
PToceedings of the 1996 WintrF Sirf7.ulatioTl, C'on!p'T'e'llCf .

ed. J. 1\1. Clllarnes, D. J. 1\lorricc, D. T. Bru1lner. and J. J. S~vaJn

A GENERIC ARCHITECTURE FOR INTELLIGENT INSTRUCTION FOR SIMULAnON MODELLING
SOFTWARE PACKAGES

Tajudeen A. Atolagbe
VIatIca ffiupic

Department of Computer Science and Infotmation Systems
BruneI University, Uxbridge,

Middlesex UB8 3PH, UNITED KINGDOM

ABSTRACT

This paper describes an architecture for an
intelligent interactive instructional simulation
modelling environment. It revolves around the
production of tutorial and courseware authoring for
different simulation software packages with a
generic user interface shell. The generic shell is a
"front end" which provides a uniform graphical
user interface to diverse simulation modelling
software tutorials. An object oriented perspective is
combined with tutorial activities based on the task
classification structure to form the interactions
between objects. The development environment
brings together objects that are functionally
coherent and allows them to share common
resources within the shell.

1 INTRODUCTION

Organisations adopt different strategies for
assessing training needs and ways of implementing
them. Because of the increasing use of simulation
modelling as an analysis tool and the complexity of
developing simulation models, computer based
training is a viable option for implementing
simulation software training. The provision,
maintenance, and continuous updating of
courseware, both in academic and industrial
establishments, will continue to require huge
investments. If an organisation is to sustain its
competitive position, full integration of training
with business activities, and a framework within
which the tutorials needs and strategies for their
development are vital.

The Intelligent Simulation Training System
(1991), provides a generic architecture for building
an intelligent simulation software training system.
It uses a generic mcxlelling of simulation scenarios

for drilling the learner. The system is domain dependent,
and its portability is limited. Its domain knowledge is
specifically for simulation modelling. The TOTS system
(1987) provides a domain-independent intelligent
tutoring shell for task oriented domains and is based on
"procedural network". The shell is domain specific and
does not allow the user to interact directly with the target
software. The EXCALIBUR (1987) produced a generic
knowledge base system for learning. The system allows
the learner to interact with the tutorial program(s).

Using simulation modelling software involves learning
the model development skills, knowing what procedures
exist for mcxlelling exercises, and how to accomplish
various conceptual model formation. It also involves
recalling the procedures whenever a similar situation
arises. It can be inferred that using a simulation software
package requires analytical and cognitive skills.
The aim of this research is to develop an instructional

simulation software environment and provide for the
learner to interact directly with various simulation
software packages. This method permits the learner to
acquire procedural knowledge, which forms the
foundation for cognitive skill acquisition (1992). The
curricular consists of practical activities and illustrations,
which help the learner to develop basic skills and
knowledge for using the package.

An object oriented approach that provides a generic,
direct manipulation graphical user interface for an
interactive instructional simulation modelling
development environment is presented. The software
provides for cross platform integration and development
of interactive tutorials for simulation software packages.
The object oriented approach allows functionality of the
simulation software package to be mapped directly into a
tutorial structure.

The tutorial operations and learners mental model can
be used to obtain the systems requirements which forms
the basis for initial interface design. The architecture
embraces systems for producing, authoring and delivery

856

Generic Architecture for Intelligent Instruction 857

of tutorials for different simulation software
packages with a shared graphical user interface.
The shell is capable of seamless integration of
audio, text and graphical images, which are used at
various levels during instruction. The shell is a
graphical user interface suitable for accessing
heterogeneous instructional software and it can be
utilised for verse delivery of tutorials. It embraces
systems for the production and authoring for
different simulation software packages with
common front end across the packages. The "shell"
also incorporates different learning aids, and
learner interaction is based on direct manipulation
dialogue.

Learning hierarchies proposed by Gagne (1965)
can be employed to yield task classification
structure. This method allows tutorial tasks to be
represented in small modules thereby allowing
portability and ease of maintenance. Alderman
(1978) suggested that hierarchical structure of
subject materials is suitable for a "rule-by­
practice" learning method. The tutorial curriculum
can be classified into hierarchical structure based
on its functionality of the simulation software and
its operational techniques.

