
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

PROGRAMMING COMBINED DISCRETE-CONTINUOUS SIMULATION MODELS FOR PERFORMANCE

J. Frederick Klingener

President, Brock Engineering, P.C.
Roxbury, Connecticut 06783, U.S.A

ABSTRACT Discrete Events

Continuous state variables in combined discrete-continu­
ous simulation models (combined models) commonly
represent physical quantities, such as fluid levels or tem­
peratures, that are governed by physical laws, and these
laws are expressed as differential equations of state. The
combined simulation modeling program commonly inte­
grates the differential equations numerically, in step with
its computations that describe the evolution of the dis­
crete events. In addition to the pitfalls familiar to nu­
merical integration, special hazards due to the interacting
discrete events may confront the analyst seeking high
performance in a complex model.

This paper first discusses, in the context of discrete
event modeling packages, some requirements for ob­
taining accuracy and speed in the numerical integration
of the continuous variables in combined models, and
second, it describes approaches that can be used to meet
those requirements in selected commercial modeling
packages.

1.0 BACKGROUND AND PURPOSE

The distinguishing feature of combined discrete­
continuous simulation models (combined models) is the
existence of continuous state variables that interact in
complex or unpredictable ways with discrete events. The
introduction of continuous variables into a discrete event
simulation sets two tasks: 1) evaluation of the continuous
variable itself often by'numerical integration of a gov­
erning differential equation, and 2) assuring proper inter­
action among the continuous and discrete state variables.
Figure 1 shows the three fundamental types of interac­
tion, described by Pritsker [1968], that can occur be­
tween discrete and continuous variables: 1) a discrete
event causes a change in the value of a continuous vari­
able, 2) a discrete event causes a change in the relation
governing the evolution of a continuous variable, and 3)
a continuous variable causes a discrete event to occur or
to be scheduled by achieving a threshold value.

833

1. A OISCrE,neeiVenlC.BllJSeS

t
Figure 1: Types of Interaction Between Discrete and

Continuous Variables

Combined modeling goes beyond the simple nu­
merical integration of the continuous variables and speci­
fication of the particular interactions that may occur
among continuous and discrete state variables; there is a
fundamental mismatch between the way that time is ad­
vanced by a stack-based discrete event modeler and the
way it is advanced by a marching continuous variable
integrator. On the one hand, the common discrete event
modeler is event-driven. It advances time asynchro­
nously, that is it takes the execution time of an event
from the top of a sorted stack, calculates its effect on the
system state, schedules dependent events by placing
them into appropriate places in the event stack, and ad­
vances the simulation clock to the next scheduled event.
On the other hand, the common continuous variable
solver is synchronous. It uses the system state at some
time, t, to compute the value of a continuous state vari­
able at some short time later at t+L1t. The solver then
advances the simulation clock to t+L1t and continues.

Press et al. [1992] describe classical techniques used
to perform the synchronous calculation with speed and
accuracy. In the methods they describe, there is a trade­
off between accuracy and speed, and the determinant of
the tradeoff is the time step size. If the integration pro­
ceeds using a large number of small time steps, then the

834

accuracy can be high at the expense of computation
speed. Conversely, in a solution that uses a small num­
ber of larger time steps to obtain rapid execution, the
accuracy may suffer. The adaptive step size methods
described by Press et al. [1992] have been developed to
manage this classical tradeoff, but these methods depend
on the freedom to adjust the time step size, L1t, in re­
sponse to the local conditions relating to the integration
process itself. If the time step size is subject to outside
constraints, such as might be required to detect and re­
spond with sufficient resolution to discrete events, then
performance may suffer.

The purpose of this paper is to describe techniques
that an analyst can use to build high performance com­
bined models by reconciling the mismatch between the
views of time held by the discrete event modeler and the
numerical integrator while preserving the theoretical
bases and implementation methods of the classical meth­
ods of high performance numerical integration of con­
tinuous variables. The second section of this paper dis­
cusses first an overall strategy that enables the tech­
niques, and second the details of managing the three
types of interaction between discrete events and continu­
ous state variables.

