queuing application
(Damitio et al. 1994) is that the spin loop at the core of the
event processing procedure did not generate any bus traf-
fic. In fact, by artificially increasing the state size of each
server object and modifying its event processing, we were
able to demonstrate the same effect observed with the lo-
gistics application.

7 CONCLUSIONS

We have presented a study of the application of parallel
simulation technology to a large-scale military logistics
simulation and compared its performance using both
shared memory and distributed memory computers. We
have developed extensions to the basic BTB algorithm
(limited, extended and limited-extended) and have man-
aged to exploit roughly half of the available parallelism
for a large-scale logistics simulation on the CS-2.

Comparing our shared and distributed memory simula-
tors, we have shown that with a memory-intensive appli-
cation like logistics, the speed-up obtainable can be
affected significantly by specifically shared memory ef-
fects. Since optimistic simulations tend to make heavy use
of dynamic memory, these results would seem to cast
doubt on the capability of the current generation of multi-
processor workstations in dealing with optimistic simula-
tions of large, dynamic applications.

ACKNOWLEDGEMENTS

It is a pleasure to thank Brian Roberts and Brian Merri-
field for their long-standing support and encouragement.

982 Booth et al.

REFERENCES

Bruce, D. 1995. “The treatment of state in optimistic
systems”, pp 40—49 in Proc. Ninth Workshop on
Parallel and Distributed Simulation, Lake Placid,
New York, 14-16 June 1995.

Damitio, M. et al. 1994. “Comparing the breathing time
buckets algorithm and the Time Warp Operating
System on a transputer architecture”, pp 141-145 in
Proc. Modelling and Simulation (SCS European
Simulation Multiconference) 1994, Barcelona, Spain,
1-3 June 1994.

Fujimoto, R. M. 1989. “Time Warp on a shared memory
multiprocessor”, Transactions of the SCS, Vol. 6, No.
3, July 1989.

Fujimoto, R. M. and M. Hybinette. 1994. “Computing
global virtual time in shared memory
multiprocessors”, Georgia Institute of Technology
Technical Report, August 1994.

Fujimoto, R. M. and K. S. Panesar. 1995. “Buffer
management in shared memory Time Warp systems”,
pp 149-156 in Proc. Ninth Workshop on Parallel and
Distributed Simulation, Lake Placid, New York, 14—
16 June 1995.

Hoare, P. R. et al. 1995. “The application of high
performance parallel computing to military
simulation”, pp 115-119 in Proc. Military,
Government and Aerospace Simulation Conference,
Phoenix, Arizona, 9-13 April 1995.

Jefferson, D. R. 1985. *“Virtual time”, pp 404—425 in
ACM Transactions on Programming Languages and
Systems, Vol. 7, No. 3, July 1985.

Steinman, J. S. 1992. “SPEEDES: A multiple-
synchronization environment for parallel discrete-
event simulation”, pp 251-286 in International
Journal of Computer Simulation, Vol. 2, No. 3, 1992.

Torrellas, J., M. S. Lam and J. L. Hennessy. 1994. “False
sharing and spatial locality in multiprocessor caches”,
pp 651-663 in IEEE Transactions on Computers, Vol.
43. No. 6, June 1994.

Wieland, F. et al. 1992. “A critical path tool for parallel
simulation performance optimization”, pp 196206 in
Proc. 25th Hawaii International Conference on
System Sciences, Vol. II, Kauai, Hawaii, 7-10 January
1992.

AUTHOR BIOGRAPHIES

CHRIS BOOTH has a BA in Mathematics (1986) and an
MSc in Computation (1987) from the University of Ox-
ford. He is interested in adaptive synchronisation algo-
rithms for PDES, and is currently working on the
APOSTLE simulation language.

DAVID BRUCE has a BSc in Mathematics (1988) from
the University of Kent at Canterbury. His research inter-
ests include parallel discrete event simulation, state saving
for optimistic computation, programming languages and
type systems and he is currently working on the APOS-
TLE simulation language and the DoD High Level Archi-
tecture (HLA) for simulation.

PETER HOARE has a Computer Science BSc and PhD
from Royal Holloway, University of London. His research
interests currently include distributed/parallel simulation,
computer graphics and Internet protocols and systems. He
is involved in the UK STOW programme as the technical
lead on the DoD HLA.

MICHAEL KIRTON has BSc and PhD degrees in Phys-
ics, and before joining DRA held an IBM (UK) Fellow-
ship. He has published over thirty scientific papers in
fields ranging from noise in solid-state microstructures to
parallel simulation.

ROY MILNER has a BSc in Mathematics (1983) from
the University of Nottingham. His research interests in-
clude PDES on shared memory machines and he is cur-
rently working on the DoD HLA.

TAN RELF has a BEng in Engineering Electronics from
the University of Warwick (1989). His research interests
include the application of PDES to military simulations.
He is currently working on a large-scale DIS air-ground
simulation.

