
Proceedings of the 1996 Winter- Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

A SIMULATION OF THE EVACUATION OF AMERICAN CITIZENS WITH AN OBJECT-ORIENTED,
ANIMATED MODEL

Jeffrey E. Sumner
Eric A. Zahn

TASC, Inc.
2555 University Boulevard
Fairborn, OH 45342, U.S.A.

ABSTRACT

This paper highlights a model developed by TASC, Inc.
under contract to the Defense Advanced Research
Projects Agency (DARPA). This project models and
simulates an evacuation of American citizens and other
important foreign nationals from a destabilized foreign
country by utilizing available U.S. military resources.
This project demonstrates how different evacuation
plans can quickly be compared analytically through
computer simulation. The software chosen for the
simulation and analysis is the Integrated Model
Development Environment (IMDE), an object-oriented
discrete-event simulation package. The implementation
of the model features reconfigurable mission plans and
detailed silTIulation-independent animations. This lTIodel
was demonstrated at the 1995 Joint Warfare
Interoperability Demonstration (JWID).

1 INTRODUCTION

The Department of Defense (000) has an ongoing goal
to improve the quality and accuracy of crisis action
planning in an increasingly constrained global
environnlent. With decreasing manpower and resources,
greater emphasis has been placed on tools to aid the high
level military planners. When a crisis situation arises,
and the National Command Authority (NCA) has
determined that military intervention is required, a Joint
Task Force (JTF) is assembled to cope with the situation.
This paper highlights research in the application of
simulation as a JTF planning tool.

Much of the current research and development in
lnilitary support systerrts is presented each year at the
Joint Warfare Interoperability Demonstration (JWID),
which features the application of new technologies to a
hypothetical scenario indicative of modem military
engagements. For JWID 1995, the scenario was partly
focused on a humanitarian assistance situation arIsIng

967

from a typhoon in the south\vestem Pacific. During the
relief efforts, civil unrest occurs in the fictional nation of
Gompin, a nation \vith strong ties to the United States
and home to a large nunlber of U.S. citizens. The unrest
forces the NCA to authorize a Non-Combatant
Evacuation Operation (NEO), \vith the goal being to
safely evacuate all U.S. citizens with minimal loss of life.

A JTF is asseolbled to plan and execute the NEO
operation. To help the JTF with this planning process for
the NEO, a simulation was created using IMDE, the
Integrated Model Development Environlnent. The
simulation takes into account all possible resources that
could be used in the operation, and allows the JTF
planners to enter a number of different evacuation plans.
These plans include information about what resources to
utilize, what times the evacuation order should be given,
and other pertinent data. The simulation of the plan is
animated so the JTF planners can visualize plan
execution and identify any problems before a Course of
Action (COA) is actually selected.

Section 2 of this paper describes the model in-depth,
including the different requirements that need to be
incorporated. Section 3 describes IMDE, the simulation
package chosen for the project, how the model was
implemented, and the animation capabilities. Section 4
narrates how the final project comes together, explaining
what is involved in the final version of the project and
\vhat was seen at JWID '95. Section 5 Iists recent
improvements to the model~ finally, Section 6 concludes
the paper by summarizing the project and proposing
enhanceolents.

2 MODEL REQUIREMENTS

JWID '95 focused on providing joint service
cOlnmanders with the technological resources to deal
with a disaster scenario. In this case, an island nation in
the South Pacific has been hit by Typhoon Jennifer, an
intense tropical storm. This nation, fictionally named



968 Sunlner and Zahn

Gompin, was devastated; electrical and telephone
services were eliminated for almost all of the island.

At the request of the Gompin government. the
United States immediately begins mobilizing disaster
relief efforts. The already strong rebel factions in
Gornpin seize the opportunity to challenge the strained
Gompin government in the aftermath of the storm.

At this point in the disaster scenario. U.S. advisors
anticipate that matters will worsen on the island and that
it will become unsafe for any U.S. citizens to remain in
Gompin. Intelligence reports indicate that riots and
violence, directed towards anyone connected with the
current government, may break out at any time. The
decision is made by the NCA to assemble a JTF to
evacuate all American citizens and designated foreign
nationals from Gompin as quickly as possible with
minimal civilian casualties.

