Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain
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ABSTRACT

With the intent of dispelling the prevailing negative
connotations associated with redundancy, we argue
that redundancy can effect benefits in model speci-
fication as opposed to model execution. Sources of
redundancy are classified as accidental or intentional,
and several examples are given for each. The com-
parative benefits and detriments are discussed briefly,
and for the most interesting source of redundancy —
that induced by a modeling methodology, we demon-
strate that automated elimination of redundancy can
actually improve the execution time. Although the
set of models investigated is small, these results are
encouraging for researchers in modeling methodolo-
gies using automated model diagnosis.

1 BACKGROUND

As computing technology has advanced, the prob-
lems perceived as solvable have grown more challeng-
ing, and the consequences have been models of ever-
increasing size and complexity. Often, model devel-
opment efforts focus on the edge of what is currently
technically feasible. The need for control and disci-
pline in the specification of such models, accompanied
by a recognition of the needs of humans for assistance
in performing such complex tasks, have led to the
emergence of modeling methodologies and supporting
environments. Recognition of the importance of mod-
eling methodologies and computer-assisted support
is evident in the prescriptive modeling community
through efforts such as ANALYZE (Greenberg 1983;
1987; 1993), GAMS (Bisschop and Meeraus 1982;
Brooke, Kendrick and Meeraus 1992) and Structured
Modeling (Geoffrion 1987, 1992a, 1992b). Within the
discrete event simulation community, the maturation
of research in methodology-based support environ-
ments is seen in KBSim (Rothenberg 1989), Knowl-
edge Based Simulation (KBS) (Baskaran and Reddy
1984), MODSYN (Rozenblit and Huang 1991), and
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the Visual Simulation Environment (VSETM) (Balci
et al. 1995). VSETM is distinct in that it has evolved
from research projects originating in 1983 to become
a commercial product. Concurrently, simulation lan-
guage vendors have expanded their software assis-
tance for simulation activities, e.g., SLAMSYSTEM
supporting SLAM II and Arena supporting SIMAN.

The consequences of this more expansive view of
what modeling support is needed are summarized in
(Nance 1994) with particular attention given to the
Conical Methodology, the first attempt to provide
life-cycle support to simulation activities (Nance 1981,
1987). A major consequence is a shift from program-
centric modeling paradigms, where a simulation pro-
gramming language (SPL) is considered as the only
representational form, to model-centric paradigms in
which the modeling process encompasses multiple ab-
straction levels and the focus is directed toward the
transformation of model representations through it-
erative specification.

Model specification is that set of activities per-
formed by a modeler (or modeling team) to create
model representations that can can be communicated
to humans. A model specification that is executable
is considered a model implementation. Note that
model specification can employ multiple representa-
tions, each at a different level of abstraction. One
or more model specification languages can be used
in these activities. While a model implementation
(in a SPL or any other executable form) is a model
specification, the reverse is not true. Since a model
specification describes what behavior is to be exhib-
ited whereas an implementation describes how that
behavior is to be produced, the former is inherently
more abstract than the latter.

The term “redundancy” typically induces nega-
tive connotations — something that is unnecessary
and exacts a penalty by its inclusion, e.g., superflous
constraints in a mathematical program, unexecuted
and obsolete code in a simulation program. How-
ever, both examples pertain to the model execution,
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not the model specification. Maintaining unused stor-
age and compiling unexecuted code is wasteful, but
redundancy can prove beneficial in model specifica-
tion. The objectives of this paper are to identify
how redundancy is created in simulation model spec-
ifications, describe the beneficial influences of redun-
dancy, and demonstrate that the objectionable influ-
ences might not be as perceived.

2 REPRESENTATIONAL REDUNDANCY

Redundancy can take several forms; the precise form
of interest here is representational redundancy, which
we define as the inclusion of any symbols in a model
specification that are not required to fulfill the objec-
tives for which the model is developed. “Symbols”
can refer to icons in a graphical specification, textual
strings used as attribute identifiers, or objects follow-
ing the object-oriented paradigm. Methods that are
never invoked or procedures that remain unexecuted
provide additional examples. From this point, all uses
of the term “redundancy” are intended to be limited
to the “representational” form.

Careful distinctions must be drawn at this point:
symbols external to the model specification but in-
cluded to attain model development objectives are
not redundant. An example is the use of embedded
assertions to assist in testing and validation with the
intent of assuring model correctness as an objective.
In contrast, symbols internal to the model specifica-
tion to support the attainment of objectives such as
model reuse do exemplify redundancy.

