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ABSTRACT

A metamodel is a mathematical approximation of
the system relationships defined by a high fidelity
model or simulation. This paper presents meth­
ods that support new procedures that expanded
the set of available metamodel representations be­
yond the traditional least squares formulation and
added the capability to use dynamical metamod­
else These methods compliment a new taxonomy
of metamodel structures and procedures that sep­
arated the metamodeling process into a set of se­
quential decisions based on a priori information.
This work was supported in part by The USAF
Rome Laboratory Contract F30602-94-C-0110.

1 INTRODUCTION

In Caughlin (1994a) we introduced a framework
for the application of System Identification tech­
niques to develop suitable metamodels for tactical
combat simulations used by the Department of De­
fense. We filled in the framework with concrete
definitions and identified specific issues associated
with the representation of dynamical systems.

Caughlin (1996) presented procedures based on
this framework that allowed the separation of the
metamodeling process into a set of sequential de­
cisions based on a priori information. This paper
presents specific methods that are consistent with
the new framework and procedures to support the
generation of metamodels.

The paper is organized as follows: Section 2 in­
troduces metamodels; Section 3 covers the param­
eter identification methods; and Section 4 summa­
rizes the paper.

2 METAMODELS

A model is a structure that can be used for under­
standing the behavior of a system Vemuri (1978).
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The model can be a physical structure such as a
wind tunnel model used to determine the aero­
dynamics of an aircraft, or it could be a concep­
tual model represented by interactions, a system of
equations, or a simulation.

A metamodel is a mathematical approximation
of the system relationships defined by another,
more detailed model (in our case - a tactical simu­
lation).

There are two general metamodeling techniques:
these are the "Direct" and "Inverse" methods. Di­
rect metamodels are developed by applying basic
principles to generate a more abstract (approxi­
mate) version of the original model. Inverse model­
ing begins with the input-output data generated by
the high fidelity model or simulation and develops
the metamodel from the data.

We presented new procedures in Caughlin (1996)
that tailor the "Inverse Problem" to generate meta­
models of simulations. We separated a complex
procedure into two general steps. The first part of
the process defined the problem. The second step
was the metamodeling process. This step deter­
mined the metamodel set and generated the meta­
model. We now discuss techniques for identifying
the parameters of the selected representation.

3 PARAMETER ID METHODS

There are many taxonomies used to categorize iden­
tification methods. Methods can be referred to
as off-line or on-line. Also, they can be classified
as either open-loop or closed-loop methods. Fur­
ther classification can be made as nonparametric,
frequency domain, and as parameter identification
methods.

Parameter identification methods are used when
the candidate model is defined by a set of parame­
ters.

The combination of model, error criterion, and
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numerical method has lead to an overwhelming
myriad of "identification methods." Most of the
above techniques, however, can be classified by two
elements of the identifica.tion method: the form of
the identifier and the criterion of fit.

The form of the identifier defines the "experimen­
tal setup" or the manner in which the estimates are
generated and compared. The criterion of fit estab­
lishes both the cost function and the method of its
minimization. A summary discussion of these ele­
ments is included in Caughlin (1996). Details are
found in Caughlin (1995).

If we categorize the identification method by the
form of the identifier and the criterion of fit, we can
reduce the many identification methods to four ap­
proaches: Prediction Error and Correlation, Max­
imum Likelihood, Optimization, and Approxima­
tion Techniques. We will now present some of the
techniques that result.

3.1 Prediction Error and Correlation Ap­
proaches

Let the prediction error be given by e(t, 0) = y(t) ­
y(tIO) with y(t) the output of the simulation and
y(tIO) the output of the metamodel (0 is the param­
eter vector). A "good" model will have small pre­
diction errors. There are two general approaches to
define a measure of c. The first is to define a norm
that measures the size of c and minimize that norm.
This leads to the prediction error method (PEM).
Another measure of c is to require that c be un­
correlated with past data. This is the correlation
approach which contains the instrumental-variable
(IV) method which we discuss in Section 3.1.4.