The tool possesses three unique features: unique
front end, text inputs which provides for a cross­
platform courseware development, and an
application software environment. These features
provide facilities for courseware authoring and
maintenance, and for application software to run
independent of the tutorial. It can provide the
learner with a content rich tutorial environment
with an interactive guide.

2 TEACHING SIMULATION MODELLING
SOFTWARE

There is a large gap between the functional
behaviour of a simulation software package and the
leamer's perception of software operations. This
misapprehension can be attributed to Hcognitive
strain" which users adopt as strategies designed to
minimise cognitive load during problem solving
and concept-attainment tasks (Bruner et aI., 1956).
The difficulty of usage can be exacerbated by the
process of models representation and analysis. The
functionality of the simulation software can be
classified in to a hierarchical task structure. The
behaviour of simulation software can be depicted
by constructing a conceptual model. Teaching
operations of the software requires cognitive
association of all instructional activities, structured
into hierarchical array of sub-activities. We
identified the following strategies for effective

teaching of simulation modelling software: (1) tutorial
tasks organised in a pedagogy structure, (2) minimising
the cogni tive load on the learner, (3) providing
meaningful error messages during development, (4)
provision of interactive tutorials, (5) use of animation and
gaming-simulation as an alternative teaching strategy and
(6) providing context sensitive help. The architecture
provides for the development of procedural knowledge,
direct mapping of structured curriculum tasks to an
application model based on appropriate pedagogical
structure.
The functionality of a simulation package and the
tutorial operations can be classified into a pedagogy
structure. The shell allow for direct mapping of
simulation problem into predefined structure of the
tutorial. The tutorial operations are represented by a root
object, on which a hierarchical decomposed task object
depends. The tutorial tasks of the software are arranged in
pedagogy order, reflecting stages of building a simulation
model and post simulation analysis. The sub-task level
consist of diverse models of the software bebaviour
represented in varying levels of description.

An interactive tutorial that permits the learner to
interact with simulated scenarios at certain levels during
instruction can be provided within the shell. The
architecture also uses animation to display the conceptual
model of a scenario, with icons representing different
activities. This method allows long-term transfer of skills
and reinforces the proficiencies of using the software.

The user interface for a simulation software consists of
data and functions objects, and their attributes. The
learner activities involve manipulation of these objects.
The object-oriented model consists of the following
semantic elements: all objects are classified into types
defined by their behaviour and inter-relation with other
objects and their attributes. The behaviour of the objects
can be defined by their operation, and their inherent
characteristics.

The system provides the learner with an opportunity to
exploit most features the simulation package such as
ProModel PC, SIMFACTORY 11.5, WITNESS etc. A
structured decomposition of the domain knowledge
elements and functions are progressively presented as the
learner advances through the curriculum. This technique
enhances learner participation in building a simulation
model of the problem. The shell also provides for
unobtrusive "walk-through" stages of model development.
Simulation model of a discrete event systems, passes
through different activities and the system clock advances
asynchronously. Constructing a simulation model
involves depicting the activities and entities of the
problems through time. This can be represented and
presented during instruction by using a structured
decomposition of the operations and taking the learner
through stages of developing a simulation model.

858 Atolagbe and Hlupic

3 SYSTEM ARCHITECTURE

An "object oriented" technique effectively captures
and displays systems requirements during the
development phases. The generic "shelf' is
represented by objects depicting various operations.
The shell is based on the four layers architecture.
These consist of the following: the presentation
system, the application and tutorial module layer,
knowledge representation and domain expert layer,
and the main kernel.
1. The presentation layer consists of the graphical

user interface (GUI), which consists of a
dialogue system that communicates with all
objects in the system. It also provides for direct
manipulation of all objects on the Gill and
provides feedback to the learner. It provides an
effective and transparent interface across the
shell.

