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ABSTRACT

How each simulationist can design and implement
software tailored for each particular simulation project
is addressed by modular simulation environments. The
requirements of such environments are derived from the
needs of four distinct types of users.  Inter-tool
modularity deals with how data flows between a non-
homogeneous sct of software tools that can be changed
on an ad hoc basis. Both simulation specific and widely
applicable softwarc tools may be used. The
organization and management of simulation inputs and
results to achieve this goal is important. Intra-tool
modularity has to do with supporting simulation project
tasks in a modular fashion. Modular modeling is well
established. Possibilities for modular animation and the
modular use of widcly applicable tools. specifically
spreadsheets. arc discussed. An example modular
simulation environment is given.

1 INTRODUCTION

Ideally. each simulationist would be able to select the
set of software tools to use on each simulation project
(Standridge and Centcno, 1994). The selection would
be based on the particular requirements of that project.
The tool set would contain both simulation specific tools
such as model builders and simulation engines as well
as tools with wide applicability such as word processors.
statistical analysis packagcs, and spreadsheets.

Modular simulation environment concepts seek to
provide the standard by which ad hoc collections of
software tools can be used together to perform a
simulation project.  These concepts specify how
simulation related data flows between tools in a general
way so that heterogencous software can work together.
The concepts address how tools can be tailored for use
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on particular problems and how general purposc tools
can be tailored for application in simulation.

Modular simulation environments arc bascd on an
approach similar to that of computer operating
environments such as Microsoft Windows for pcrsonal
computers and X-Windows for Unix-based work station
computers. The windowing systems provide the design.
structure and mechanisms for tool intcgration.
Windows and X-Windows provide a uscr interface
standard for softwarc tools as well as standard
mechanisms for sharing information between tools.

Some benefits of modular simulation cnvironments
are as follows:

1. High flexibility for end uscr sclection of
simulation software. This supports simultancous usc of
simulation software from multple softwarc providers as
well as locally developed tools.

2. Usc of widely applicable software with which
the end user is alrcady familiar.

3. Inclusion of tools such as spreadsheets. word
processors and presentation graphics gencrators that
have not traditionally been a part of simulation
environments.

4. Usec of standard windows
sharing information between tools.

S. Management and selective use of simulation
inputs. results. and modcls.

6. Definition of a standard for simulation
environment structure and user interface. Because of its
flexibility. end users may generally adopt such a
standard and tool builders may find developing softwarc
compatible with its requirements helpful.

This paper describes the design and initial
implementation of modular simulation environments as
well as an example application. Requirements for
modular simulation environments arc based on their
four different tvpes of users.  Thesc user types arc
derived from thosc proposed by Standridge and Centeno

techniques for
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(1991). The flow of information between tools is
described. The use of modular modeling concepts to
tailor simulation specific and general purpose software
tools for particular applications is discussed. Modular
modeling for network simulation languages is reviewed
(Standridge. 1995).

2  SIMULATION ENVIRONMENT OVERVIEW

Traditional simulation environments have three
major components: (1) a fixed set of software tools
prescribed by the environment designers and
implementers. (2) a database management system that
transparently to the environment users controls the flow
of data between the software tools, and (3) a user
interface that gives access to all environment
capabilities. [Each software tool uses existing
information in the databasc and adds the resuits of its
own operations to the database.

TESS (Standridge. 1985. Standridge and Pritsker.
1987) was an early, pre-graphical user-interface.
simulation environment built on this strategy. Software
tools provided for building SLAM II network models.
editing sets of SLAM II control statements. constructing
animations. making statistical computations. graphing
data. and reporting data. Simulation results could be
collected automatically from SLAM II. GPSS/H. and
MAP/1 simulations. A command language served as
the user interface. Selective querying of the databasc
was supported. A database subprogram library allowed
computer programs to store and retrieve data from the
TESS database. The databasc manager organized
simulation inputs and outputs.

