
Proceedings of the 1996 ~VinteT Sim,ulation Conference
cd. J. /\!. 'C~11a,rllCS, D. J. l\Jorrice. D. T. Brunner. and J. J. Sy\rain

JAVA-BASED QUERY DRIVEN SIMULATION ENVIRONMENT

Rajesh S. Nair

John A. Miller

Zhiwei Zhang

Department of Computer Science
lTniversity of Georgia

Athens, Ga 30602-7404, IT.S.A.

ABSTRACT

The concept of Web-based simulation can be finally
realized using Java. We have used Java to create a
powerful simulation modeling library \vhich is based
on the process interaction paradignl. Java threads
make it easy for us to inlplement each process (or
active entity) as a thread. Our library, JSIM, sup
ports both silnulation and aninlation thus render
ing the model developer's job easier. An important
component of our approach is that we integrate our
Java Simulator with a Database Management Systenl
(DBMS). The conceptual basis for this integration is
an environnlent based on Query Driven Simulation,
which allows sinlulation analysts to study the per
fornlance of systenls simply by querying a database.
Simulation inputs and outputs are stored in databases,
and siIllulation Ill0dels can be launched as a part of
query processing. This integration also resolves a se
curity restriction problenl \vhich Java imposes. Most
browsers (e.g., Netscape Navigator) restrict Java ap
plets frOIll writing into a file \vhich nlay be neces
sary to Illake sinlulation results available to the user.
Our approach bypasses this problem by writing into a
database. Databases are 11luch less of a security con
cern since they already have substantial authorization
mechanisIlls.

1 INTRODUCTION

Sin1ulation has COIlle a long way since its inception.
An increasing nUlllber of real world concepts are being
nl0deled and studied using simulation. Recently, sim
ulation has been influenced by an increasingly popu
lar phenonlenon - the World Wide Web or WWW.as
it is kno\vn. The popularity of the Web has propelled
it into being a nlediunl for all kinds of applications
including sinlulation.

The concept of Web-based simulation can be fi
nally realized using Java. Java is an object-oriented
progranlnling language for the Web. With J ava, it is

78G

possible to have "executables" on the Web. This pro
vides users with a dynamic environment as opposed
to a largely static, text-driven environment that was

existent prior to Java. Simulation users can finally
view results over the Web in a dynamic environment
cOlllplete with animation, sound and textual informa
tion.

Java is an important advance in Web technol
ogy, and one that is particularly important to simula
tion. Previously, interactivity or minimal dynamism
on the Web were accomplished using Common Gate
way Interface (CGI) scripts, typically coded in Perl
or C/C++. Unfortunately, these scripts run on Web
servers, thus limiting how dynamic the display on a
remote Web browser could be. Java is fundamentally
different in that it allows applets downloaded from
a Web server to be run by the browser. Therefore,
dynamism is only limited by the speed at which Java
code can be executed. Since Java aims for universal
portability, browsers provide a byte code interpreter
to execute code produced by a Java compiler. Co
nsequently, it is not as fast as purely compiled code
(e.g., C/C++) but is faster than purely interpreted
code (e.g., Perl). However, in the future it is expected
that native code compilers will be available for Java to
make its speed competitive with C/C++. It should
be noted that since Java source code (.java) is COD1
piled to byte code (.class), source code need not be
made available to the Web as it must be for purely
interpreted languages. Let us summarize by listing
some of advantages of using Java to implement sim
ulation models.

1. Simulation models implemented as Java applets
can be made widely available. Anyone that you
give permission to that has a Java capable Web
browser (e.g., Netscape 2.0 or higher, HotJava
1.0 or higher) could potentially run your simu
lation model on their local machine.

2. The goal of universal portability means that one
simply retrieves an applet and runs it. One does



Java-Based Quer.y Driven Simulation Environlnent

not have to port to a different platform, or even
recompile or relink.

3. Java applets run on a browser allowing a higher
degree of dynamism.

4. Java has built-in threads making it easier to
implement simulations following the process in
teraction paradigm.

5. Java has built-in support for producing sophis
ticated animations. Geometric objects can be
readily created, ll10ved, color changed and de
stroyed. In addition, icons/images (.gif, .jpeg)
can be similarly used.