2.1 Specifics of a NEO

The NEO involves many steps in its execution. First. a
decision must be made as to how many planes and ships
will be used in the operation. There are two major U.S.
Air Bases in the region available for the operation.
Kadena AB at Okinawa, and Yokota AB just \vest of
Tokyo, Japan. Both have C-130s and C-141 s ready to
transport citizens from Gompin to Guam, another island
which is a U.S. protectorate that has escaped major
danlage from Typhoon Jennifer.

There is also the issue of where the evacuation
point(s) on Gompin will be. The Gonlpin government
has guaranteed the use of an air strip to the U.S.:
however, it is away from the nlajority of American
citizens living in the capital city area. There is a
commercial airport available for the capital city, but the
JTF should not rely on that airport to be open due to the
civil unrest. In addition, a slnaller airport is available
near the northwest part of the island: but intelligence
suggests it has a short runway and cannot handle many
of the larger transports. The one major Gompin seaport
will also be considered.

Transportation of the citizens to the evacuation
points is also another issue. The island contains a
network of highways which the citizens will utilize to
get to the evacuation points. The actual speed of the
citizens \vill vary based on terrain and road conditions.
Also, some highways may be impassable due to the
rebel activities on the island: these roadblocks will also
have to be modeled.

Once the Arnerican evacuees arrIve at the
evacuation points, they will either load onto an
Anlerican plane or ship already present, or \vill wait for
one to arrive. The tinles of departure for the planes
and/or ships \vill be determined by an external plan file,

which will be read in by the model. More specifics and
requirements of the plan file will be detailed in section
3.5. The planes, once they arrive, will load the evacuees
and leave for Guam. Each evacuee has a certain loading
time that must be factored in: also, the issue of how long
a non-full plane will wait at a port for other evacuees to
arrive must also be addressed in the model.

The final result of the model will enable the lTF to
enter different plans into the simulation and analyze the
effectiveness of each plan. For instance, if the plan is to
utilize only half of the planes available, keeping half of
the force in reserve for other contingency operations,
how much longer will the evacuation process take? The
JTF can receive this information from the NEO
simulation and then make a knowledgeable decision.

2.2 The Object Model Working Group

The OARPA JTF Advanced Technology Demonstration
(ATO) is a demonstration of applied technology for the
next generation command and control environment.
This system includes an open architecture, infrastructure,
various servers, and a wide array of applications. In
order for the servers and applications to share
information, they must also share the internal
representations of the data. For instance, the situation
server needs to pass the current situation to the planning
application so the JTF planner can review the situation
and act accordingly. The situation would be contained in
a collection of objects, each with its own states and
behaviors.

To facilitate widespread intercommunication, there
needs to be a standard for the objects so each application
knows the structure and capabilities of the objects. The
Object Model Working Group (OMWG) is a DARPA
subgroup in charge of developing a cOlnmon schema that
defines the common objects for use in the JTF-ATD. A
skeleton schema is already available, with naming
conventions and concept docunlentation. Figure 1 shows
a simplified extraction of the OMWG hierarchy for two
classes representing military aircraft, the C-130H and the
F-18. Both descend from the Platform class, one of the
key classes in the hierarchy (Carrico 1995).

One of the major objectives of the NEO model was
to evaluate the OMWG for application in an object­
oriented analysis model. The objects of the NEO
simulation represent a small subset of the OMWG
schema, but have provided valuable insight into the use
and complexity of such a schema in modeling and
sinlulation. The following section details the software
that was chosen for the model and how the model was
built to fulfill the requirements listed in this section.



Simulation of the Evacuation of American Citizens 969

Figure 1: The OMWG Schema for the C-130H and the
F-18

3 NEO Implementation

The development of the NEO model was performed by
integrating several different software engineering tools
and methodologies. This section briefly reviews several
of these. First, a discussion of the Integrated Model
Development Environment (IMDE) is presented.
Following this is a description of the class selection and
design process used in the architecture of the NEO
model. Third is a discussion of how the Model-View­
Controller (MVC) methodology was used, as well as the
benefits received. Next is a discussion of the animation
capabilities that were incorporated into the model. Last
is a presentation of the plan file, which provides
reconfigurable mission plans for rapidly developing and
simulating various COAs.