2. The application module consists of a
simulation modelling software package and
online documentation provided by the vendor.
It can be linked directly to the tutorial system
and the courseware authoring environment. as
shown in figure 1. The courseware authoring
environment provides a platform for tutorial
development and for courseware maintenance.
It provides for components that can be used for
integrating text, graphics, animation and for
creating or importing dynamic multimedia
objects. This is a hypermedia representation
and other media objects can be integrated. A
tutorial unit may consists of a combination of
graphics, digital video images and animation.

3. The knowledge base contain structured domain
knowledge, and simulation modelling problem,
plus simulation modelling examples. The
structured knowledge is organised into
hierarchical task units. The control system is
the domain dependent problem solving strategy
that determines how the tutorial can be
manipulated into the learner's requirements.
The knowledge base is linked to a domain
"blackboard" which contains all the
instructional strategy and control of the
tutorial. It executes rules which depend on the
learners' behaviour during instruction.

4. The kernel consists of inheritance
characteristics of all objects and their classes.
It executes the codes and provides means for
sharing objects and manages the memory. The
kernel provide pre-emptive threads, and
multiple threads operations. It allows for each
tutorial unit to provides a pre-emptive
"threads" to execute other units.

......... . ········:··I~-I~~~~~·I····

...........t···········i··~~~ .~~~~; ·1········· ·1··········

Figure 1: Schematic Representation of the Shell

Each object has defined characteristics which can be
embedded into the software. The presentation system
provides a uniform representation of the objects. It also
provides a mechanism for assessing both the applications
and the tutorials modules. The GUI allows the user to
communicate directly with the system (1982), whilst the
shell consists of a set of routines, which allows the
learner to control the instruction. It reflects the general
tasks classification structure and semantics for both the
tutorials and the application software. The GUI consists
of icons that represent objects which the user can
manipulate while under instruction. By providing a
unique front end, courseware designers can write diverse
tutorials for different simulation software packages.

Research findings suggests that acquisition of
procedural knowledge can be improved if learner can
observe and interact with visual models of the abstract
concepts (1982). Shneiderman, (1987) suggested that
learners can learn 'quickly' by manipulating the interface
object. Tutorial activities depend on the hierarchical
structured tasks represented as objects.

The architecture exploits both hypermedia and artificial
intelligent methods for courseware authoring. Angelides
and Paul (1993), suggested that for an instructional tool
to be effective, it should incorporate "intelligent tutoring"
components. The artificial intelligence components can
be embedded within the tutorial environment. The
generic tool allows the user to suspend a tutorial unit and
interact directly with the simulation software or to seek
other method of learning i.e. to choose a demonstration
option or observe the animation of the scenario. Some
simulation software vendor provided tutorials, for
example ProModel PC, permits the learner to interact
with a subset of the real application software. These
tutorials do not teach the compete functionality of the
software. This method may result in a reduction of the
learners' skills level development.

The instructional paradigm is based on different
techniques of teaching a simulation software package.
The tutorial units provides a "step-b}'-step" guide to

Generic Architecture for Intelligent Instruction 859

Figure 2: Inter-Process Dialogue

Event
Managert----_

Control
System

Black Board

The model generator allows for a hierarchical structured
tutorials domain knowledge representation. It provides a
structured approach to building a simulation model and
consists of combination of the following related phases:
(1) identification of simulation concepts and software
components, (2) formation of the relationship between
concepts and software. (3) hierarchical approach to
model representation and mapping problem domain into
predefined structure of the tutorial, (4) the output
analysis. It first identifies the tutorial needs of the learner
and presents the tutorial as represented by rules. It
employs the "overlay utilisation rule" to generate
simulation model exercises and tutorials.

3.2 Simulation Model
The second layer of the architecture allows for interactive

development of simulation models and the representation
of the systems components. For a discrete-event
simulation model, the state of the "entities" change at
discrete times. The entity can be represented as objects,
characterised by their attributes. An object transforms
into different states of activities within an interval. All the
objects relates to events, which have dynamic
characteristics determined by the user. The "entities"
advance through different states and behaviour
asynchronously and depends on dynamic message
routing.