6. Some also see Java as a better C++. It is
smaller, cleaner, safer and easier to learn than
C++. Notably, it does not provide pointers and
automates storage management through the use
of garbage collection. Thus, many of the ll10st
common C++ errors would be avoided.

Java shows great promise for sinlulation and ani
mation. We have used these strengths of Java to build
a comprehensive library, called JSIM, to support both
simulation and animation. One potential problelll
with Java involves making data persistent. For exam
ple, in Netscape Navigator 2.0, applets cannot read or
write files at all (see http://www.javasoft.com/java.
sun.com/sfaq). Our solution to this problem is to
have applets read from and write to a database in
stead. In fact, a Database Management System
(DBMS) is an integral part of our simulation environ
ment. The integration of the silllulation and database
components is done following the notion of Query
Driven Simulation (QDS).

In the rest of this paper, we overview the Query
Driven Simulation environment, and then cover the
three main aspects of the JSIM library: sinlulation,
animation and database access. This is followed by
an example simulation model and an example QDS
query. Finally, conclusions and future work are pre
sented.

2 QUERY DRIVEN SIMULATION

Query Driven Simulation is based on the tenet that
simulation analysts as well as naive users should see
a system based upon QDS as a sophisticated infor
mation system which will be able to store or generate
information about the behavior of systems the user
wishes to study (Miller and Weyrich 1989,Miller et al.
1991a,1991b,Miller et al. 1996a, Miller et al. 1996b).
This means that the user must be provided with an
easy to use environment where he/she may trigger an
action using a simple query language.

The QDS environment principally consists of three
communicating processes and several data stores (see
Figure 1). The processes include a Web browser (e .g.
Netscape Navigator or HotJava), a VVeb server (e.g.
Netscape Commerce Server) and a DBl\/IS (e.g. lll
SQL). The data stores consist of models, data and
meta-data stored in databases or files accessible to the
Web server. The Web server will also store the ap
plets used in the QDS environment such as the QDS
Applet, the Design Applet and potentially nUlllerous
model applets. The JSIM library sinlplifies the de
velopment of model applets. The QDS environment
is aimed towards providing a friendly and easy to use
interface to the user. A typical session involving a
user and the QDS system can be explained as fol
lows. When the user first contacts the Web server
(e.g. httpd), they download the lllain control applet
for the environment, namely the QDS Applet. The
QDS Applet upon starting up gives the following op
tions to the user.

1. Find Model Applet

2. Run Model Applet

3. Submit SQL Query

4. Save Results to DBMS

5. lTpdate Model Index

6. Sublllit QDS Query

7. Design Model

All the options, excepting option 7, can be ex
plained by outlining the functions performed by op
tion 6. If the user elects to submit a QDS query,
the QDS Applet first treats the query as a normal
SQL query and submits it to the database engine.
The query is run against the existing database and
the results are returned to the QDS Applet. If the
results are adequate, then they are presented to the
user. Otherwise, the QDS Applet submits a query
to the Model Index in the database to determine the
relevant model. Once the entry for the model in the
Model Index table is found, the QDS Applet extracts
the parameters required by the model applet from the
query itself. (For option 2, the QDS Applet requests
the user for the parameters.) This is called '~defining

a scenario". The QDS Applet then requests the Web
server for the model applet code. The Web server re
sponds by providing the applet code which is then ex
ecuted with the appropriate parallleters. The model
applets use the classes provided in the JSIM library
(section 3.4). The results generated by the model ex
ecution mayor may not be stored in the database



788 Nair, Aiiller, and Zhang

Machine 2
QDS Applet

Infonnation
about Parameters

Model Model URL
Name Description

javac

Design Applet

Model Index

Model Applet~----'

Machine 3

load QDS Mrebserver
1
1 (httpd)

1
rtUl model

IBrowser I
(HotJava):

find model

,
~ DBMS

submit query 1 (msqld)

Machine

Simulation

Results

Figure 1 . The QDS Environment

depending on the user's choice. It is also the respon
sibility of the ITIodel applet to display the results of
model execution to the user. Option 7, Design Model,
is different from the other options in that it is meant
for the sinlulation model builder rather than the user.
A special applet called the Design Applet is invoked
when the user selects this option. The Design Applet
helps the nl0del builder design a sinlulation model by
providing him/her \vith a graphical interface in which
a model can be built prinlarily by drag and drop op
erations. Currently, the Design Applet is not fully
functional.