Balci and Nance (1987. 1992) have used a similar
strategy in designing and implementing a simulation
model development environment. This work has lcad to
the visual simulation environment (Balci et al., 1995).
A visual user interface supports the devclopment and
simulation of visual models that may be hierarchical
and object oriented. The collection of tools includes a
visual editor. a library of existing component models. a
static model analyzer, a model dynamics tester. a
simulator. an analyzer for simulation results. a multi-
media learning support system. and an evaluator for
accessing the credibility of a simulation study.

Centeno and Standridge (1991) describe an
information based simulation environment constructed
using the same approach. Its distinguishing features
include the description of a manufacturing system of
interest as information stored in the database.
Alternative models can be generated by querying the
database. In addition. a knowledge-based user interface
is proposed to guide the user through the steps of a
simulation project.

Modular simulation environments are distinct from
thesc existing environments in that the set of software
tools are not pre-determined. the use of widcly
applicablc software is encouraged. and the user-
interface relics on the standards set by existing
graphical computer operating system interfaces.
Database management must accommodate the open-
ended nature of the environment.

3 USER TYPE REQUIREMENTS

Modular simulation environment capabilities arc
based on the needs of four user types whose relationship
is given in Figurc 1. The user types represent typical
roles. In any particular situation. the same individual
may take on multiple roles or many individuals may
participatc in the same role.
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Figure 1. Modular Simulation Environment User Types

An environment builder gathers the software tools
that form a simulation environment. The builder can
construct multiple environments in this way. For
example. an environment builder could select the
SLAMSYSTEM simulation environment. the PROOF
animation tool. and the EXCEL spreadsheet to comprisc
the environment.

In addition. an environment builder tailors the engine
of any tool selected. SLX (Henrksen. 1995) and
YANSL (Joines and Roberts. 1994 and 1995) are
simulation engines. For example. the environment
builder could construct a new transaction creation
mechanism in SLX that reads the time of the next
arrival and its attributes from a file as opposed to the
traditional specification of a random or constant time
between transaction creation. The extensibility
capabilities of SLX would be used to define the ncw
creation statement and encode the logic. The new
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statement could then be used as would any other
statement.

A module builder deals with onc environment. The
environment is tailored multiple times. once for each
application domain of interest.

Consider a module builder concerned with discrete
parts manufacturing. Using the capabilities of the
simulation language selected by the cnvironment
builder, the module builder could construct modules for
modeling individual work stations, material handling
between work stations, serial lines and the like.
Spreadsheet macros for processing observations of
performance measure values could be written. Such
macros could compute confidence intervals using the
method of replicates. help find the truncation point in a
steady state simulation, and graph simulation
performance measure observations. Interfaces to these
capabilities would "spcak the language" of the domain.
Thus. the simulation environment would more closely
“usc the language” of the application domain.

A model builder is concerned about multiple systems
in one domain. Using the domain specific modeling
modules provided by the module builder. a model
builder constructs a simulation model of any particular
system in the domain. Other tools tailored by the
module builder for the domain can be further tailored by
model builder for the svstem. For example. a tool for
graphing time scries of observations could be labeled as
graphing the number of parts in a buffer. The range of
the number of batches considered in computing a
confidence interval from onc scries of observations
could be specified.

A model user evaluates multiple alternatives about
one system. The alternatives are described using input
data to the simulation model constructed by the model
builder. Other tools tailored bv the model builder are
used to examine. compare, and analyze performance
measures resulting from simulations. For examples.
spreadsheet macros can be used to graph performance
measure values and perform statistical analysis.

4 INTER-TOOL MODULARITY

One type of modularity in a simulation environment
has to do with how data flows between tools. This is
referred to as inter-tool modularity. It must
accomplished in such a way that new tools can be added
to the environment on an ad hoc basis. No modification
of existing tools can be required though the ability to
export data and capabilities for tailoring existing
functionality can be exploited.

Figure 2 shows the tool set of the first demonstration
modular simulation environment. Existing commercial
tools are shown in capital letters. Both simulation

specific and widely applicable tools are included. Tools
developcd to achieve inter-tool modularity arc shown in
lower casc.