An example of a simulation model of a scenario can be
interrupted by the learner at any time. Leamer
interruption allows for manipulation of the attributes and
allows the learner to suspend the current task or perform
another operation. The scope and characteristic of the
simulation model must be appropriate to the leamer's
tutorial level and should permit instructional control.
Constructing a simulation model of a scenario involves
the follows phases: hierarchical representation of the
scenario, relating scenario to a classification structure
depicting the functionality of the software, and
components of the package. Post simulation analysis
illustrates output collection, and statistical analysis.

constructing a simulation model and illustrating
the use of all the components of the software. The
tutorial objective is for the learner to develop a
procedural knowledge for a specific simulation
software package. This approach is similar to
SOPInE, I, II, III (1982) which is based on
developing the users skills in troubleshooting
electronic circuit. The systems are based on expert
systems tutoring environment, but offer limited
control to the user.

The control system provides for dynamic process
communication between the "blackboard" and the
event manager, as shown in figure 2. It allows the
learner to use their own model and generates
simulation models based on their tutorial activities.
The event manager controls the operations of the
software and the tutorial activities. The control
system consists of inference mechanism which
controls the structure of the program, and
interpreter rules that are embedded in the system. It
compares t.he learner input with the information in
its knowledge base and decides which information
satisfies the rules. This technique is used for
accessing the tutorial network and it limits the
search and retrieval time.

The "kernel" can execute only one tutorial at a
time, but allows user interruption at any time.
During interruption it "spawns" supplementary
threads to perform other tasks. By separating the
graphical user interface from the underlying
instructional applications and application software,
the shell can be easily transfer to other
environments. Other advantages of this approach
are versatility, code reusability and ease of
updating, Booch (1990).

All the componen ts of the shell send and receive
events messages via a protocol. The controller
performs this function and co-ordinates the
scheduling of processing time between application
system and the tutorial system. The protocol
determines the order of the events based on priority
values set in the program. User interruption
triggers events which provides a multitasking
environment and allocates the resources.

The blackboard comprises of the student model
and a model generator. It can provide for
communicating between the two models. The
student model provides the learner with different
problems based on the user "overlay" model. The
"overlay" model describes the learner in relation to
its interactions with the system and competence
level. It maps problem domain into tasks
classification structure of the tutorial. It also
presents increasingly complex exercises based on
the current tutorial unit level.

860 Atolagbc and Hlupic

4 CURRICULUM DEVELOPMENT

All simulation software packages possess different
characteristics and functionality, they also differ in
how entities are represented. Developing
curriculum for a simulation modelling package
should be a dynamic process set within a context,
which unifies the simulation modelling theory and
practices. The representation of the domain should
consists of the tutorial units with specified internal
structures that relate to the theory. It should allow
the software to run independently of the tutorial.
This representation is similar to that of a Lisp
program, that captures the learners behaviour
during instructions. It is essential to identify which
paradigm will guide the way simulation theory is
applied in the tutorial. The difficulties of writing
tutorials for a simulation software package without
relating to simulation theory is complicated. To
minimise these obstructions, the following
procedures were formulated:
1. The curriculum is decomposed so that all the

contents and instructional strategy reflect the
functionali ty of the software.

2. The curriculum relates to infonnation on
simulation modelling theory at appropriate
level in the tutorial.

3. Developing models that can be supported by
the simulation software

4. An hierarchical representation of building the
model, demarcating conceptual representation
and statistical analysis.

5. The functionality of the simulation software
should be demonstrated in the tutorial.

This representation allows modularity and each
composite part is independent of the other. The
advantage of this architecture is its simplicity and
object oriented nature, plus its usefulness as an
integrated courseware authoring tool.

