Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

MODEL DEVELOPMENT AND HCI

Mike Pidd
Department of Management Science
The Management School
Lancaster University
Lancaster LA14YX

ABSTRACT

Much of the progress within discrete simulation has
gone hand-in-hand with general developments in
computing. Recent years have seen software developers
putting great efforts into improving the user interfaces
of discrete simulation systems. This too parallels
developments elsewhere. This paper considers what
further benefits there might be for users and developers
of simulation software from more careful attention to
interface design.

1 INTRODUCTION

As computers have grown more powerful, so have users’
expectations of how they might be used. Today’s school
students now assume that computers will be fast,
friendly and easy to use. Many of them, certainly in the
USA and Western Europe, are video game experts,
connoisseurs who are easily bored with experiences that
do not live up to their expectations. (See Microserfs,
Coupland (1996), for amusing examples of this). These
people will be the next generation of simulation
modellers and users and they may not be satisfied with
the interfaces available in today’s discrete simulation
software. Thus, it seems important that the designers
and vendors of simulation software start to take the
question of user interface design very seriously. This
paper presents the basic requirements for simulation
software that stem from a particular view of modelling
that is argued elsewhere (Pidd, 1996a, 1996b). These
are linked to current theories and ideas about HCI
(Human Computer Interaction or the Human Computer
Interface) to present desirable features of future discrete
simulation software.

1.1 Historical Background

It is probably true to say that developments in discrete
simulation software have proceeded hand-in-hand with
general developments in computer software. There have
been a few cases in which discrete simulation software
has led the field, examples being object orientation in

UK

681

Simula (Dahl and Nygaard, 1966) and the introduction
of interactive program generators by Clementson (1991)
in his ECSL system. However, in most cases, discrete
simulation software developers have been willing to
pick up and use whatever tools and ideas appear within
the computing community. Examples of this being the
use of animated graphics for visualisation by Hurrion
(1976) and the use of source level debuggers to support
program development.

The purpose of this paper is to examine some of the
links between simulation modelling and what is now
known as HCI. Given that the idea of simulation is to
use a computer as a dynamic model of some situation or
system, then it would seem that the question of
appropriate HCI is an important one. This paper begins
by considering the different ways in which discrete
simulation software is provided, looks at the different
roles which people play in developing and using
simulation models and then speculates on how things
might be improved. The question at issue is, what can
simulation users and developers learn from the field of
HCI? In addition, is there anything that the HCI
comrnunity can learn from discrete simulation?

2 THE USE OF DISCRETE SIMULATION
SOFTWARE

2.1 Types of Discrete Simulation Software

Different authors have their own ways of discussing the
various types of discrete simulation software that are
now available. Law and Kelton (1991) divide this
software into two main groups, those which require
programming and the rest. The latter they describe as
simulators. The former -category includes general
purpose programming languages and libraries such as
C++ or FORTRAN, as well as dedicated simulation
programming languages such as the SIMSCRIPT
family. A rather more finely drawn categorisation is
found in Pidd (1992), who has no less than seven
categories, ranging from ‘do-it-yourself’ (in a general

682

purpose programming language), through to Visual
Interactive Modelling Systems (VIMS) such as Witness
(Lanner Systems, 1996) and Microsaint (Micro Analysis
and Design, 1992), via flow diagram or block diagram
systems such as HOCUS (Szymankiewicz, McDonald
and Turner, 1988) and GPSS.

This paper uses a simple tripartite classification as
follows.

1. Software that requires all users to develop some
true program code. This includes general purpose
programming languages as well as simulation
programming languages. It also includes those
languages that provide support for visualisation and
those that do not.

2. Visual Interactive Modelling Systems which
are primarily based around some kind of visual motif for
virtually all of their functions. In these systems,
examples of which include Witess, Microsaint,
ProModel and AutoMod, a visual interface is used for
model building, controlling simulation runs and for
interaction as a simulation run proceeds.

3. Layered systems in which the user can operate
at a number of different levels, such as visual interactive
modelling, automatic program generation, direct coding
and low level bit twiddling. A few systems currently
available incorporate some of these facilities and an
example would be ARENA.

2.2 Groups of People Involved in Simulation Projects

Though this conference primarily focuses on those
people who conduct the technical aspects of simulation
projects, there is quite a range of people who may be
involved across the set of activities that make up such
projects. These may be different people or might be
different roles that are conducted by one or more people.
Examples include the following.

1. Modellers: whose main role is to understand
the system being simulated and to capture that
understanding in a model that is implemented in some
software system or other. Thus the software interface
must offer support to modellers as they develop, usually
in a stepwise manner, their abstract and symbolic
models.