3 JSIM:THE JAVA SIMULATION
LIBRARY

JSIM, written in J ava, is a simulation toolkit with
a library of Java classes. JSIM provides nl0st of
the features of SIMODULA developed by (Miller and
Weyrich 1989). In our implenlentation, we have built
simulation, animation, random variate generation, sta
tistical analysis and database access facilities into the
library. In building our library, we followed the pro
cess interaction paradigm. Java's built-in support
for threads helped us in implenlenting a true process
interaction paradigm. The sinlulation entities have
been coded as threads and are truly independent and
may perfornl actions on their own. Throughout the
discussion, we consider a simple simulation example
that of a bank with one or more tellers and multiple

customers. The customer arrival time is random as
is the service time.

In the following subsection, we discuss our library
in greater detail. We begin with the simulation C001
ponent.

3.1 Simulation Facilities

We use the process interaction paradigm for simula
tion since we feel it is closer to real world concepts
than the event scheduling approach. Java threads
make it possible for us to realize the process interac
tion paradigm in a straightforward manner.

As can be seen from the bank simulation example
of section 4, both customers as well as tellers are inde
pendent entities. Each simulation entity, namely cus
tomer, teller, etc., is coded as a Java thread. Java's
support for multi-threaded programming makes it an
ideal platform for an implementation of the process
interaction paradigm.

Furthermore, we have provided for both virtual
time clock and real-time clock simulation capabili
ties. The virtual-time clock simulation is ideal for
speedy simulation with little or no machine interfer
ence in simulation timings. It is particularly help
ful if the real world events that are being simulated
are long lived. Virtual-time clock simulation uses the
so-called "next-event" strategy for advancing simula
tion time. Here, the clock value jumps to the time
at which the next event is due to occur. It is usually



Java-Based Quer.y Dri"cn SiIIlulation Environnlcnt 789

implemented with a scheduler and a Future Event
List (FEL). The scheduler first schedules an event
by inserting it into the FEL depending on its acti
vation time. It then transfers to the event at the
front of the FEL by removing it from the FEL and
updating the simulation clock to the time associated
with that event. Real-time clock simulation, as the
name suggests involves using a real world clock (sys
tem clock time obtained using the Java function Sys
tem.currentTimeMillis) for simulation timing. It is
well suited for real-time animation where simulation
events are represented by corresponding animation
events. In real-time clock simulation, the clock does
not move in jumps but progresses smoothly. Enti
ties are delayed by using sleep or suspend which are
methods within the thread class.

We also provide for anill1ation of virtual-time clock
simulation as is explained in the next subsection.

3.2 Animation Facilities

As n1entioned above, we provide for animation of both
real-time clock and virtual-time clock simulations. To
support real-time clock simulation, we built in ani
mation capabilities into each of the simulation enti
ties. Each simulation entity has its own draw method.
We used a technique called double buffering to ill1ple
ment multi-thread animation capabilities. The dou
ble buffering technique is generally used to reduce
flicker during animation. However, we have used this
technique to our advantage in a totally different n1an
ner. A single display thread periodically calls every
active simulation entity to draw itself into an offscreen
buffer. After the offscreen buffer has been completely
updated, the display thread repaints the screen by
copying the offscreen buffer onto the active display
buffer. This process continues until the end of sill1u
lation.