3.1 An Overview of IMDE

IMDE is a domain-independent CASE tool used to
develop and analyze object-oriented discrete-event
simulation lTIodels. The USAF Logistics Research
Division of Armstrong Laboratory has funded the
development of IMDE at TASC, Inc. since 1990. It is a
single application running under either UNIX or
Windows NT, and directly interfaces with the Versant
Object-oriented Database Management System
(ODBMS). IMDE was chosen as the simulation
package for this project due to its flexibility in modeling
detailed situations, its object-oriented, modular
development environment, and its graphical descriptions
of the behavior of objects in the simulation.

IMDE is strongly based in object-oriented
technology. All model parts in the simulation are
defined as "objects" that have both variables that
describe the state of an object, which are called
attributes, and functions that specify its behavior, \vhich
are termed methods. By storing all objects in a
distributed OOBMS, simulation objects can be shared
and re-used in other simulations without recoding.

Objects from any field of study can be defined in
IMOE. Models from the aerospace, business, education,
and manufacturing fields have all been simulated and
analyzed with equal success. The construction of
simulation projects in IMDE can be done in a group
environment, which allows multiple developers to create
objects simultaneously and link them together. Finally,
IMOE contains a comprehensive data analysis
environment, where simple statistics, confidence
intervals, hypothesis testing, and sensitivity analysis can
be performed. Time trace plots of desired values can be
shown quickly and easily.

The construction of models within IMOE is based
on building objects and graphically asselnbling them to
create complete simulation models. Templates for the
design of these objects are called classes. For example, a
C-130 class would be created that would contain all of
the attributes and methods necessary to model an actual
C-130 aircraft in the simulation. Several "instances" of
this single class can be created in the simulation, each of
which would model a specific C-] 30 aircraft. The
definition of a class in IMDE includes detailing its
attributes and methods. A graphical editor is employed
to visually define all methods of any class. The editor
allo\vs a developer to define different behaviors of a
single class with a separate flow chart that sequentially
details the behavior logic. Flow charts are created by
dropping nodes that represent simulation actions onto a
canvas and connecting them in the correct order. IMDE
uses these networks to generate source code in
MODS1M II, an object-oriented simulation language, or
C++ (Clark 1994).

Once all classes for a simulation have been defined,
they can be linked together to form a model in IMDE's
project editor. This editor allows the user to specify
which entities will be present in the model and at what
quantities. The project diagram illustrates the lo'has a"
relationship of model parts, thereby representing the
aggregation relationships of the model. With this
framework in place, IMOE allows the user to further
configure the model. Class substitution can also be
performed, replacing objects in the model with other
objects sharing the same inheritance hierarchy. For
instance, if a modeler wants to determine the impact of
using C-141 aircraft instead of C-130s, then a new C-14]



970 Sumner and Zabn

class would be developed and substituted for the C-130
class in the simulation.

Also, lists of objects can be shortened or expanded
in the project diagram. For example, one of the
attributes of the Resource class in NEO is a list of
aircraft. The initial number of aircraft that the Resource
contains can be changed at this level, and a nevv'
simulation could be run without recompilation. Each
component of the project can have input sets and
statistics collection sets attached, detailing which
attributes are parameters to be specified by the user, and
which are noted for statistics collection.

Once the project diagram is complete, IMDE
generates source code in MODSIM II or C++. This
source code is then compiled and linked to create an
executable simulation. All of this, including the running
of the simulation and subsequent data collection, can be
performed within IMDE.

At the conclusion of the simulation runes), the data
generated by the statistics collector is loaded into the
database and can be analyzed within IMDE. As stated
above, IMDE provides a complete data analysis
package, calculating standard statistics as means,
deviations, skews, and medians, as well as generating
histograms, time traces, and scatterplots from the data.

3.2 Class Selection and Design

A main requirement is to have the class selection for the
NEO model adhere to the OMWG schema. Therefore, a
large number of classes were developed in order to
match the OMWG schema and satisfy the needs of the
NEO model. Since the number of classes involved is so
large, this section briefly describes only the base level
classes.