4. 1 Tutorial Units
Discrete event simulation software consist of three

major components - library, control shell and report
generator, Pidd (1992), and the tutorial units can
structured to depict the functionality of the software
and these components. The tutorial units can be
represented as structured tasks and subtasks,
elicited from the tutorial as a tree. The subtask unit
portrays the characteristics of the software package
and its functionality. Hierarchical task analysis can
be applied to organise the operations involved in
using the software into a task classification
structure, Gagne (1965). The tutorial consists of
problem solving operations, with various degrees of

complexity within domain. Simulation modelling
operations can be decomposed into a coherent sequence.
The instructional paradigm is based on the combination
of hierarchical task analysis, learner control technique
and learner cognitive preference.

Decomposition of the tutorial tasks into structured units
can minimise the cognitive complexity of the operations,
Gagne (1968). A simulation modelling exercise can be
decomposed into smaller subsystems and the curriculum
task units can be represented as "tree" in an hierarchical
structured network. This consists of several units,
arranged in pedagogy array of tasks operations. A unit is
represented as a node and it consists of several subtasks
which can be depicted as leaves. The tree node can be
linked a tutorial units, depicting a component of the
software and the leaf nodes correspond to a command in
the software. The contents of a node can easily be linked
to other child nodes, as shown in figure 2, and addition
instructions can be attached as leave at different levels.

The tasks are depicted as graphs with individual units,
as nodes and prerequisite relations as links. Instructions
are encapsulated on each node. The units are represented
by a semantic network and each node represents a tutorial
unit, which can be linked to other similar operation. The
arcs represents the "segnzent" of tutorial unit.

Figure 2: Structured Task Unit and Simulation Software
Components

Each node in the structured tasks tree can represent a
production rule, which controls the presentation frame.
All the nodes possess attributes which indicate the names
of up to two or more child nodes that are dependently
linked. Navigation through the tutorial depends on the
learners path, which can be directly mapped into the task
structure.

Each unit is represented as object and every object has
one or more activities. All the n<Xles consists of classes
and subclasses. The tutorial can be represented into
subtasks levels. These consists of a hierarchical model
building process and other operations, which are
represented as classes and subclasses in the tasks
structure.

Generic Arcl1itecturc for Intelligent Instruction 801

The sequence of instruction from a basic model
representation to a complex simulation model and
analysis employs the "overlay utilisation rule".
This rule considers the learners' "current
knowledge" before presenting the tutorial and can
provide control. The learner control provides the
choice of content, direct manipulation of
instruction, priority of actions and tutorial scope. It
also provides control for sequence selection,
tutorial option and review. It incorporates
commands which can allow the learner to navigate
through the tutorial freely.
Tutorial knowledge for a simulation software

package can be generated from training and user
manuals, task classification structure and structured
interviews with experienced users, plus case studies
of diverse simulation projects. Knowledge is
elicited from the tutorials after careful analysis of
the task classification structure which is mapped

5 USER INTERFACE OBJECTS

The user interface objects provides an interactive,
Hdirect manipulation" of the curriculum objects
and all other functional components of the system.
The user interface can support unlimited set of
semantic messages and provides direct mapping of
tutorial knowledge to the functionality of the
software, to a representation on the Gill. All the
object have a semantic constituent represented as
sets of rules that can manipulate the objects on the
interface. Some of the rules describe units of
lessons referenced by unique name, each unit
consists of sets of classes and objects stored as sets.
The tutorial task decomposition is utilised as object
hierarchies which depicts the tutorial functions and
dialogue specification. This can be used to form a
specification of the graphical user interface and
depict the object oriented hierarchical structure.
The Gill consists of data and object functions
which can be inherited. Each application comprises
of framework objects. The encapsulated object is
specified by its behaviour and state. It permits
control of data between objects. Some classes were
incorporated for the specific needs of the tutorial.
They include the following:
• Action-Class is a lower level class, which

maintains a list of actions that are displayed to
the learner when appropriate. Each window
has an action associated with it. This class is
responsible for freeing the memory associated
with each action.

• The feedback-Class is a component of the
intelligent tutoring system. It provides a
content sensitive feedback to the learner. This

depends on the type of error and the level of the
learner in the task classification structure.

• The Navigation-Class helps the learner to keep up
with the current position in the presentation program.
It also monitors all the windows titles in the
presentation. It allows the learner to navigate
throughout the program. The navigation system
address context, location, and progress indicator.