Modular Simulation Environment Demonstration

SLAMSYSTEM PROOF
EXCEL ACCESS
Inputs Result Result

Collection Processing
Tool Tool

Attachment Dc-attachment

Figure 2: Demonstration Modular Simulation
Environment Tool Sct

SLAMSYSTEM is used for modeling and simulation
activities. It is intcresting to notc that another
simulation environment can be used within a modular
simulation environment. PROOF provides animation
capabilitics. EXCEL sprcadshects are used for modcl
input value entry and for proccssing simulation results.
ACCESS databases can be used to organize. manage.
examine. and present simulation results. A text editor
helps with input value entry.

Template-based tools have been  developed
specifically for organizing. specifving. and optionally
entering model input values within a modular
simulation environment. Multiple data sets can be input
to a model. A template or format is defined for cach
input data set. A list of templates nceded for a
particular simulation is maintained. A template tool
provides for defining the format of one input data sct.
listing the input data sets needed for simulation input.
and entering values.

Simulation result collection can be specificd.
Generic tools for organizing and collecting rcsults arc
provided. The capability to extract values from cach
simulation language of interest must be coded. This has
been done for SLAM 11

Results processing has to do with making simulation
results ready for input to other software tools. It
includes joining together results collected from the
simulation of multiple alternatives. This facilitates the
comparison of alternatives.

Finally. a new tool can be attached to the
environment. This involves describing the input data
formats it accepts and the format of the output data it
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produces if these are non-standard. Standard formats
include text (ASCII) files. spreadsheet files, and
database files. Existing tools may be removed.

Multiple data sets can be input to a model. A
template or format is defined for each input data set. A
list of templates nceded for a particular simulation is
maintained. A template tool provides for defining the
format of one input data set, listing the input data sets
needed for simulation input, and entering values. -

Figure 3 shows the flow for input data. The
TEMPLATE tool is used to describe the data. Values
can be entered using any one of a variety of tools,
including a spreadsheet such as EXCEL, a text editor
such as NOTEPAD, or the TEMPLATE tool. This
illustrates how a variety of tools can be employed to
accomplish the same purpose in a modular simulation
environment. Which tool is employed depends on each
particular user.

TEMPLATE Input Tool™ SLAMSYSTEM
Input Data Input Data User
Template Values Data
~ -
\\\ _ - -
\\- ) /,/
- EXCEL. Data Files T.EMZPLATE
Text Editor, List of Input
TEMPLATE Templates

Figure 3: Flow of Simulation Input Data

The TEMPLATE tool also is uscd to define the data
input requirements of a simulation model.  This
definition is a list of the templates for which values
must be supplied in order to run the simulation.
Running a simulation requires creating a list of the
specific input data sets, one corresponding to each
required template. This list defines the simulation input
for one particular simulation run. Again, this input data
list is created using the TEMPLATE tool. The input
data list and the input data files are supplied to
SLAMSYSTEM in its standard form for uscr data.

Within an input data set. values can be organized
into rows and columns. Each row gives new values for
the variables represented by the columns. Alternatively,
each row can correspond to a different variable. A
prompt at the beginning of the row specifies the input
requirements.

The TEMPLATE tool is used to define the simulation
results collected. Multiple result scts can be gathered
for each simulation run. A template is given for cach
set. The template shows the name of the performance
measure as known in the simulation result set and the

corresponding name in the simulation language. For
example. the performance measure, #1NBUFFER. could
correspond to the SLAM II function NNQ(1). A list of
the simulation result sets to be gathered is created using
the TEMPLATE tool.

Figure 4 shows the flow of information for the
collection of simulation results. Each result templatc is
defined using the TEMPLATE tool. A list of the all of
the result templates desired for each simulation run is
prepared. Based on the result template list, thc result
collector interacts with a simulation run to gather the
performance measure values of interest. The result
collector consists of a generic part and an interfacc to a
particular simulation engine. Results can be stored in
an ACCESS database for further processing.