At the root level of the simulation is the JTF class.
Th is class contains a list of Resources, a list of
SafeHavens, and a list of HotSpots. The JTF class is
responsible for reading in the plan and mission leg files,
discussed later, and starting up the entire operation. A
HotSpot is any area where an evacuation needs to occur.
A HotSpot contains a road network that is used by the
evacuees to travel to the evacuation points.

The OMWG schema defines a class called a
Platform with serves as a parent to most vehicle classes.
Therefore, all aircraft and ship classes defmed in the
NEO model descend from the Platform class. This
allows certain operations to be performed by Platforms,
such as traveling to specific locations, loading and
unloading evacuees, etc., where it is irrelevant whether
the actual vehicle is an aircraft or a ship.

The OMWG also defines a class called Port, which
serves as a place of departure or arrival for Platforms.
This Port class was used to model the actual air and sea

ports that American CItIzens travel to in order to be
evacuated. The SafeHaven class is descended from Port
because it can not only serve as a port, it also serves as a
location where evacuees can be transported. The
Resource class models an air or sea base that houses
Platforms, and is descended from SafeHaven. Each
Resource contains a list of Platforms that may be used in
the evacuation operation.

A class called PeopleGroup is used to model a
generic group of people. An instance of this class
represents a group of evacuees that travels together to
the nearest Port and waits to be evacuated. Descended
from the PeopleGroup class is a class named
RebelGroup. This class models actions such as rebels
taking control of a Port and destroying links in a road
network.

3.3 MVC Architecture

NEO was developed under a powerful object-oriented
methodology called Model-View-Controller (MVC).
This architecture separates the responsibilities of
software components into three different layers. The
model layer handles all of an application's functionality.
The view layer implements all feedback mechanisms
used to present information to the user. Lastly, the
controller layer handles all interaction that a user has
with the application (Barkakati 1991).

NEO makes extensive use of the model and view
layers. Less attention was allocated to the controller
layer because all user interaction is handled inside of
IMDE rather than during the actual execution of the
simulation. The model layer was implemented through
the development of the classes described in the last
section. These classes provide the necessary
functionality by modeling all of the real-world objects,
such as planes, ports, evacuees, etc., that have a part in
this simulation. These classes, and more importantly the
interaction between them, provide for the accurate
simulation of an actual evacuation operation.

The view layer of the NEO simulation provides the
mechanism for displaying all information to the user
during the execution of the evacuation operation.
Several windows are displayed showing maps of the
locale(s) where the evacuation is taking place as well as
an expanded overview map which depicts the entire
operation. Each object in the model layer contains a list
of views that will need to display a graphical
representation of the object. As the state of the object
changes, the views are updated. For example, the
current NEO simulation displays two windows, the
evacuation location (Gompin) and an overview map of
southwest Asia. A particular instance of a C-130 object
would have a list of views that contains these windows.



Simulation of the Evacuation of American Citizens 971

As the C-130 travels, each view is updated. The C-130
will always appear on the map of southwest Asia, but it
will also appear on the map of Gompin as it approaches
that location. This provides a true synchronous "zoom­
in, zoom-out" display. Since the different views operate
independently of each other, the C-130 object does not
have to coordinate how it is displayed in the different
windows. Instead, the C-130 simply iterates through its
list of views .telling each one to update the C-130's
representation given its new position.

The power of the object-oriented design and the
MVC architecture is evidenced by the high flexibility of
the system. Additional windows could be added as
separate views. Appropriate backgrounds such as maps
would have to be loaded, and coordinate systems would
need to be set. Since the functionality and display
responsibilities are separated, objects such as the C-130
would not need to be modified to display itself on the
new views. Instead, the C-130 would simply have the
new views added to its view list so that the new views
could be told to update themselves as the state of the C­
130 changes.