• The Windows-Class controls the graphical user
interface portion of the sub-frame windows in the
presentation. It refreshes the user interface when
required, and options chosen by the user. The option
can also be used to display textual multiple choice
questions. Texts that cannot be displayed are
scrolled.

• Model-Class controls all simulation model examples
presented to the learner. The learner can use this
option to interact with the simulation model to
change any of the variables or use the instructional
gaming system

These classes present a highly interactive choice of
principles and methodologies which can be used by the
courseware designer.

Polymorphism of a single task to refer to different sub­
task and inter-related tasks, that can be satisfied by rules,
represented by the knowledge elicitation method. The
form of object orientation is as proposed by Booch
(1990). All tasks and operations are modelled as objects,
closely linked to the structures and behaviour of the
package, incorporating single and multiple inheritance.
All objects that have common characteristics and
behaviours can by grouped together.

5.1 Portability to other platforms
The major factors for portability are modularization of
instruction, with code reusability, file transfer, adaptation
to different environment, and cross platform integration
of simulation software packages. A "transfer' command
from the courseware authoring option allows the text file
and the interface to be transfer to diverse environment.
Courseware authors can also import data from text files
into the tutorials. Choice of development software is
crucial for the development of the tool, as the primary
objective is to produce a tool that will enable the transfer
of both the interface and the files to a target
environments. The only feasible programming languages
are

Visual C++ or Visual Small talk. Visual C++ allows
partial transfer of its code to other platform, but it is
complicated and it has a long development cycles. Visual
SmalltaIk allows easier transfer of codes to major wider
area and is easier to learn. Although both languages
support object orientation, Visual Smalltalk has a better
memory management and supports multiplatform
development. Object Orientation methodology is being

862 Atolagbe and Hlupic

used in the design of the software but the
development environment will be Visual Smalltalk.

6 CONCLUSIONS

The paper describes an architecture for an
intelligent instructional system for simulation
modelling software packages. It describes an
integrated environment for teaching simulation
modelling, courseware production and delivery.
The curriculum development environment provides
a dynamic process set within a context which unites
the simulation modelling theory and the
functionality of the software. The tutorial
development framework allows for flexible
courseware authoring and maintenance. The
development environment allows the transfer of
both the front end and the text file to diverse
environments.

The direct manipulation of user interface object
allows the tool to be adaptable and can simulate
learning by allowing the user to manipulate objects
of the system and adapt a preferred learning styles.
It allows the learner to interact with the simulation
software package whilst under instructional
control. The tutorial of a simulation software can
be tailored extensively to suit this methodology.
The architecture provides for multiplatform
utilisation. This can be achieved by structuring the
tutorial into tasks units and by separating the
tutorials from the rest of the application. The shell
can manage cross platform transfer across the
various hardware platforms of Smalltalk and can be
implemented within a range of curricular.

The object oriented architecture ensures a
uniform approach for analysis and design of the
system, and consistencies of the system for
courseware authoring and maintenance. The
framework objects can be encapsulated, and allow
control of data between all objects. Its inhabitant
characteristics allows changes to be made to the
tutorials when the software functionality is
improved. The interactive development
environment allows for the courseware author to
visualise the functionality of the software and its
components. This reduces the time required for
analysis and development of the courseware and
improves the courseware quality. It also helps to
standardise the curriculum and improves usability
of the system . The architecture may also provide a
platform for development and implementation of
such systems.

REFERENCES

Alderman, D.L. 1978. Evaluation of the TICCIT Journal
of Computer Assisted Instructional Systenl in the
COlnmunity College. Final Report Vol. 1 Educational
Testing Services, Princeton, NY

Anderson, JR, Breuker. D, and Sandberg, 1 (eds.) 1989.
Psychology and Intelligent Tutoring. Artificial
Intelligence and Education, Proceedings of the 4th

International Conference of Al and Education. lOS,
Amsterdam,

Anglids M.C., and Ray Paul. 1993. Towards a
Framework for Integrating Tutoring Systems and
Gaming-Simulation. In Proceeding of the Winter
Simulation Conference. ed. G.W. Evans, M.
Mollaghasemi, E.C. Rusell, and W.E. Biles, 1281­
1289. Institute of Electrical Engineers, Los Angeles,
California.