3.1.1 General Description of The Predic­
tion Error Method

Filter the prediction sequence c(t, 0) using a stable
linear filter L(q):

where q-1 is the backward shift operator defined as
q-1 u(t) = u(t - 1).

This filtering acts like frequency weighting and
can remove or enhance selected properties of the
model. Then, using either a fixed or weighted (pos­
sibly time varying) norm:

1 N
VN(O,D) = N L:l(eF(t,O),O,t)

t=l

define the estimate eN by the minimization:

ON = ON(D) = arg min {V(O, D)} (1)
BED

where D is the set allowed by the model.
In general, PEM is a technique that approxi­

mates (smoothes) the empirical transfer function
estimate to the model transfer function with a
weighted norm corresponding to the model signal­
to-noise at the frequency in question.

3.1.2 Specific PEM Methods

While "equation I" can be solved numerically in
the general case, specific methods are obtained as
special cases with special selections of the filter L(q)
and the scalar valued norm function 1(.).

Least Squares. If the predictor is linear, the
prediction error becomes c(t,O) = y(t) - cPT (t)O
where cPT (t) is the vector of regressors that depends
on the selected model structure. Also if L(q) = 1
and l(c) = tg , then the norm becomes:

1 N 1
VN(B,D) = N L 2 [y(t) - q,T(t)O]

2

t=l

This is the least squares criterion for linear re­
gression. The performance measure J = cT c, was
based on the view that all errors are equally impor­
tant. Weighted least squares weights the errors and
is based on the criterion J =gTWc. Other versions
of the least squares criterion are the Best Linear
Unbiased Estimator where the weight is equal to
the inverse of the measurement noise.

If the variance of the parameters is known (or
assumed), then we can further improve on the Best
Linear Unbiased (Gauss-Markov) Estimator. This
improvement is called the minimum variance esti­
mator and includes the variance of the parameters
in the normal equations.

Ridge Regression. The aim of another modi­
fication of ordinary least squares - ridge regression
- is the reduction of the mean square error (Press,
1986). This is accomplished by the addition of a
symmetric matrix K to the regressor to improve
the numerical conditioning of the estimator.

Chi-Square. In Chi-Square fitting, we assume
that each data point Yi has a measurement error
that is independently random and distributed as a
normal distribution around the true model. Sup­
pose that the standard deviation is the same for all
points; then the probability of the data set is the
product of probabilities of each point:

p= II{exp [-} (Yi -:(X;)r] ~y}
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Maximizing this is equivalent to maximizing its log­
arithm, or minimizing the negative of its logarithm:

[L [Yi -2~~Xd]2] - N log~y

Since N ,(7, and ~Y are all constants, minimizing
this equation is equivalent to minimizing:

N

L [Yi - Y(Xi; 81 ... 8M )]2
i=1

If each data point has its own standard deviation,
however, the probability of the data set is modified
by considering (7 i in place of (7 (see Press, 1986 for
details).

Eigenstructure Realization Algorithm.
The Eigenstructure Realization Algorithm (ERA)
is included under the PEM methods because this
algorithm uses the least squares approach to di­
rectly identify the Markov parameters of a steady
state Kalman filter.

Consider a discrete, time-invariant multivariable
linear system:

Xti+l A(8)x(ti) + B(O)U(ti) + M(O)Wd(ti)

y(ti) C(8)X(ti) + D(8)u(ti) +V(ti) (2)

An observer for the above system can be devel­
oped that will be as stable as desired and the re­
sulting Markov parameters will be the Markov pa­
rameters of the observer (luang, 1993). The system
Markov parameters can be extracted from the ob­
server parameters. The major assumption is that
of ergoticity.