3.4 Animation

The animation capabilities of the NEO simulation
provide the user with a top-down view of all activities
occurring during the model's execution. The main
window shows a scaled-out view of Southeast Asia.
This map shows several areas of interest: United States
air bases (Yokota and Kadena), a United States carrier
fleet (Comphibron Eleven), an evacuation "safe haven"
(Guam), and an evacuation site, or "hot spot" (Gompin).
Air and sea networks show the routes that planes and
ships will take during the simulation. This window
shows the evacuation operation at a high level as planes
and ships travel to the evacuation points, load evacuees,
travel to the safe havens to drop off the evacuees, and
return to base. Figure 2 shows this window.

For each hot spot, a "zoomed-in" window displays a
map of the area, including locations of air/sea ports and
road networks on which evacuees travel. These
windows show several events occurring. At the
beginning of the simulation, blue icons in the shape of a
person appear at random places on the map, with each
icon representing a group of approximately 100
evacuees. As the planes and ships approach the hot spot
on the main window, they also appear on the hot spot
window when they get close enough to display. This
allows the user to see the behavior of the ships, planes
and people groups in much greater detail as they arrive
at the ports. An example of a hot spot window is shown
in Figure 3.

Figure 2: The Southeast Asia Window

The hot spot views can also show' several other
occurrences, depending on the actions specified in the
plan file. Rebel groups, appearing as red icons in the
shape of a person, can destroy links in a road network
and also take over a port. In the latter case, the port is
shown to be under hostile control by displaying a rebel
flag over the port. The NEO simulation allows the
planner to send in SH-60 helicopters carrying troops to
regain control over the port. When this happens, a
helicopter flies from one of the carriers, lands at the port,
and returns to the carrier when control has been
established. To signify control of the port, the rebel flag
is replaced by an American flag.

Three other windows are displayed during the
simulation. First, a summary window shows current
counts of American citizens evacuated, number of
missions generated, number of sorties generated, number
of failed sorties, etc. Another window displays the
current simulation time in hours and also provides a
button to allow the user to pause and resume the
simulation at will. Lastly, the third window allows the
user to select several class attributes to display run-time
statistical graphs during the simulation.



972 Sumner and Zabn.

Figure 3: A Sample Hot Spot Window (Gompin)

3.5 Plan File

Since the purpose of the NEO simulation is to allow a
JTF planner to determine how effective a plan will be in
an actual evacuation operation, a textual plan file is used
to convey to the model the types of events that will
occur and the times that they will happen. There are
several types of events that can be controlled through
this file. For each event in the plan file, a time is
specified that dictates when the event is to occur. First,
the JTF object is told to perform a plan action which
starts the simulation and performs any necessary
initialization procedures. Next, the people in the area
are told to evacuate at a specific time. At this time, each
group of people determines the shortest possible path to
an evacuation point and starts traveling toward that
location. Also, helicopters such as the SH-60 can be
told to travel to a hostile area and secure it from rebels.

The event definitions in the plan file pertaining to
aircraft and ships are slightly different. These evacuation
vehicles, or platforms, follow a specific pattern of
departing from a set location (an airbase or somewhere
at sea), traveling to an evacuation point to load
passengers, transporting and unloading the passengers to

a safe haven, and returning to the original location to end
the mission. Therefore, these entries in the plan file
specify the time that the mission will start, the number
and type of platforms to use, the starting location, the
evacuation point, and also the safe haven.

4 DEMONSTRATION OF THE MODEL

The NEO demonstration model was utilized at JWln '95
to model a real NEO situation. The scenario called for
4200 people to be evacuated. The two bases in the area
Yokota and Kadena, both had five C-130H aircraft
available for use in the NEO. A fictional point near a
popular city was used for the evacuation point in
Gompin. The evacuation of the U.s. citizens on Gompin
was to begin at the end of Day 4.

Two plans were used to compare and contrast to one
another. The fITst plan attempted to evacuate the citizens
using all five aircraft at each airbase, ten in all. The
second plan was a more conservative one, keeping two
C-130s back at each base in case there was a need
somewhere else in the region, so six C-130s in all were
used for the NEO mission. In both plans, the evacuation
order by the JTF was given at the 96 hour mark; at that
time, the people groups on Gompin moved to the port by
using the shortest path. This path took into account any
blocked highways and, in some cases, meant moving off
the main highways for a majority of the time.