Burton, R.R. and Brown, 1.S. 1982. An Investigation of
Computer Coaching for Informal Learning Activities.
In Sleeman, D. and Brown, 1.S. (eds.) Intelligent
tutoring systenls, Academic Press, London.

Shneiderman, B. 1987. Designing the user interface:
strategies for effective human computer interaction,
Addison-Wesley, USA

Bruner, 1.S., Goodnow, 1.1, Austin, G.A. 1956. A study of
th.inking. New York: Wiley.

Dede, C. 1986. A Review and Synthesis of recent
Research in Intelligent Computer-Assisted Instruction.
International Journal of Man-Machine Studies, 24
329-353.

Gagne, R.M. 1965. Learning hierarchies. New York:
Holt, Rinehart, and Winston.

Booch, G. 1990. Object oriented design ~vith

applications. Benjamin/Cummings Publishing
Company, Inc. USA.

Hartley, JR and Tait, K. 1986. Learner Control and
Educational Advice in Computer based Learning, The
study-station concept. COlnputers and Education, 10,
(2), 259-265.

Hartley, JR. 1973. The Design and Evaluation of an
Adaptive Teaching System. International Journal of
Man-Machine Studies, 5, 421-436

Ohlsson, S. 1993. Impact of Cognitive theory on the
practice of courseware authoring. Journal of
Computer Assisted Learning. Vol. 9 No.4, 194-221

Richard, T., Webb, G.I., and Craske, N. 1987. Object
oriented control for ICAL systems. Technical Report,
T., La Trobe University, Boundoora, Australia.

Richard, T., Webb, G.I., 1987. Topic structuring in
ECCLES: A simplified CAL authoring Methodology.
Technical Report 9, La University, Boundoora,
Australia.

Generic Architecture for Intelligent Instruction

Patrick, J. 1992. Training research and practice,
Academic Press, London.

Sleeman, D. and Brown, J.S. Intelligent tutoring
systems, London Academic Press

Draman, M. 1991. A generic Architecture for
Intelligent Simulation Training Systems, In
Proceeding of the Winter Simulation. Institute
ofElectrical Engineers.

Mitchell, P.D. EDSIM. 1978. A Classroom in a
Computer for Lesson planning Practise. In
Meardy, J, (00.). Perspectives on Academic
Gaming and Simulation. pp. 191-204. Kogan
Page.

Nuron Data. 1990. Nextpert object user manual.
Patrick, J. 1992. Training research and practice,

Academic Press.
Pidd, M, 1992. Computer simulation in

management science, Third Edition, John
Wiley. London.

Poole, T and Szymankiewicz, J. 1977. Using
silnulation to solve problems. McGraw-Hill
Book Company (UK) Ltd.

AUTHOR BIOGRAPHIES

TAjUDEEN ATOLAGBE works as Consultant
with Microparadigm Research and Development
Group. He is currently undergoing a Ph.D. in the
interdisciplinary program in Simulation Modelling
and Instructional Systems at the BruneI University.
Holds an M.Sc. in Business Information Systems
and initial background in Systems Training and
Development. Current research interests include
aspects of instructional systems, Simulation
Modelling, HCI and Object Orientation methods.

VLATKA HLUPIC is a Lecturer in Simulation
Modelling in the Deparnnent of Computer Science
at the BruneI University. She holds a B.Sc.(Econ)
and an M.Sc. in Information Systems from the
University of Zagreb, and a Ph.D. in information
Systems at the London Schools of Economics,
England. She is researching into, and has
published extensively, in simulation modelling
software approaches to manufacturing problems.
She has practical experience in the manufacturing
and waste disposal industries, as well as having
held a variety of teaching posts in England and
Croatia. her current research interests are in
manufacturing simulation, software evaluation and
selection, and in simulators and simulation
languages.