TEMPLATE Result | SLAMTI| | SLAMSYSTEM
Result Collector | Inter-  res
Collection face
Template
3
J y
Data Files TEMPLATE ACCESS
List of Input
Templates

Figure 4: Simulation Result Collection

Result processing has to do with preparing simulation
performance measure valucs gathered by the result
collector for processing by other tools. Values of
different performance mecasures from onc alternative
(different result sets) or values of the same performance
measure from different alternatives can be organized
together. EXCEL and PROOF can be used to analyze
and display performance measure values.

Result processing is summarized in Figure 5. The
TEMPLATE tool is used to specify which simulation
results from which alternatives are of interest. The
result processor produces a file of thesc result which be
input to another tool. Data files collected from the
simulation can be used directly in other tools if no re-
organization of the simulation results is needed. This
show the flexibility of a modular simulation
environment is meeting user requirements.
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Figure 5: Simulation Result Processing

The organization of input values and simulation
results is a fundamental aspect of achieving inter-tool
modularity. Input data arc labcled as follows:

Scenario -- What alternative is being described.
Variable -- Identifying name of an input quantity.
Valuc -- As specified by the model user

Note that there are multiple scenarios. versions.
possible for cach input data set. For example. therc
could be an input data set for the routes of parts through
a job shop. Each scenario would represent a different
possibility for routing jobs through the shop.

In addition. that there are multiple input data sets.
Thus, a simulation alternative is dcfined by a model
user by specifying the sccnario of each input data set to
be employed.

Performance mcasurc values resulting from a
simulation are labeled as in the following way

Scenario -- What system alternative was simulated.

Type of values -- Time-persistent, observed. trace.
end of simulation only.

Replicate -- ID number

Variable -- Identifying name of an performance
measure.

Time or time intcrval -- When observed

Value -- As obscrved

For example. the following data scts could be
collected: queuc lengths. resource utilization. part time
in the system. and throughput. The first two are time
persistent. the third observed. and the last end of
simulation only.

For result processing. the utilization of a particular
resourcc and the corresponding qucue length could be
joined in a single data sct. Alternatively. the queuc
lengths corresponding to a particular resource from each
of two scenarios could be joined for comparison of the
two alternatives.

5 AN EXAMPLE MODULAR SIMULATION
ENVIRONMENT

Abrams, Standridge, et al. (1995) decscribe a
simulation model of local caching policies. Files arc
retrieved via the World Widc Web to support distance
learning.  Caching allows the files to remain local.
avoiding multiple retrievals of the same file. Caching
policics tell what files to replace when a new file tries to
enter a full cache.

A modular simulation environment supports this
model. There arec two input data sets: simulation
options and experiment specification. Typical
simulation options arc the number of replications of
each experiment. internct transmission time for files.
and the name of the file listing the names of the files
giving the files transmitted on the intcrnet. This input
data set in organized with a different vaniable and its
value on cach line. The experiment specification
includes paramecters such as the cache size. the
replacement  policy. and the parameters of the
replacement policy. It is organized in a tabular format
with one experiment per row. Columns correspond to
experiment paramectcers.

The TEMPLATE tool is used to describe the two
files. The Windows notcpad editor is used to cnter
values.  This shows the flexibility of a modular
simulation environment. Either the TEMPLATE tool.
the notepad cditor. or a spreadshect could have used to
enter the valuecs. The model users arc computcr
scientists who are comfortable using the notepad cditor.

The primary simulation results are gathcred at the
end of the simulation run (type end of simulation only)
into one set. Results include the cxperimental
parameter values and performance measures such as the
hit rate. the percent of files found in the cache when
requested.

Statistical analyscs. such as regression and ANOVA.
are used to determine which of the experimental
parameters significantly affect the hit rate. Thesc
statistical ~ analysis  capabilities exist within a
spreadsheet. Since only one result set is collected. it is
stored by the results collector in a file format acceptable
for direct spreadsheet input.