Given the usual negative associations with redun-
dancy, a typical reaction is that simulation models de-
veloped in practice provide few examples. We main-
tain that such a view can be overly optimistic. In a
related paper (Nance, Overstreet and Page. 1996), we
identify four major sources of redundancy in model
specifications, and offer a number of examples. Be-
cause of space constraints, only a few examples are
given herein, with the potential sources classified as
accidental or intentional.

2.1 Accidental Redundancy

The most prevalent examples of accidental redun-
dancy are those that are tool-induced. In partic-
ular, SPLs commonly use defaults on certain func-
tions that force attributes to be carried along even
if not used. Consider the TALLY and ACCUMU-
LATE statements in Simscript I1.5. Counters are re-
quired for computing the ten statistics available in
each and are maintained even if the statistic is not ac-
cessed. A similar default decision of 12 parameters for

a GPSS transaction imposes accidental redundancy if
less than 12 are actually used.

Redundancy can be induced accidentally by the
modeling methodology. Use of an object-oriented
methodology can cause attributes imparted to the
inheriting (created) objects to be redundant. For
example, the class vehicle with an attribute num-
ber_of_azles, originally intended to distinguish trucks
from cars, might be expanded through concatenation
to define the class motorized vehicles, which is as-
signed the attribute type with enumerated values mo-
torcycle, car, light truck, bus, heavy truck, and tan-
dem. The inherited attribute number_of_azles might
be superfluous but remain in the model description.

2.2 Intentional Redundancy

A common occurrence of redundancy can be attributed
to the objective of reusability. For example, the reuse
of an aircraft object to represent a satellite would
cause several attributes related to maneuverability
and speed changes to become redundant. However,
the value of modifying the reused object simply does
not argue for doing so.

Potentially, the most prevalent intentional redun-
dancy can be observed in simulations using animation
of output behavior. A host of attributes are attached
to objects to “jazz up” the output, in the attempt
to facilitate validation or promote model acceptance
and credibility. Judged strictly from the objectives of
the study they are unnecessary. One could assign the
cause of redundancy here as stemming from the desire
to utilize application domain knowledge to make the
model reflect reality beyond that which is required.

Methodology-induced redundancy is clearly the
most interesting. Intentionally including redundant
description in the form of attributes, methods or even
objects as part of the proper way to construct models
seems counter-intuitive. However, the use of multiple
descriptions to combat complexity is argued by Pad-
manaban et al. (1995). Incorporating descriptions
from multiple domain experts is required “to provide
more information than a single description” (Pad-
manaban, Benjamin, Mayer 1995, p.719). Clearly,
the inability to partition these multiple descriptions
must lead to redundancy.

The Condition Specification (CS) (Overstreet and
Nance 1985), especially in its use within the Conical
Methodology, forces even more obvious redundancy
through its insistence on the declaration of relational
attributes that relate one object to another. An in-
dicative attribute, which conveys some useful infor-
mation about the object (given the study objectives),
can also serve a relational role, and often each of two
interacting objects is assigned an attribute with the
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two attributes being so strongly dependent that one
is unnecessary. Fortunately, automated model sim-
plification techniques can be applied to recognize the
dependency and eliminate the redundancy.

3 BALANCING THE NEGATIVES AND
THE POSITIVES

The argument is put forth in this paper that, con-
trary to the usual definition of the term, redundancy,
at least with respect to model representation, is not
entirely bad. Of course, neither is redundancy en-
tirely meritorious. So, can the negatives and posi-
tives be properly balanced? An obvious answer to
this question seems to be “yes” and that this bal-
ancing is the purview of the modeler — such balanc-
ing, after all, is the essence of modeling. But upon
closer examination this answer seems insufficient. As
noted in Section 2, the modeler is not the sole mech-
anism for inducing representational redundancy. The
tools that the modeler employs, as well as the mod-
eling methodology itself, may be contributors to re-
dundancy. Does a modeler have dominion over these
factors apart from being free (generally) to select from
a variety of methodologies and tools? The answer is
not clear.

An example of tool-induced redundancy, in the
form of default statistical collection routines, in Sim-
script I1.5 and GPSS is given in Section 2.1. Tool-
induced redundancy through the use of defaults is
commendable as long as: (1) the defaults are reason-
able, and (2) overriding the defaults is not prohibitive
in time and effort. The tool developer’s motive is
laudable: provide convenience to the modeler. That
convenience should not be attained by making depar-
tures from the defaults costly however. In both of the
languages noted above the defaults are clearly reason-
able. On the other hand, overriding default behaviors
in these languages can be difficult.

Animation introduces some controversy as well.
Some see it as a costly selling (marketing) gimmick;
while others believe that it is essential to validation
and model credibility and acceptance. The answer
probably lies in the degree to which the animation
developer attempts to mimic reality. Beyond a given
point, no benefit is likely to accrue.