Choose p such that mp > n (where n is the num­
ber of states and m is the number of outputs) and,
beginning at the p+1 measurement, let:

Y = [y(p + 1) y(p + 2) y(p + 3) ... y(k - 1)]

From the definition of the Kalman Filter we have:

Y= [DCBCAB ... cT-1B]

with

A A+MC

B [B+MD,-M]

and
u(p + 1) u(p + 2) u(k - 1)

[ u(p) ] [ u(k - 2) ]
y(p) y(k - 2)

u= [ u(p) ] [ u(k - 3) ]
y(p) y(k - 3)

u(O) ] [ u(l) u(k - p - 2)
y(O) y(l) y(k - p - 2)

~- -
When CA B ~ 0 for k > p, the system y = y U

can be solved for Y using a weighted least squares.
Once the observer Markov parameters are deter­
mined, the system parameters must be extracted.
After extracting the system Markov parameters
from the observer, we can recover the state space
model by the ERA. Define the following rl X s block
data matrix:

Yr+.s- 1

Yr+~

Yr+~+1

Yr+r1 -1 Yr+r1 Yr+r1 +.s-2

The order of the system is determined by the
singular value decomposition of H(O):

H(O) = UEVT = Ul S I V1
T

where E are all of the singular values. SI is an n x n
diagonal matrix of positive singular values that are
retained and n will become the order of the system:

A S;I/2 U[ H(1)V1S~1/2

B S;1/2 V1Em

C Efu1s;1/2

where E; [Irxr Orx(rl-m)m] and E'!"
[Imxm Omx(rl-m)m]. The observer gain can be ex­
tracted in a similar fashion.

3.1.3 Correlation Approaches

Ideally the prediction error c(N, 0) for a "good"
model should be independent of past data ZN-l.

If c(N, 0) is correlated with past data, then there
is more information available in the data. A true
test of the correlation of c(N, 0) and ZN-l requires

testing every nonlinear transformation of c(N, 0)
with all possible functions of ZN -1. This is not
feasible.

We can, however, select a finite dimensional vec­
tor sequence {((t) } derived from Z N -1 and force

a certain transformation of c(N, 0) to be uncorre­
lated with this sequence (Ljung, 1987). In general
we can accomplish this by filtering the prediction
errors:

cF(N, 0) = L(q)c(N, 9)

choosing a sequence of correlation vectors:

{((t, O)} = {((t)(t, ZN-l, O)}

and a function: a (gF(N, 0)) for computing:

N

fN(O,ZN-l) = ~ L((t,O)a (gF(N,O))
t=l
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and then finding ON such that fN(O,ZN-l) = o.

3.1.4 Instrumental-Variable (IV) Method

IT we define e(N, 0) above to be e(N, 6) =
[y(t) - ¢T(t)O] we can expand the sequence of the

correlation vectors to include model dependent pa­
rameters by:

{((t,O)} = }(u(q,O)u(t)

where }(u(q,9) is a d x m matrix filter and L(q) is
of dimension p x p. With dim((t) = dimO = d x p,
we have the instrumental-variable (IV) method:

If we allow dim((t) > d and a minimum norm
solution for fN(O, ZN), we have the extended IV
method.

3.2 Maximum Likelihood Approaches

If we consider independent, identically distributed
measurements, and if an efficient estimate (unbi­
ased estimate with finite covariance such that no
other unbiased estimate has a lower covariance) ex­
ists, it can always be found through maximum like­
lihood approaches. Although the maximum likeli­
hood estimate will be biased for small samples, it
will provide the unique minimum variance estimate
attaining the Cramr-Rao lower bound if this is pos­
sible (Maybeck, 1982).

The objective is to provide a parameter estima­
tor that does not require complete a priori pa­
rameter statistics yet still allows the inclusion of
a priori knowledge. Unlike the best linear unbi­
ased estimate provided by appropriately weighted
least squares, this method propagates the proba­
bilistic information in time and directly allows the
inclusion of known statistical information.

The key to the identification algorithm will be
the residuals of the state estimator, and the most
significant drawback of the maximum likelihood ap­
proaches is the lack of theoretical knowledge on the
behavior of the estimates for small sample sizes.

The following discussions are limited to linear­
time invariant (discrete time) systems. Nonlinear
effects can be included by appropriately modify­
ing the prediction equations in either of two ways.
First, nonlinear system effects can be directly in­
cluded in the propagation of the state. Second, non­
linear measurements (with linear propagation) can
be handled with an extended Kalman filter model.