Animating the virtual-till1e clock simulation re
quired a t0tally different approach. Here, simula
tion events could not trigger off corresponding ani
mation events since the time frame is virtual. In
stead, we adopted the following approach: the simu
lation writes every simulation event into a trace file
stored in the database. The virtual-time clock anill1a
tion thread then reads the trace file (after simulation
ends) and performs animation. The virtual-time has
to be converted to real- time for animation. There are
methods to draw each simulation event. The advan
tage of using virtual-time clock simulation in animat
ing is that one can fast forward, rewind, pause while
watching the animation.

An added advantage of using the Web as the in
terface (J ava applets) is that one has unlimited access
to image sources and other resources needed for an-

imation. For exanlple, rather than having geometric
shapes move around in a bank simulation, one could
use images of peoples heads.

3.3 Database Access Facilities

The conceptual basis of integrating our silllulation
library with database access is QDS. Our simulation
environment supports QDS in a natural and flexible
manner. QDS is characterized by two basic ideas:

1) Storing simulation resul ts and simulation mod
els in a database: QDS enlphasizes that sinlulation
results, which are usually generated at a great COlll
putational cost lllUSt not be discarded, but instead
be stored in a database. Sin1ulation ll10dels are also
required to be stored and retrieved systenlically. Cur
rently, we used the MiniSQL (n1SQL) (Kimpton, T.R.,
1995) database engine for our inlplementation. The
reasons for using lllSQL are as follo\vs:

• mSQL, being a lightweight database engine that
inlplements a subset of ANSI SQL, requires less
nlenl0ry and overhead than nl0st relational DB
MS engines. Nevertheless, it is powerful enough
for our requireInents.

• nlSQL is the only DBMS which has a Java API,
rvIsqlJ ava (Collins, D. 1996), at the ll10ment
this docunlent is being written. We wanted
database access to seanllessly integrate with the
sin1ulation library. This required that the DBMS
provide an API rather than resorting to elllbed
ded SQL for database access.

• We expect that conversion from MsqlJ ava API
to JDBC calls will be easy when JDBC is made
available by J avaSoft and JDBC driver man
agers are made available by individual DBMS
vendors.

• mSQL is free of cost and is available for down
load from http://Hughes.com.au/product/
msql/.

We have designed our database to maintain a M
odel Index and store simulation results. The Model
Index contains a list of all available models along with
a brief description and information about the param
eters the model requires (refer to Figure 1). It also
contains a Uniform Resource Locator (URL) to the
model applet. Each model is associated with a table
in which it stores its results. These are the tables that
are queried when a user issues either a normal query
or a QDS query. The models, themselves, are stored
as Java applets. These applets are invoked whenever
a ll10del needs to be executed.



790 Nair, l\Iillur, alld Zhang

2) Presenting a sin1ple user interface: QOS envis
ages that even naive users I11ust be able to use a siI11
ulation systeo1 based on QDS. We chose SQL as our
user interface query language because SQL is both
popular and silllple. Currently, our user interface is
functionally simple where the user can issue a query
on one or more o10dels (each 1110del stored as a single
table in the database) using one or more conditions.
The available models and the stored data attributes
can be obtained by querying the database. The mod
els satisfying the query will be displayed to the user
in a scrollable list. The user can select the model and
the attributes he/she is interested in from the model
list and can either run the model or issue a query.
The user is also allowed to specify a conditional search
which will serve as the where clause in the SQL query.
The query is then sent to the database engine which
will return the results if they exist in the database.
If the results are not available in the database, the
relevant simulation model is executed and the results
are provided to the user.

The basic ideas of QDS also help overcome a prob
leo1 posed by Java - that of providing persistence to
simulation results. J ava's in-built security restric
tions as well as the security restrictions imposed by
most Web browsers do not allow Java applets to write
applet generated results into a file. We solved this
problem by writing results into a database thereby
shifting the responsibility of securi ty from the browser
to the database which often has elaborate security
provisions. We have been successful in writing results
frOll1 an applet into the o1SQL database while working
with the HotJ ava browser. The popular Web browser,
Netscape, imposes a further restriction on database
access by requiring that both the http server and the
database server be running on the same machine.