Redundancy created in the attempt to accomplish
study objectives such as reusability is rarely to be
criticized. The savings in reuse for instance clearly
offset any costs incurred from storage loss or added
computation. The inclusion of redundant documenta-
tion within the simulation model —internal documen-
tation to promote maintainability as a study objec-
tive — seems eminently justifiable. On the other hand,
redundant documentation could potentially increase

the cost of maintenance since a single modification
in design might require multiple changes in the doc-
umentation.

Redundancy in the representation emanating from
the model development methodology probably requires
the most careful defense. For what purpose are the
instances of redundancy created? Is the redundancy
limited to specifications that are not executable? How
great is the penalty on execution performance if re-
dundancy is produced in the implementation? In
the section that follows we provide a demonstration
of how methodology-induced representational redun-
dancy can be circumvented to permit efficient model
execution.

4 EXECUTION IMPROVEMENT: AN UN-
EXPECTED BENEFIT

The role of the CS, as with any specification language,
is to operate at a level of abstraction above the im-
plementation details; While the CS does not spec-
ify a particular time-flow mechanism (e.g., activity
scan or event scheduling), such mechanisms are eas-
ily provided. Since the actions to be taken whenever
a condition is satisfied can be prescribed in a level of
detail similar to a programming language such as C,
we have experimented with direct execution of action
clusters to measure the performance benefits of diag-
nostic analysis through elimination of methodology-
induced redundancy. The transformation required for
direct execution of action clusters (DEAC) is minor,
and a variety of algorithms for DEAC simulations can
be defined; see (Page 1994, pp. 189-194).

Examples of CS model specifications may be found
in many of the references cited herein. The most re-
cent extension of the CS, to provide a more complete
specification for parallel execution, is given in (Page
1994). In most of these sources, model specification
is effected in the context of model development un-
der the Conical Methodology. For medium- to large-
scale models, the processes of model definition and
model specification are intimately connected as the
model evolves through successive elaboration and re-
finement. Selection of the four models used here is
based on three criteria: (1) published in the liter-
ature, well known or easily understood; (2) not so
lengthy as to require excessive space, and (3) pro-
vide among them a range in size and complexity for
examining that factor. The Single Server System is
too widely used to give a single reference. The Har-
bor Model appears in (Buxton and Laski 1963 and
Schriber 1974). The MVS Computer Systems is from
(Balci 1988). The Machine Repair has appeared in
several published works, going back to (Nance 1971).

The DEAC algorithm uses the Action Cluster In-
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cidence Graph (ACIG) described in (Overstreet 1982,
Overstreet and Nance 1985, Overstreet and Nance
1986, Nance and Overstreet 1987a, Nance and Over-
street 1987b, Puthoff 1991). Space limitations re-
strict complete discussion of the graph, but the ACIG
distinguishes between models actions whose occur-
rence is based strictly on the value of the simula-
tion clock (called time-based actions), actions whose
occurrence is based only on the values of model at-
tributes other than the simulation clock (called state-
based), and those actions which depend on both time
and state (called mixed). In essence, model behavior
is driven by testing to see if the condition controlling
an action is true, and executing the action if so. Inef-
ficient implementations may make many unnecessary
tests of model conditions.

Figure 1 presents the DEAC algorithm used in
these studies. This algorithm assumes a CS with no
mixed ACs. A list, A, of scheduled alarms is main-
tained as well as a list of state-based action clusters,
C, whose conditions should be tested within the cur-
rent context of model execution. Note that the exe-
cution of the termination AC causes an exit from the
simulation proper.

While the algorithmic construction of a minimal
ACIG (which would produce the minimal number of
tests) for any model specification is unsolvable (Over-
street 1982), we have identified techniques for simpli-
fying ACIGS which, though not guaranteeing mini-
mality, are effective and their benefits are illustrated
in this section.

The eliminated edges in the ACIG represent mod-
eling relationships that are specified following the CM
so that concepts can be captured in a communicative
form without regard to issues of efficiency, either in
representation or execution. Redundancy abounds,
but by recognizing redundant or unnecessary rela-
tionships prior to the implementation, no execution
penalty is incurred. Note that eliminations rang-
ing from 50% to 78% portend considerable savings
in both programming effort and execution time.

4.1 Execution Results

For each of four models, we execute versions based
on two ACIGs. The naive version (called “before”
below) uses all state-based ACs as successors for each
AC and provides a base case for comparison. The
second version (called “after” below) incorporates the
benefits of analysis by reducing the successor sets for
individual Action Clusters based on analysis.

Table 1 presents data about each of the models,
the effectiveness of the analysis techniques, and the
effect of this analysis on performance.

The first set of data show the simplification of

Let A be the list of scheduled alarms.