Beginning with a linear time-invariant discrete
state space model (see equation 2), there are a num­
ber of conditional probability destiny functions that
could be used for the likelihood function. Vari­
ations include fixed length versus growing length
functions, specification of a priori statistics, use of
the initial conditions, and the sensitivity of the es­
timate on the identified parameters. The most ap­
propriate density function is:

fx(t i)1 Z(t i),8 f Z(t i )18

Ix(t i)1 Z(t .),8 rrj =1'x(t i)1 Z(t .),8

Minimization of the likelihood function with
this density results in the state predicted by the
Kalman-Bucy filter, but there is no closed form so­
lution to compute the partial derivatives.

3.2.1 Full Scale Estimator

A full scale estimator can be derived that minimizes
the likelihood function in an iterative process. This
estimator uses the last N observations to identify v
uncertain parameters in the system and input ma­
trices A and B. (Note: Uncertainty in these param­
eters could not be separated from uncertainties in
C and D. Consequently, the assumption is that C
and D are known and the uncertainty is A and B.)

The iterative estimator for minimization of the
likelihood equation:

using the method of "steepest descent" IS:

To use this algorithm, the Hessian (second
derivative matrix) must be of full rank. Using a
technique called "scoring," we can approximate the
Hessian with the conditional information matrix.
However, considering the propagation of the val­
ues in time, incorporation of measurements, and
the summation over the last N residuals, the imple­
mentation of the above equations is quite complex.
Even with the approximations, the full scale esti­
mator requires a large number of calculations (see
Maybeck, 1982).
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3.2.2 Modified
(MMLE)

Maximum Likelihood Assuming that 0 is normally distributed with a
covariance E:

LLF(B)

the LLFMAP becomes:

which adds a quadratic term that biases the esti­
mates toward a priori values.

3.3 Optimization

Often we are unable to formulate the problem such
that a suitable prediction equation is available.
Therefore we must resort to either a "nonlinear
state space model" or a "simulation model." In
these situations, where we are unable or unwilling
to consider a linearized or perturbation approach,
the best we can do is take the output of the model,
incorporate it into a "cost" function, and adjust
the model parameters to optimize (minimize) that
function.

There are several "standard" numerical proce­
dures that are used to search for the minimum
of a function. These are the iterative optimiza­
tion methods: successive approximation, Newton's
method, the Gauss-Newton algorithm, to name a
few.

In addition, there are several programs that are
specifically designed to perform parameter estima­
tion.

pEst. A minimum mean square error param­
eter estimator, pEst is an interactive program for
the parameter estimation of nonlinear dynamic sys­
tems (Maine and Iliff, 1981). This program solves a
vector set of time-varying, finite-dimensional, ordi­
nary differential equations that are separated into a
continuous-time state equation and a discrete-time
measurement equation:

There are two approaches to the solution depend­
ing on whether a priori information is used.

Maximum Likelihood (ML) Estimation.
Given the above CPDF, the ML LLF becomes:

1 N
"2 L {iT(p)-1 zd

i=l

where P = E {zP'} with dimension m x m and
Z = Zi - z is the innovations process (residuals)
computed by the Kalman filter (where all of the
matrices could be functions of 8).

Assuming a constant innovations covariance, use
of a steady state filter results in a constant filter
gain. This allows the CPDF to be written as:

P(zIO) = rrf::1 1 1/2 exp {-~zT(P)-1Zi}
[(211")mdetP] 2

In the modified maximum likelihood formulation,
A, B, C, D, and M are estimated and used with
the error covariance, P, to determine the Kalman
gain, K, from an approximation based on the Ri­
catti equation. To provide a parameter estimator,
we consider the measurement equation. Since we
have assumed a Gaussian error model, the Condi­
tional Probability Density Function (CPDF) for the
measurement becomes:

N Nm
+"2 log det(P) + -2- log 211"

A necessary condition at the minimum is that
P = E {zzT} must equal the sample innovations
covariance (Goodwin, 1977). Therefore, since P
has dimension m x m, the first term in the LLF
becomes N m/2, and the minimization is reduced
to a minimization of the determinant of the sample
innovations covariance matrix.