3.4 The JSIM Class Library

The goals of creating the JSIM sio1ulation library are:

• to provide a set of utilities for building a work
ing sim.ulation
JSIM provides the basic utilities for creating
a working sin1ulation. Our implell1entation of
a bank sin1ulation illustrates the power of the
simulation library.

• to provide statistical or other data to be stored
in the database
As a key component of query-driven simulation,
the simulation coo1ponent generates statistical
data during o10del execution, which will then
be stored in a database for future queries. As
stated before, re-executing a simulation I110del
\vith the sa01e input parameters as before could

be expensive if we do not store the previously
generated data.

• to provide facilities for animation
Java is a language for programming on the Web
and is designed to deliver interactive content
using applets embedded in HTML pages over a
network of heterogeneous systems. Our simula
tion systeI11 can be used to animate the simula
tion process using applets.

• to provide an instructional tool for simulation
The saying ~~i t is bet ter to see once than hear
a hundred times" has been verified by psycho
logical experiments (Hulllphreys and Riddoch,
1987). Visual facilities such as overhead projec
tors and 1110dels have been widely used for edu
cational purposes and are proven to be effective,
especially for explaining abstract concepts. For
the people who are used to concrete thinking,
this is also supported by research in interface
design (Hutchins, Hollan and Norman, 1985).
The rapid development of the Internet, espe
cially the World Wide Web, places a huge inl
pact on the way we live and learn. "Vith anima
tion, students are able to visualize and interact
with simulation processes, which will help them
learn better and reduce their learning curve.

• to avoid learning a new simulation language
.J ava is an object-oriented programm-ing lan
guage and its syntax is similar to C++. Java is
arguably simpler than C++ and is, therefore,
easier to learn for novice programnlers, easy
to adopt for C++ progran1mers, yet powerful
enough for complex tasks. With all its power
and wide applications, Java becomes an alter
native programming language to CjC++ and
gains popularity with the rapid growth of Web
technology. After having grasped J ava, there is
no need to learn other special simulation lan
guages and simulationists can use JSIM to de
velop simulation models quickly.

The following are the classes in the JSIM library:
Display_ Thread, Graph, Histogram, Plot, Model-App
let, Queue, FCFS_Queue, LCFS_Queue, Priority_Q
ueue , Resource, Server, Simobject, Statistic, Trans
port and Variate. Figure 2 shows the class inher
itance hierarchy in JSIM. There are three types of
queues derived from Queue in JSIM: FCFS_Queue,
LCFS_Queue and Priority_Queue. The Statistic class
implements methods for collecting, analyzing, test
ing, and displaying simulation results. The Tally
method gathers sample statistics, while Accumulate
gathers time-persistent statistics. In addition, the



I
I
I

r--- L ----,

: Bank :
: Applet :
L. J

Java-Based Query Driven Simulation Environment

r - - - _1- - - - ,

: Customer:
I I
I IL J

791

~
~

r----'
I I
I IL J

- MsqlJava Class

- Example of a class~

Figure 2: Class hierarchy in JSIM
: :

Statistic class also provides methods for calculating
mean, variance, standard deviation of sample statis
tics, e.g., mean of customer inter-arrival time. The
class Variate provides procedures to generate random
numbers and random variates. It has nine procedures
for continuous random variates and four for discrete
random variates.

The Server class, derived from Thread, is the ser
vice provider and has basic methods such as associ
ating queues with the server and setting priorities to
associated queues. The Resource class, derived from
Server, allows user defined resources for simulation
models. A resource consists of a number of service
units (e.g., bank tellers), and a Queue feeding the
service units. A process requests resources by calling
request, and releases resources by calling relinquish.
If a request for resources is not granted, the process
making the request waits in the resource queue. The
Histogram and Plot classes are responsible for gener
ating histograms and plotting simulation results, re
spectively, and they are derived from Graph. The
Transport class provides movement facilities to the
simulation objects. Simulation objects can move only
using transports or queues. The transport object is
used to connect two key locations, for example, the
head of a queue and a service station at a resource.