The two charts below highlight the differences
between the two plans. In the fust case, when utilizing
all ten planes available, all evacuees were safely rescued
within 50 hours of the evacuation order - about two days,
as seen in Figure 4. In the second case, shown in Figure
5, the operation took a little over three days - 80 hours.
This information can now be presented to whomever is
coordinating the NEO in the JTF for their decision or
another plan could be created and then analyzed u;ing
this simulation.

5 POST-JWID EFFORTS

Since JWID '95, a great deal has been done to improve
and enhance the NEO simulation. First, the capability
h~s ?een ~dded to allow the user to define multi-leg
mISSIons ill more detail. Second, the model was
enhanced to account for subsystem failure and
maintenance activities on planes and ships. Third, the
model was successfully converted from MODSIM to
C++. The following sections describe each of these
items in detail as well as the benefits realized from these
modifications.



Simulation of the Evacuation of American Citizens 973

Evacuees Using 5 Planes From Each Base

5.1 Multi-leg Missions

Figure 5: Time Trace of Evacuees with the Second Plan

Figure 4: Time Trace of Evacuees with the First Plan

An operation of any kind rarely follovvs a best-case
scenario. Random elenlents and unforeseen events are
always possible and even likely. Therefore, the
possibility of failure and subsequent Inaintenance
activities have been added to the NEG model. For each
aircraft, a small number of highly fallible subsystems
have been added. For example, the C-130 is currently
comprised of five subsystems. In reality, the nUlnber of
subsystems is much larger. Modeling all of these
subsystems would drastically reduce the execution speed
of the simulation. Therefore, the number was kept small
enough to retain a high execution speed, but also large
enough to show some noticeable effects of component
failure.

For each subsystem~ a mean time between failures
(MTBF) and a mean time to repair (MTTR) are
specified. At the beginning of the simulation, a failure
time is determined by drawing a random number based
on the MTBF. After each mission leg, the flying time is
subtracted from the failure time. When the failure time
reaches zero, the component has failed and the platform
cannot continue on another leg until the proper
maintenance has occurred. The amount of time needed
for maintenance is determined by drawing a random
number around the component's MTTR (Zahn et a1.
1995).

The primary benefit of this modification is that the
JTF planner can see how well a plan executes when
random events such as component failure occur. Failure
and nlaintenance could cause a platform to depart after
the cancel time has passed, thereby generating a failed
sortie. If too many sorties have failed due to required

5.2 Platform Maintenance

to prepare for the leg, and the cancel time specifies the
amount of time that a platform can delay departure
before the leg is considered to have failed. Therefore, if
the second mission leg in the previous example had a
lead time of 0100 and a cancel time of 0200, the
platform would start preparing for the leg at time 2650,
and the leg would be considered to have failed if
departure did not occur by 2950.

The main benefit of the mission leg file is the ability
to define the structure of a mission as the JTF planner
sees fit. The basic three-leg mission can still be used,
but missions can now be made to have as many legs as
desired. This provides a great deal more flexibility to
the planner, which in tum greatly increases the possible
options that can be simulated and evaluated. Also, since
the mission leg file is read in at the beginning of the
simulation, changes can be made to the fi Ie in order to
see the effects on the operation without needing to
recompile the model.

5000
t/)
Q>

4000 --Q)
:;:,
c.J
m 3000>w
~ 2000
m

en 1000 -
'0
~ 0

80.00 100.00 120.00 140.00 160.00 180.00

Time (hours)

Previously~ any mission performed by an aircraft or ship
comprised of exactly three legs: departing from a home
base and arriving at an evacuation point to load
evacuees, traveling to a safe haven to drop the evacuees
off, and returning to the original base. With the
development of a mission leg file, a JTF planner can
create missions of varying lengths. For each mission,
one line is entered into the file for each leg.

Several pieces of information are specified for each
In ission leg. One of the most important items is the
name of the mission to which the leg belongs. Also, the
name and quantity of the desired platform is specified.
A mission leg also contains an originating location, an
ending location, and an action. A relative departure time
is included which specifies how long after the mission
starts that the mission leg should begin. For example, if
the plan file specified that a mission should begin at
time 2500, and the mission contains two legs with
relative departure times of 0000 and 0250, then the first
leg would start at time 2500 and the second would start
at 2750.