2.0 IMPLEMENTING NUMERICAL METHODS
IN A COMBINED MODEL

The first step in adapting the numerical integrator to the
discrete event environment is to recognize that the con­
tinuous state variable may be only piecewise smooth
between the interacting events. A numerical procedure
that seeks high accuracy should reflect this structure.
The second step is to acknowledge that, given the system
state when the simulation clock stands at time t, any
value computed for a continuous variable y some time L1t
in the future is speculative. It must be considered invalid
until the simulation clock reaches t+L1t without encoun­
tering any event or condition that affects the continuous
variable or the relation that governs its evolution. The
subsections that follow first describe an approach to the
implementation of speculative computation. Then they
outline strategies for programming the three types of
interactions between discrete events and the piecewise
smooth state variables.

2.1 Speculative Computation

As a minimum procedure, when the value of y(t+L1t) is
computed at time t, it must be considered speculative and
saved locally or privately, then published for use by

Klingener

t+At

Figure 2: Strategy for Speculative Computation in a
Discrete Model

other processes only when it becomes valid. Apart from
assuring consistency in the integration of the continuous
variables, this strategy enables the techniques for man­
aging the interactions between continuous and discrete
variables described in the next three subsections.

Figure 2 shows a schematic of the method. In this fig­
ure and in the three figures that follow, a continuous state
variable, y, is evaluated numerically as a function
of time at increments of L1t, given an expression for its
rate of change. The underlying value of y(t) is shown as
a gray line, the speculative (local) value of yet) is a
dashed line, and the validated (public) value of y(t) is a
solid black line. When the simulation clock arrives at
time t without encountering some invalidating event, the
speculative value of y(t) may be published or made
available to other processes. Then, the system state at t

may be used to project a speculative value of y at t + Jt.
This speculative y, invalid until t + L1t, is stored privately
or locally, and the clock may be advanced.

Figure 2 also illustrates a secondary point about com­
bined models. Note that the solution for y(t) can ap­
proach arbitrarily high accuracy (matching the under­
lying y) at t and again at t + L1t, but there will be an error
at other times. For this reason, it is desirable to synchro­
nize the numerical integration of related continuous vari­
ables. Under circumstances where this is not practical, it
may be necessary to store enough of the state at time t to
permit another process to reconstruct y at an intermediate
time.

The speculative computation facilitates programming
of the interactions between continuous variables and
discrete events. In general, if an interacting discrete
event happens between t and t+L1t, then the speculative
value of y(t + L1t) must be abandoned, a current value of
y, must be calculated and published, and a new specula­
tive value of y must be calculated and stored. The fol­
lowing subsections describe how interacting discrete
events that happen between t and t + L1t affect the subse­
quent calculations of y(t) for the three types of interac­
tions described in section 1.

Combined Discrete-Continuous Simulation Models 835

quired in this calculation of y(t}) in the Type 2 case. In
the simplest case, perhaps the value of y(t}) could be
simply interpolated between y(t) and y(t + Lit), while a
more demanding case might require prior storage of all
of the required elements of the system state at t to enable
a complete reconstruction of y(t}).

2.2 Interaction Type 1: A Discrete Event Changes
the Value of a Continuous Variable

Figure 3 shows a procedure for programming the nu­
merical integration of a continuous variable in the vicin­
ity of a Type 1 interaction, in which a discrete event
causes a change in the value of a continuous variable.
The objectives of the procedure are to manage the tran­
sition between piecewise smooth segments by the fol­
lowing steps: 1) terminate the segment that ends with the
interrupt, 2) reset the continuous state variable to the new
value, and 3) restart the integration with a new segment.
Figure 3 shows that at t (the time step immediately be­
fore an interrupting event), the procedure is the same as
that shown in figure 2 - the validated y(t) is published
and a speculative y(t + Lit) is computed and stored. At tj,
in response to a discrete event that sets the value of y to
yJ,the following steps are programmed: 1) the speculative
value of y(t + Lit) is abandoned, 2) y} is published as the
valid y, and 3) a revised speculative y(t} + Lit) is calcu­
lated and stored.

1.
2.

t, t, +t1.t

of y(t +.dt) and store.

1. Publish the validated y(t).
2. Compute a speculative value for y(t +.dt) and store.

If an external event at t, < (t + .dt) causes a change in the
value of y to y', then:
1. Publish the value of y"
2. Abandon the speCUlative value for y(t +.dt).
3. Compute a speculative value for r(t, +.dt) and store.