6 INTRA-TOOL MODULARITY

The second type of modularity has to do with how
each tool does its work. Modular modeling concepts
have long been discussed and are well implemented. Sce
Zeigler (1990). Cota and Sargent (1992). and Sanderson
et al. (1992) for basic definitions. concepts. and
example implementations.
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Standridge (1995) discusses modularity of network
simulation languages and describes a modular network
language, ModNet. This paper defines the
characteristics of a module and the communication
between modules. Module parameters are passed to a
receiving module via a construct that resembles calling
a subprogram in a general purpose programming
language. Performance measure values are made
public. that is accessible to all modules. Signals are
public quantities that indicate that an event of note has
taken place in a module. Other modules may respond to
that event.

ModNet places bounds on the common entities of a
network language. transactions and  resources.
Transactions may not cross module boundaries.
Transactions may not be cloned. The nced for cloning
is satisfied by using a different module. A resource is
defined and controlled by onc module. This module
may pass a resource name as input to another module to
use. For example. a module may define and control a
worker resource. The worker may perform tasks at two
distinct work stations. Each work station is represented
by a module. The name of the worker resource is
passed to each work station module by the defining and
controlling module.

ModNet is being implemented in the SLX simulation
engine. An environment builder uses the extensibility
properties of SLX to define the fundamental modeling
capabilities available in ModNet. A module builder
develops ModNet modules from which a model builder
constructs models.

Consider the possibilities for the use of modularity
concepts in other tools. A model user would likc a
spreadsheet interface and functionality tailored to the
system under study. This could be constructed as
follows. The environment builder is unlikely to have
the capability of changing the spreadshcet engine. its
core functions. The module builder would write
spreadshect macros that generate graphs and perform
statistical computations generic to the domain of
interest. For a example. a spreadsheet macro could
graph the number of parts in a buffer versus simulation
time. Another macro could use the mcthod of batches to
estimate a confidence interval concerning the mean
number of parts in the buffer. The model builder could
further tailor these macros to refer to the specific buffers
in the model and specify the number of batches used in
the confidence interval computation. Thus. the model
user could simply ask for the graph of the number in the
drill press buffer and the confidence interval concerning
the mean.

Figure 6 shows one possible organization for
animating a simulation. An animation is generated by a
script that specifies a time ordered list of changes to a

scene starting with an initial frame. Changes include
modification to object attributes such as color or
movement of objects. This specification allows the
animation enginc to producc a set of frames that show
the time dynamics specificd by the script.

Script Initial Frame

Simulation Engine

Event Trace 1
Animation Engine

!

Animation

Trace to Scrpt Rules |

Figure 6: An Organization for Simulation Animation

The script can be based on the event trace produced
by a simulation engine. A sct of rules can be uscd to
map the events of thc simulaton into a script that
produces the animation of a simulation. In the casc of a
simulator such as ProModecl. these rules arc implicit in
the specification of the modcl. In other words. the rulcs
are embedded in the simulation engine. In the casc of a
simulation environment such as SLAMSYSTEM. the
rules must be explicitly provided by a uscr.

Modular animation is achicved as follows. An initial
frame is associated with cach model module. The trace
to script rules arc specified. Thus. the animation for
each instantiation of that module is specified. The
combination of the animation of cach module results in
the animation of the modcl.

Animation of cach module can bc made optional.
For example. an animation of the main module only
gives a high level overview of the model. The
animation can be expanded to include only thosc
modules referenced by the main module to increase the
level of detail. An animation of all modules shows all
of the dctail of the model.

7 SUMMARY

Current progress in the area of modular simulation
environments has been discussed. Requircments for
these environments arise from the four distinct types of
users that take part in a simulation activity. Inter-tool
modularity has to do with how data flow between
heterogeneous tools. Intra-tool modularity is concerned
with performing tasks in a modular fashion. Modular
modeling is well established. Concepts of modularity
can be applied to other tools such as spreadshects and
animators. The organization of simulation modcl inputs
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and outputs in a modular simulation environment is
discussed. An overview of a modular simulation
environment for a simulation of local caching of World
Wide Web files is given.
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