Let C be the set of state-based clusters whose
conditions should be tested immediately.

Let 0, be the set of state-based successors for action
cluster o; (where 1 <1 <| ACs | ).

Initially

Vo, set 0;5 (from ACIG)
c=90 :
A = (initialization AC, initialization clock time)

Simulate
while (true) do

clock + time given by FIRST(A)

while (clock = time given by FIRST(A)) do
let o, be the AC corresponding to
FIRST(A);
remove FIRST(.A)

perform actions of o,
add g,5 to C

while (C # 0)
remove o, + FIRST(C)
if condition of o, is true
perform actions of o,
add o5 to C
endif
endwhile
endwhile

endwhile

Figure 1: DEAC Algorithm for a CS without Mixed
ACs
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the ACIGs for each of the four sample models. The
number of edges which can be removed (that is, are
redundant) obviously depends on model structure; in
some models, it is possible that no edges could be
deleted. For these models, from 50% (6 of 12 for the
single server queue) to 78% (91 of 116 for the MVS
computing system) are eliminated.

Table 1 also includes counts of the total number
of condition tests made during a typical run of each
version of each of the four models. These data also
indicate one aspect of the differences among the mod-
els: the frequency counts on number of tests vary by
two orders of magnitude.

A significant indication of the benefit of the anal-
ysis is the “Percent True Tests” data. The analysis
(data flow and expert system) is an attempt to deter-
mine a priori that certain tests need not be performed
since they must come out false. So the percent of
the tests which evaluate to true is a measure of the
efficiency (or lack of wasted effort) of the implemen-
tation. Thus improving the percent of true tests for
8.5% to 19.3% (as is the case for the Harbor Model)
indicates a more efficient implementation.

The last set of data in Table 1 present execution
time data for each version of the four models. All
runs are on a SPARCstation 5, running Solaris OS
with each run consisting of 20 replications of each
model (with different random number seeds so be-
haviors are not identical. The count and percentage
data are from a single run (not the 20 replications);
behaviors of each replication are similar and show lit-
tle variation in counts or percentages.

Not included in this table is an actual count of
tests which evaluated to true for the different versions
of each model since for one model all versions must
generate exactly the same count: correct implemen-
tation would require that any version perform actions
whenever the model is in a state where the condition
for the action is true. Each version for a single model
must have identical counts for true tests; only the
count of false tests can vary. This is the case with
these runs.

Much of the data of Table 1 are represented in Ta-
ble 2 as a percentage improvement. It compares the
two versions of each model by computing |before —
after|/before x 100 for each metric. This shows,
for example, that the speed-up varies from 27.3% to
53.2% among the four models, and that more than
twice as many tests (220.5%) evaluate to true for the
optimal compared to the base case for the Machine
Repair model.

From this small number of models, it is inappro-
priate to draw general conclusions on the percent im-
provements likely with these techniques; thus we in-
clude no averages since it is unlikely these data rep-

Table 1: Performance Measures

Sing. MVS Mach.
Metric  Vers. S. Q. Sys. Har. Rep.
ACIG  Before 12 116 67 29
Edges  After 6 25 26 10

Total Before 12K 1,121K 30K 30K
Tests After 6K 263K 14K 9K
% True Before 17.7 87 85 11.2
Tests After 33.3 33.9 193 35.9
Time Before 2.2 215.7 4.6 6.2
(secs) After 1.6 68.8 29 2.9

Table 2: Improvement of Optimal over Base:
|before — after|/before x 100

Single MVS Mach.
Metric Serv. Q Sys Harbor Repair
Exec. Time 27.3  68.1 37.0 53.2
Num. Tests 50.0 76.5 53.3 69.1
% True 88.1 289.7 127.1 2205

resent “average” behavior. But since these models
are not preselected in anticipation of these techniques
working well with them, we do surmise that this ap-
proach is generally effective with a wide class of mod-
els.

A comment on the effectiveness of our analysis
for these four models: the techniques did find ev-
ery edge which was valid to delete in the ACIG of
each model. That is, for each of the remaining edges,
at some point in an execution, the test it suggested
might need to be performed did evaluate to true at
least once. Put another way, if the test had not been
performed (to check to see of another action should
occur), the implementation would have been invalid.
We do not expect the analysis to this effective for all
models, but the completeness in these four cases is
encouraging.

5 CONCLUDING SUMMARY

We continue to explore techniques and benefits of
static analysis of model specifications. In this pa-
per, we have demonstrated how one assumed neg-
ative aspect of redundancy, namely poor execution,
can sometimes be ameliorated by analysis, so that the
redundancy sometimes useful in model specifications
to support analysis need not result in poor run-time
performance.
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