Figure 3: Strategy for Programming a Type 1
Interaction

2.3 Interaction Type 2: A Discrete Event Affects the
Relation Governing a Continuous Variable

Interactions of the second type (a discrete event causing
a change in the relation governing the evolution of a
continuous variable) can be programmed in a similar
way, as Figure 4 shows. The principal difference be­
tween this case and the Type 1 interaction is that in the
Type 1 case, the value of y(t}) is specified by the inter­
rupting process, while in this Type 2 case, the value of
y(t}) must be calculated by the integrating process itself
before publishing. The performance requirements of the
particular model dictate the level of sophistication re-

Figure 4: Strategy for Programming a Type 2
Interaction

2.4 Interaction Type 3: A Continuous Variable
Achieving a Threshold Causes a Discrete Event

The processing of a Type 3 interaction (an interaction in
which the continuous variable achieving a threshold
causes a discrete event to occur) differs in two funda­
mental ways from the processing of Type 1 and Type 2
interactions: 1) the integration process itself identifies the
time of the interaction, and 2) the integration process
triggers discrete events. Figure 5 shows the strategy for
programming a Type 3 interaction. At t, the speculative
value y(t + Lit) may be checked to see whether y has
crossed the threshold. If no crossing is found, then the
process may continue in the simple form shown in figure
2. If a crossing has occurred, then the integrating proc­
ess must find the time of crossing by a method that gives
suitable accuracy. Again, the performance requirements
of the particular application guide the choice of a
method. In the simplest case, the crossing time tthreshold
may be estimated by interpolating the value of y(t) be­
tween t and t + L1t, while for more demanding applica­
tions, a root-finding procedure might be required.

Type 3 interactions additionally require that the mod­
eling program provide special features not required for
the other types of interactions. The numerical integrating
process must be able 1) to trigger discrete events imme­
diately (at tthre."hold in the example), 2) to

836 Klingener

threshold value

y

ySynchronous
Integration

threshold value

function y(t)

1. Discrete event changes value
2. Event changes governing eqn.
3. Variable achieves threshold.

1l.J1..::1 ';;;L'" EventsPublish the validated yet).
Compute a speculative value for yet + At).
If yet +At) exceeds then:
a. Find the root y(tthT1!l8hold) • Ythreshold = 0
b. Set the Ythreshold

c. Set

YthrtffJhold -1----....,

y(t+At) -

Figure 5: Strategy for Programming a Type 3
Interaction

cause discrete events to be scheduled, and 3) to reset or
adjust other continuous variables and relations that gov­
ern them.

tt,hnlShold t+At Simulation time

Figure 6: Comparison of the Results of Synchronous
and Asynchronous Integration

3.0 SUMMARY

Continuous state variables in combined models are com­
posed of piecewise smooth functions of time, divided by
discrete events into continuous segments. If synchronous
integration methods are used, then the precision with
which boundary events can be resolved depends on the
selection of integrating time step - the smaller the step,
the finer the resolution. To meet resolution require­
ments, the analyst may place an upper bound on the per­
missible time step size in addition to that dictated by the
needs for accuracy in the integration process itself. This
additional constraint may result in a performance pen­
alty. Using asynchronous (event-driven) integration
methods to divide the smooth pieces removes the need
for the additional constraint

Figure 6 summarizes the differences between syn­
chronous and asynchronous integration. In the case of
synchronous integration, the fidelity with which the
computed result reflects the interactions with discrete
events clearly depends on the selection of step size. In
the case of asynchronous integration, the continuous state
variable is divided into its three piecewise smooth seg­
ments. In the case of the Types 1 and 2 interactions, the
division reflects the "exact" time resolution of the dis­
crete event scheduler, and in the case of the Type 3 inter­
action, the time resolution of the detection threshold can
be made arbitrarily fine. Thus, fidelity at the segment
boundaries is independent of the integration step size.

4.0 IMPLEMENTATION

The earlier sections of this paper discussed the meth­
ods of speculative computation and asynchronous inte­
gration that are needed to adapt classical numerical inte­
gration methods, which are basically synchronous, to the
asynchronous environment of the conunercial discrete
modeler. This section first discusses general program­
ming features (data structures and function calling con­
ventions) that are useful for implementing those meth­
ods. Then, for two commercial modelers, it discusses
how the analyst can exploit programming features and
how a simple example model can be programmed. An
exploration of comparative performance or even prefer­
ence is outside the scope of this paper.