The Simobject class provides an abstraction for simu
lation entities, for example, the customer class is de
rived from the Simobject class in the bank simulation
example of Figure 3. The Simobject class houses ba
sic methods for joining a queue, claiming a resource,
etc. The Display class implements the display thread
that is responsible for animating the simulation.

4 AN EXAMPLE

We use a classical bank simulation to show the power
and capabilities of our simulation environment. The
Bank-Applet is an aggregation of five types of ob
jects: one or more Servers (Tellers), a FCFS_Queue,
a Transport, a Customer_Generator and many Cus
tomers. The relationships between these components
are shown in Figure 3 which is an OMT diagram
(Rumbaugh et al., 1991).

The Bank_Applet models an M/M/s queue where
s represents the parameter Num_Tellers. Both the
Customer and Customer_Generator are derived from
the Simobject class. The Customer_Generator class
is used to generate several Customer threads based
on the specified Inter-Arrival_Time. The Customer
thread and the Customer_Generator thread make use
of the Variate and Statistic classes to maintain their



792

lodel Applet

.J.\Tair, AlilleI', and Zhang

SimObject

Queue

Transport

Server

BankApplet ~----.-----Customer

Customer

Generator

Variate

Statistic

Figure :3 . Bank Simulation Example

statistics. The Transport class is used to connect the
Queue to the service station at the Server.

When a CustoIller entity is first created, it tries
to engage the Server. If the Server is busy \vith
some other CustoIuer, the CustoIller entity enters the
Queue and waits its turn. If the CustOiller is able to
engage the Server, it will be served for a period of
tinle referred to as service tiIue \vhich is derived frOI1l
an exponential distribution. After the service tinle is
over, the Custonler relinquishes the Server and leaves
the bank (Cust0I11er thread terI11inates).

A typical QDS query for the above bank siI1lula
tion model would be as follo\vs:

SELECT Waiting_Time, Avg_Queue_Length
FROM Bank_Applet
WHERE Num_Tellers=1 AND Inter_Arrival_Time=3

In response to this query, the table correspond
ing to the bank I1lodel will be queried and the results
returned if available. If the required results are not
available in the table, then the QDS system retrieves
the 1110del inforI11ation frolll the ~lodel Index table.
It then invokes the relevant model applet using the
paraI1leters given by the user in the query, namely,
Nulll_Tellers = 1 and Inter_Arrival_Time = 3 (other
parallleters will take on their default values). The
user is then given the results of this ne\v model exe
cution.

5 CONCLUSIONS AND FUTURE WORK

\Ve believe that vVeb-based silllulation will become an
important technology for the future. The importance

of the World Wide Web steadily increases; and now
with J ava, highly interactive and dynanlic simula
tions/aninlations may be executed on the Web. Rec
ognizing this, we have an ongoing project to develop
sophisticated capabilities for Web-based simulation.
Our QDS environment and JSIM library provide a
widely available and easy-to-use facility for develop
ing Web-based sinlulations and animations. The envi
ronment cOIl1bines siIl1ulation, animation and datab
ase access exploiting the strengths of Java (e.g. it
is a high-level, clean and safe object-oriented lan
guage and has multi- threading and sophisticated dis
play/G tTl facilities) as well as Il1inimizing its weak
nesses (e.g. lack of data persistence in applets).

As an ongoing project, we still have much work
to do. The following are the major areas of inter
est for future work. We are currently incorporating
advanced features such as batch/unbatch, split/join
and routing features into our library. We will also be
converting from MsqlJava API to JDBC API when
a stable version of JDBC becomes available. This
will allow us to use a variety of Relational or Object
Relational DBMSs. Another area of focus is the Grap
hical Model Designer. The Graphical Model Designer
is intended to be a G UI- based model builder that a
simulationist can use to quickly build models by drag
and drop operations.

ACKNOWLEDGEMENTS

We would like to acknowledge Darry Collins for writ
ing and making available the Java API to mSQL.
We would also like to thank Vijayalakhsmi Natara
jan, Department of Computer Science, University of



Java-Based Qucr.v Driven SiInulation ElnrironIllcnt 793

Georgia, who helped us in developing database access
for our class library and Hongwei Zhao, Department
of Computer Science, University of Georgia for con
tributing to the design of the graphical designer.