When P is known, the LLF can be minimized by
minimizing the following cost function:

N

J(8) = ~ L {iT{p)-1 z;}
i=l

This minimization is usually carried out using a
Gauss-Newton method using the first and second
gradients of the cost function.

Maximum A Posteriori (MAP) Estima­
tion.}n the MAP estimator, we continue to require
that P = j, L~l zzT but add the term -log P(B).

x = f [x (t ), u(t ), 0]
Z(ti) 9 [X(ti), U(ti), 9]

pEst uses three separate minimization algorithms
(steepest descent, modified Newton-Raphson, and
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Davidod-Fletcher-Power) to minimize the following
cost function:

where nN equals the number of data points, and n z
is the number of response variables.

Simulated Annealing. Using statistical me­
chanical theories, an optimization technique called
"simulated annealing" provides a new option to
directly process nonlinear, discontinuous, stochas­
tic functions (Ingber, 1993). Given data and a
cost function , it will globally optimize that func­
tion by emulating the physical annealing process to
arrive at a global minimum. See Ingber (1990) and
Caughlin (1994b) for a description on how to use
Adaptive Simulated Annealing.

3.4 Approximation Techniques for Identifi­
cation

3.4.1 Stochastic Approximation

Stochastic approximation may be regarded as the
application of gradient methods to stochastic prob­
lems. It is a scheme for successive approximation
of a sought quantity when the observations involve
random errors due to the stochastic nature of the
problem. The main advantage is the simplicity of
the implementation and the fact that prior knowl­
edge of the noise statistics are not necessary.

Stochastic approximation can be applied to any
problem which can be formulated as a regression
in which repeated observations are made. This ap­
proach is an exact analog of the deterministic gra­
dient procedure.

3.4.2 Spline Approximation

Polynomials are excellent approximating functions
when a smooth function is to be approximated lo­
cally. Any such smooth piecewise polynomial func­
tion is called a spline, and they are commonly used
for fitting data.

The typical use for the spline approximation is
to construct a piecewise polynomial to fit data. An
exact fit involves interpolation; an approximate fit
uses least squares (minimum mean square error)
approximation. To explain the structure and ad­
vantages of the spline, consider a truncated Tay­
lor series (expanded about XQ where Di is the ith

derivative) :

This polynomial should provide a satisfactory ap­
proximation for f( x) if the function is sufficiently
smooth and x is sufficiently close to XQ. But, if the
function must be approximated over a larger inter­
val, the degree of the polynomial may have to be
unacceptably large.

The alternative to a higher order polynomial is to
subdivide the interval into sufficiently small inter­
vals such that, on each interval, a polynomial with
a relatively low degree can provide an adequate ap­
proximation.

The construction of a series of splines over an
interval is a stable and straightforward mathemat­
ical procedure. At the breakpoints, derivatives are
continuous. At the end points, two conditions are
possible. In the "natural" cubic spline, the second
derivative is zero. In the "not-a-knot" end condi­
tion, the jump in the third derivative is zero.

Once developed, the spline can be evaluated, in­
tegrated, differentiated, augmented, or cut.

3.4.3 Canonical Variate Analysis

Another approximation technique is canonical vari­
ate analysis. The canonical variate method is a
prediction error approximation technique that opti­
mally predicts future responses based on a reduced
order state space system (Larimore, 1989).

In the statistical literature, the canonical variate
problem is one of maximizing the correlation be­
tween two sets of variables. Here we will use the
technique to chose nonlinear combinations of past
data to predict the future data by considering the
fact that the conditional expectation is an optimal
projection in Hilbert space. We optimally select k
linear combinations of the past data for prediction
of the future.

Observations coming from the behavior we de­
sire to model are separated into the past p(t) of a
vector process and the future f( t) of another vector
process. They are assumed to be jointly stationary:

pT (yT (t), yT (t _ 1), ... ,uT (t), .. .)T
fT (yT (t + 1), yT (t + 2), ... , yT (t - I))T

where the vector process p(t) can include both in­
puts and outputs.