4.1 General

The notions critical to adaptation of classical numerical
integration methods to a discrete event environment are:
1) speculative computation described in section 2.1and
2) interruptible processes to enable the methods de­
scribed in sections 2.2 through 2.4. To implement
speculative computation, it is useful, though not neces­
sary, for the modeler's data structure to embody some
idea of locality or privacy to protect the speculative val­
ues of the continuous state variables until they can be
validated. Further, the modeler should have some facil­
ity for interrupting the integration process so that the

Combined Discrete-Continuolls Sinlulation l\Iodels 8:37

speculative values of continuous state variables can be
modified to reflect changes due to discrete events that
occur between computation and validation. This section
discusses approaches to combined modeling that can be
used with two modelers ProModel for Windows
(ProModel Corporation, Orem UT) and Extend (Imagine
That!, San Jose CA).

As a framework for discussion, the following simple
system was constructed in both models: pallets contain­
ing massive steel objects arrive at a preparation area.
When space is available, a pallet is loaded into a furnace,
in which it is heated by radiation and convection, to a
predetermined threshold temperature. Then the pallet is
moved to a cooling area and then to disposal. The pallet
temperature is a represented by a continuous state vari­
able that follows the differential equations of heat flow.
The variable is divided into smooth pieces by the charg­
ing and discharging events.

The model includes interactions of all three types, the
arrival of a pallet in the furnace combines types 1 and 2
interactions by setting both the value of the continuous
state variable and the relation governing it. The type
three interaction occurs when the pallet temperature
reaches the threshold temperature.

4.2 ProModel for Windows

ProModel for Windows (PMW) is a discrete event mod­
eler that has no explicit support for modeling continuous
processes. It does have features that an analyst can use
to build integrators that implement the techniques that
section 2 describes. PMW has a useful data structure
that includes real and integer variables with either global
or local scope. In addition, the user can define real or
integer attributes for entities and/or locations. PWM
provides at least two constructs that can be used to pro­
gram numerical integrators: 1) subroutines launched by
the ACTIVATE statement, and 2) operations code that is
executed by arrival of an entity at a location. This sec­
tion takes the latter approach.

Klingener [1995] describes a combined model built in
PMW based on a synchronous Euler integration scheme
using the approach. Although the methods were useful
for illustrating the technique of embedding numerical
integration schemes in entity operations code, they are
not suitable for serious modeling. Adding such features
as speculative computation, a robust integration scheme,
adaptive time stepping, and Type 3 interactions no
change to the basic structure of the model. However,
managing interactions of Types 1 and 2 requires the
creation, by interrupting events (using PMW's ORDER
statement), of dummy entities that update the continuous
variable as required, that arrange the orderly termination

of the already running Operations code, and that flush
invalid speculative results.

The programming is described here from the bottom
up. Listing 1 shows the subroutine der i vl that returns
the rate of change of the charge temperature, given the
simulation clock time and the state variables. Listing 2
shows the dy_rk4 subroutine that implements the 4 th

order Runge-Kutta numerical integration method. It calls
the der i vl routine and returns the change in tempera­
ture during the integration time step.

Listing 1: Differential Change in Temperature

i real der i vI (rea I time. real charge_temp)
*---- -------- -- ------- -- --- -------- ----- --- ----------- ---------
.,. uses global variables:
t area - heat transfer area (ft"2)
i charge_weight (lbf)
specific_heat (BTU/lbf/degR)
i Hconv - convect. h. t. coeff (BTU/hr/ft"2/degR)
Hrad - rad. h. t. coeff (BTU/hr/ft"2/degR"4)

RETURN (area/ (charge_weight*specific_heat)) *
(Hconv* (Thigh-charge_temp) +
Hrad* (Thigh**4-charge_temp**4))

Listing 2: Fourth Order Runge- Kutta Procedure

l! real dy_rk4(real x, real y, real dx)
8 - --- -- - - - - - - -- - - -- - - - - - - - --- --- ---- -- ---- ----- - ----- - - - - - -----
unadorned fourth order Runge_Kutta
t ref Press, et al. 2nd Ed. page 711 eqn 16.1.3