REFERENCES

Collins, D. (1996) MsqlJava: A Java class library
for mSQL. URL: http://mama.minmet.uq.oz.au/
msqlj ava/ tutorial.html

Hutchins, E.L., Hollan, J.D. and Nornlan, D.A. (1985).
Direct manipulation interfaces. Human-Computer
Interaction. 1:311-38.

Humphreys, G.W. and Riddoch, M.J. (Editors) (1987).
Visual Object Processing: A Cognitive Neuropsy
chological Approach. Hove, UK: Lawrence Erl
baum Associates.

Kimpton, T.R. (1995) Mini SQL: A lightweight datab
ase server. URL: http://Hughes.com.au/product/
msql/manual.htnl

Miller, J.A., Kochut, K.J., Potter, W.D., Ucar, E.,
and Keskin, A. (1991b). Query-driven simulation
using active KDL: A functional object-oriented
database system. International Journal in Com
puter Simulation, 1(1): pp. 1-30.

Ivliller, J.A., Potter, W.D., Kochut, K.J., Keskin, A.,
and Dear, E. (1991a). The active KDL object
oriented database system and its application to
simulation support. Journal of Object-Oriented
Programming, 4(4): pp. 30-45.

Miller, J .A., Potter, W.D., Kochut, K.J., and Ramesh,
D. (1996a). Object-oriented simulation languages
and environment: a four-level architecture. Object
oriented Sim.ulatzon. Zobrist-Leonard, Editors.
IEEE Press (1996). (to appear)

Miller, J.A. and Weyrich, O.R. (1989). Query driven
simulation using SIMODULA. Proceedings of the
22nd Annual Simulation Symposium, Tampa,
Florida. pp. 167-181.

Miller, J .A., Weyrich, O.R., Potter, W.D., and Kessler,
V.C. (1996b). The SIMODULA/OBJECTR query
driven simulation support environment. Progress
in Sim.ulation, Vol. 3. Leonard-Zobrist, Editors.
(to appear)

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.
and Lorensen, W. (1991) Object-Oriented JvJodel
ing and Design. Prentice Hall, Englewood Cliffs,
New Jersey.

AUTHOR BIOGRAPHIES

RAJESH S. NAIR is a graduate student in the
MS program in the Department of Computer Sci
ence at the University of Georgia. He was awarded a
Universi ty-wide Assistantship for the year 1995- '96.

He received his BE degree in Con1puter Technology
from the University of Bombay, India in 1994. His
research interests include application of database svs
terns and sinlulation environnlents. This paper is p~rt
of his ongoing research work toward the MS program.

JOHN A. MILLER is an Associate Professor and
the Graduate Coordinator in the Departnlent of Com
puter Science at the lJ niversity of Georgia. His re
search interests include Sinlulation, Database Sys
tems, and Parallel & Distributed Systenls. Dr. J\!Iiller
received the BS degree in Applied Mathen1atics from
Northwestern lJniversity in 1980, and the MS and
PhD in Information and Con1puter Science froD1 the
Georgia Institute of Technology in 1982 and 1986, re
spectively. During his undergraduate education, he
worked as a progran1mer at the Princeton Plasma
Physics Laboratory. Dr. Miller has been active in
conferences in both sin1ulation and database. He has
been the Publication Co-Chair for RIDE (Research
Issues in Data Engineering), President/General Chair
of the Annual Sinlulation Synlposiun1, and Coordi
nator of the Modeling Methodologies Track of the
Winter Sin1ulation Conference. He has also been a
Guest Editor for the International Journal in Com
puter Sin1ulation.

ZHIWEI ZHANG is a graduate student in the MS
prograDl at the Departnlent of Computer Science,
lJ niversity of Georgia. He received his Masters in
Library Science fronl the lJniversity of Maryland and
a certificate in Library Science from Nanjing Univer
sity, China. His research interests include Simulation
and Database & Information systems.