The optimal kth order linear predictor j(t) of the
past is measured by the prediction error:

E {II f - ! II~ -1 } == {(f - !)T A-1 (f - !)}

where A is arbitrary positive semidefinite, so that
A-1 is a quadratic weighting matrix that is pos­
sibly singular. The eVA problem is to determine
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with the prediction error given by:

Xti+1 A(O)X(ti) + B(O)U(ti) + M(O)Wd(ti)

Yt, C (0) x (t i) + D(0)u (ti) +
O(O)Wd(ti) + lI(ti)

)}
s

Determining this structure requires multiple
steps. First, given the past and future vectors, the
mean is removed to meet the constraints of the al­
ternating conditional expectation (ACE) algorithm
that will be used to determine the maximum corre­
lation between transformed input and output vari­
ables c and d (Breiman and Friedman, 1985). Then
a (Epp , A) singular value decomposition of EpJ will
determine a J and L such that after the transfor­
mations c(t) = JkP(t) and d(t) = Lk/(t) and the
covariances E cc = Edd = I.

3.4.4 State Space Reconstruction

Our final approximation technique, state space re­
construction generates a state space model from an
optimal prediction of the future states from linear
combinations of the past. Given the data from
CVA, or any other identification method, we can
use these predictions to parameterize a state space
system for any order k < q via a least squares re­
gression.

Assume the following state space system:

Define mti+1 = JkP(ti+l) and M t = JkP(t). The
state space system above expresses (Xti+l Yt) as a
linear combination of (Xt Ut). We can replace the
predicted value of Xt'+1 and mt'+1 with Xt and mt

and express (mt ,+1 Yt) as a linear combination of
(mt Ut). With this substitution, all of the data is
available for a least squares fit of the two data sets
leading to:

c(t) = JkP(t) and d(t) = Lkf(t) (a function of re­
duced order memory) such that the prediction error
is minimized.

The connection between CVA and metamodeling
is not direct and much of the literature is very con­
fusing or misleading. First, recall that the meta­
model is a reduced order model that is the result
of an optimal projection of the higher order model
onto a subspace of reduced dimensions. It can be
shown that projection operators on a Hilbert Space
of nonlinear functions can be expressed as a condi­
tional expectation (Larimore, 1989). It can also
be shown that eigenvectors of this conditional ex­
pectation have a common eigenvalue which is equal
to the squared maximal correlation. If a process
has a rational power spectrum (i.e., is a finite or­
der Markov process) then there are a finite number
of nonzero canonical correlations between the past
and future outputs (Larimore and Baillieul, 1990).

The solution to the canonical variate problem is
expressed by putting the covariance structure of the
past and future data in a canonical form such that
in this new basis the norm of the weighted predic­
tion error is the sum of squares. This is equivalent
to finding J and L such that:

JEppJT 1m

LALT In

JEpJ LT = Diag {,I ~ ,2 ~, ... , ~ , q ~ 0, ... , O}

where Epp , EJJ' andEpJ are the covariance matrices
of past, future, and cross covariance of the past and
future data defined by:

E = ( EppEpJ )

EJpEJ!

with Diag {,I ~ 12 ~, ... , ~ lq ~ 0, ... , O} a diag­
onal matrix with the singular values on the diago­
nal. Since the past and future basis in the new basis
are orthonornal and uncorrelated, the singular val­
ues are also the correlations between the canonical
variates p and f.

In a linear system, independent variables are or­
thogonal. For nonlinear systems, stochastic inde­
pendence is required. The maximal correlation is
defined by:

p(p, f) = supp(p(y),f(y)) =supE{p(y),j(y)}
p,j PI!

with II p 11= 1 and II j 11= 1.
If p(p,f) = 0, then p(y),f(y) are statistically

independent. Therefore, to find the optimal combi­
nation of past data to predict the future, we want
the maximal correlation.
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