REAL kl, k2 , k3 , k4

k1=deriv1 (x , y) *dx
k2=deriv1 (x+dx/2 t y+k1/2) *dx
k3=deriv1 (x+dx/2, y+k2/ 2) *dx
k4=deriv1 (x+dx ,y+k3) *dx

RETURN k1/6 + k2/3 + k3/3 + k4/6

Listing 3 shows the core operations performed by the
Entity RK4 each time it enters the Location integra­
tors. At the end of the operations block, RK4 is
ROUTEd either back to the beginning (using the CON­
TINUE rule) or, if an interrupt has started the integration
of a new segment, to the EXIT. The listed procedure
performs a 4th order Runge-Kutta integration with adap­
tive time stepping, speculative computation, and thresh­
old detection. When the threshold condition is met, the
type 3 interaction is effected by issuing a SEND state­
ment to the Entity waiting at the furnace Location.

Numerical integration processes, turned off when not
needed, can be spawned by ORDERing a dummy entity to
a real or dummy location. Listing 4 shows the operations
typical for such an Entity, here Intr2 at integra­
tors. It performs the initialization appropriate to its
type and then spawns the recurring process by routing
another Entity RK4 back to the same Location.

838

Listing 3: Asynchronous Numerical Integration Opera­
tions

ill# If,. it t#1Ht If i'* If i ** If #1#'** #If # ** .. #*i# Ifl*' * It i If If*'il'i" j i*# It If If I If
If OPERATIONS BLOCK FOR ENTITY RK4 AT LOCATION integrators #
It This block implements a simple fourth order Runge-Kutta If
,. integration with adaptive time step control. #
It refer to Press I et al. Numer ical Rec ipes in C, 2nd Ed. #
pp . 710 - 716 If
#il#####*II'##li##'###*I#####*i*i###*#####'###II#I#'########i#f#

DECLARE LOCAL VARIABLES
#--------------------------
INT retry If flag controlling adaptive stepper
INT too_slow, too_sloppy It flags reflecting truncation error
REAL max_err=max_error-per_RK_s tep, min_err=max_err /100.0
REAL y_1step, y_2step, t_err It interim results

SAVE THE CONTEXT IN ATTRIBUTES
#--------------------------
LocAttr1=CLOCK () If use these later for intr handling
EntAttr1=CLOCK ()

COMPUTE SPECULATIVE TEMPERATURE ~ID TRUNCATION ERROR
#--------------------------
DO BEGIN # until retry=False

y_lstep=Ternp+dy_rk 1 (CLOCK (HR) , Temp, time_step)
y_2step=Temp+dy_rk4(CLOCK(HR),Temp,time_step/2)
y_2step=y_2step+dy_rk4 (CLOCK (HR) +time_step/2, y_2step,

time_step/2)
t_err=y_2step-y_lstep # Press 2nd. p.715 16.2.2

DECIDE WHETHER RESULT IS WITHIN ACCURACY SPECIFICATIONS
#--------------------------
IF abs (t_err) <min_err THEN too_slow=True

ELSE too_slow=False
IF abs (t_err) >max_err THEN too_sloppy=True

ELSE too_sloppy=False
retry=TRUE
IF too_slow=True THEN time_step=2 * time_step # double

ELSE IF too_sloppy=True THEN time_step=time_step/2 # half
ELSE retry=False i just right

END UNTIL retry=False

This completes the computation of the speculative result
I for the temperature at time_step in the future.
I Keep the best value in the (local) variable, y_2step:
y_2step=y_2step+(t_err/15.0) i Press 2nd. p. 715 16.2.3

CHECK FOR THRESHOLD CROSSING (Type 3 Interaction)
#--------------------------
IF y_2step>=Tthreshold THEN BEGIN

interpolate time to crossing
time_step=time_step* (Tthreshold-Temp) / (y_2step-Temp)
WAIT time_step
Temp=Tthreshold
SEND 1 Workpiece TO cooling

It Output Destinat~on Rule
ROUTE 2 BREAK END It RK4 EXIT FIRST 1

I{lingencr

4.2 EXTEND

Extend from Imagine That! is a visual simulation mod­
eling language that has support libraries for either dis­
crete or continuous systems. Combined models are con­
structed in the discrete mode. While Extend has library
support for integration of continuous variables in discrete
models, that support is based on a fixed time step size
Euler method. In the context of issues discussed in this
paper, that support lacks the speed, accuracy and stability
that are required for high performance modeling.