A mission leg also specifies a lead tilne and cancel
time. The lead time specifies the amount of time needed

Evacuees Using 3 Planes From Each Base

5000 r------------------.

'"~ 4000
:l
~ 3000
>
w 2000.

~ 1000
UJ
~ O-+--__~=----_+_--_---_-~

80.00 100.00 120.00 140.00 160.00 180.00

Time (hours)



974 Sumner and Zahn

maintenance, then the planner may need to modify the
mission legs and plan files in order to specify a more
conservative flying schedule.

5.3 C++ Simulation and Animation

Since JWID '95, TASC has developed its own C++
simulation engine and graphics library. With this
engine, TASC has modified the IMOE system to
generate C++ source code as well as MOOSIM II. The
original MOOSIM II version of the NEO model has
been ported to C++ through the use of the new
simulation engine and graphics library, which was
beneficial because several advantages are realized by
using C++. First of all, C++ is more widely known and
recognized, which makes it easier for people familiar
with C++ to understand how a model is constructed.
Second, C++ is a more cost effective solution since it is
possible to use public domain C++ compilers. Third,
modelers now have the capability of incorporating third
party libraries written in C++ into their models.

6 CONCLUSION

There are many high-technology software tools
available to help military advisors in their decision
making. One of these tools has been detailed in this
paper, a model to simulate a possible NEG task. The
flexibility of the model allows the user to analyze n1any
different COAs before settling on an optimal choice.
The animation involved in the simulation facilitates the
decision process by graphically illustrating the outcome
of a potential plan. With the use of IMDE, the object­
oriented simulation package used to model the NEG,
graphical comparisons can be made between two or
more candidate COAs quickly and easily.

The conversion to C++, the addition of maintenance
activities to the platforms and the addition of multiple
leg missions have increased the power and fidelity of the
base NEG model. Future enhancements may include
expanding the maintenance capabilities by adding more
subsystems to each platfonn, modeling the possible
replacement of failed aircraft, and adding the
functional ity to graphically define road, sea and air
networks.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Patrick Clark and
Capt Todd Carrico for their invaluable help in the
writing of th is paper. The research presented was
sponsored by DARPA and the Logistics Research
Division, Armstrong Laboratory, U.S. Air Force,

Wright-Patterson AFB, OH 45433-7604 under Contract
F33615-92-D-I052, DARPA Order Number 0008.

REFERENCES

Barkakati, N. 1991. Object-Oriented Progranzming in
C++, Cannel: SAMS.

CACI Products Company. 1991. MODSIM 11 Reference
Manual.

Carrico, T. 1995. The Object Model Working Group
Document. Logistics Research Division, Annstrong
Laboratory, U.S. Air Force, Wright-Patterson AFB,

Ohio.
Clark, P. K., et al. 1994. Object-oriented Simulation

with IMOE. In Western Simulation Multiconference ­
Object-oriented Simulation Conference '94
Proceedings, 131-136.

Zahn, E. A., N. 1. Stute, and P. K. Clark. 1995. An
Object-Oriented Simulation of Air Force Support
Equipment Usage. In 1995 Winter Silnulation
Conference Proceedings, 1193-1199.

AUTHOR BIOGRAPHIES

JEFFREY E. SUMNER is a Staff MTS at TASC, Inc.
He received his B.S. in Computer Engineering in 1990
and his M.B.A. in Project Management in 1995, both
from Wright State University. He has been involved in
numerous software development projects and has
worked on the IMOE simulation tool for the past three
years. His interests include object-oriented software
development and discrete-event simulation.

ERIC A. ZAHN is a Staff MTS at TASC, Inc. He
received his B.S. in Systems and Control Engineering in
1993 and his M.S. in Systems, Control and Industrial
Engineering in 1994, both from Case Western Reserve
University. He has utilized various simulation packages
for the last five years, and has worked on the IMDE
simulation tool for the last two. His interests include
discrete-event and object-oriented modeling and
simulation.