However, Extend, as part of its C legacy, inherits a
rich and expressive underlying structure along with its
built-in ModL language. ModL has an expressive data
structure that includes user-definable real, integer, string,
and array types (though no structures). In addition, Ex­
tend's block structure supports message passing among
processes and prograrruning of the block responses to
those messages. Figure 7 shows one approach to mod­
eling a combined process in Extend. The required be­
havior of the furnace block (receiving an item, triggering
the integration process, and passing the item on after
receiving a release message from the integrator) may be
obtained by modifying one of Extend's existing library
blocks. The user-written integration block may be trig­
gered either by a message to Intr2In or, if the model re­
quired that item attributes be passed to the integrator, the
item itself could be passed. The numerical integration
itself is coded into the integrator block script. When the
threshold temperature was reached, then the integrator
block sends a message to the furnace via the Intr30ut
connection.

Figure 7: Block Interactions in Extend

If WAIT FOR SIMULATION CLOCK TO CATCH UP
#--------------------------
WAIT time_step

* DECIDE WHETHER 1~ERE HAS BEEN AN INTERRUPT
#--------------------------
IF LocAttr1=EntAttr1 # no interruption

THEN BEGIN
Publish the speculativ~ resul t as the global variable Temp

Ternp=y_2 step
Then go back for another bi te

Output Destination Rule
ROUTE 1 END # RK4 integrators CONTINUE 1

ELSE BEGIN # interruption
It Output Destination Rule

ROUTE 2 BREAK END It RK4 EXIT FIRST 1

Listing 4: Type 2 Interaction Operations

Intr2 Type 2 Interaction Preamble

update the value of the continuous variable first
REAL short_step

It calculate the size of the short step
short_step=CLOCK()-LocAttrl* call the integration routine for a new Temp.
Temp=Ternp+dy_rk4(CLOCK(),Temp,short_step)

If restart the integration
time_step=O.05
exit ROUTING: Output Destination Rule

RK4 integrators FIRST 1

Intr21n

D

Itemln

Integrator

Furnace

tlntr30ut

Releaseln

[@]
ItemOut

Combined Discrete-Continuous Simulation l\lodels

4.3 CONCLUSIONS

Of the examined modelers none explicitly supports com­
bined models with the features required for high per­
formance. ProModel for Windows has no built-in sup­
port at all. Extend supports either discrete event or con­
tinuous models, but its support for continuous variables
in combined models is suitable only for small or unde­
manding problems.

Although ProModel for Windows and Extend have
different modeling paradigms, both have data structures
and programming features that enable construction of
robust combined models. The methods described im­
plement speculative computation, a robust integration
scheme, adaptive time step adjustment, threshold detec­
tion, and asynchronous restarts after interruption. The
ability to use different time step sizes for processes that
have different time characteristic and the ability to turn
off numerical integration when it is not needed are cru­
cial advantages of the approach.

REFERENCES

Klingener, 1. Frederick, 1995, Combined Discrete­
Continuous Simulation Models in ProModel for
Windows. In Proceedings of the 1995 Winter
Simulation Conference, ed. C. Alexopoulos, K.

Kang, W. R. Lilegdon, D. Goldsman, 445-450. In­
stitute of Electrical and Electronics Engineers, San
Francisco, California.

Press, William H., Brian P. Flannery, Saul Teukolsky,
William T. Vetterling. 1992. Numerical Recipes in
C - The Art of Scientific Computing. 2d ed. New
York: The Cambridge University Press.

Pritsker, A. A. B. 1986. Introduction to Simulation and
SLAM II. 3d ed. West Lafayette, Ind: Systems Pub­
lishing Corporation.

AUTHOR BIOGRAPHY

FREDERICK KLINGENER is president of Brock
Engineering, P. C. in Roxbury Connecticut. He received
a B. S. in 1962 and an M.S. in 1966 in mechanical engi­
neering from Carnegie Institute of Technology. He is a
registered mechanical engineer in the state of Alaska. He
has had broad experience in design, analysis, and fab­
rication of nuclear, robotic, and automotive mechanical
systems. He has recently worked in cost, risk, and prod­
uction analysis of the army's program to dispose of un­
serviceable chemical weapons. Mr. Klingener's current
interests include data analysis of real and simulated
manufacturing processes.