2. Programmers: who have the task, in some
projects, of taking model conceptualisations and
realising them in program code. In an ideal world this
would enable the programmers, though coding, to
operate at a level which relates to the problem being
modelled, rather than just the computing aspects of the
work.

3. Project managers: who may be responsible for
ensuring that the project meets the needs of the clients,
is on-time and is properly conducted in a technical

Pidd

sense. This group of people may wish (o establish
standards that enable projects to be properly managed
and consistently presented to clients.

4. Customers. who are footing the bill for the
project and whose questions are being addressed in the
project itself. This concern of this group may be to
ensure that they get value for money and this may be
aided by suitable HCI considerations.

5. Users: who may not be the same as the
customers, but who may need to use a simulation model
on one or more occasions to address issues of interest.
This group may not be expert in simulation and may
have limited expertise in computing. Thus the interface
needs to be very supportive and should build on their
previous experience and expertise.

In addition, of course, there may be software vendors
keeping an eye on what is happening.

2.3 Discrete Simulation Modelling

A computer simulation involves experimentation on a
computer-based representation of some system or other.
This particular conference is interested, mainly, in
discrete event simulation which is suited to systems
made up of objects that change state and display
dynamic behaviour. That is, those which change state
through time. Thus, to build a discrete event model, the
analyst must attempt to tease out and represent a
number of features of the system being modelled. These
are as follows.

1. The main entities of the system: that is, those
classes of object whose behaviour seems important to
the operation of the system. Note that word seems, if the
modeller were absolutely sure of the important entities
and if this were not a subject for thought, debate and
argument, then it might not be necessary to model and
simulate the system at all.

2. The logical operations of these entities: that is,
the significant behaviour in which the classes of object
engage as they persist, or appear, or disappear within
the system being modelled. Once again, the previous
sentence includes a weasel word, significant. This
suggests that the modeller must make judgements about
what features of the entities’ behaviour deserves
inclusion within the model.

3. The logical interactions of the entities: systems
would be very simple to model and to simulate if the
objects within them did not engage with one another. It
is these complicated interactions through time that
determine how the system itself will appear to behave
and some of these interactions may be hard to tease out
or may occur only rarely.

4. The statistical distributions: the entities will
engage in activities, alone or whole other object classes

Model Development and HC' 683

and these activities may occur at irregular intervals and
for time periods that cannot be precisely determined in
advance. It is normal to model these durations and
intervals using statistical distributions that are believed
to be good representations of the observed behaviour.

Thus an important HCI task is to ensure that the
interface offers support on this model building,
especially that it eases the gradual development of a
model.

3 BASIC IDEAS OF HUMAN COMPUTER
INTERACTION/INTERFACE

3.1 Interface Design

The main concern of HCI is to ensure that computer
software and hardware is well suited to its users and to
the tasks that they wish to perform. Early work on HCI
tended to focus on the specialised needs of people such
as pilots, engineers running large, complex systems and
others such as air traffic controllers who worked with
computers in situations of great pressure, risk or danger.
More recently, the emergence of the Apple MacIntosh
and other windowing-type operating systems has
brought some of the benefits of the this early work to
users of general purpose computer systems. HCI
includes the design of hardware as well as software, but
for the purposes of this paper, HCI is restricted to the
software that enables users to interact with computer
systems. This software interface should reflect the
characteristics of the people who wish to use the system
and the tasks and functions that they have in mind as
they approach the computer system.

Lansdale and Ormerod (1994) suggest that the
development of good software interfaces requires the co-
operation of two groups of people, designers and
psychologists. The designer must ensure that the
software is able to achieve the tasks which the user may
require of it. The psychologist must focus on the user to
try to understand how the user might wish to conduct
these tasks. This co-operation occurs during task
analysis which aims to understand the logical structure
of complex tasks, to identify the information needed by
the users to carry out these complex tasks, to understand
the activities conducted by users with the interface and
to appreciate the conditions that may affect their
performance.

On the same theme, Norman (1990) suggests that the
interface designer must bear three things in mind if the
interface is to be well-designed.

1. The types of people who may wish to use the
system.

2. The tasks that these people wish to accomplish.

3. The tools that are most appropriate in enabling
them to do those tasks.

This is an extension of what Norman (1988) terms
‘user-centered design'.

3.2 User-centered Design

Norman (1988) suggests that designers should take
account of seven principles if they wish to achieve a
user-centered design.

1. Use both knowledge in the world and
knowledge in the head. Knowledge in the world is that
which is available externally, especially visibly and
which will suggest what the function of some system
component may be. Knowledge in the head is that
which the user is able to internalise as they become
practised and proficient and for which few cues are
needed. Hence, at its simplest level, there should always
be enough clues on-screen for the naive user to know
what to do and yet the expert user should also feel
comfortable and should not be frustrated by a having to
step through a mind-numbing routine of protocols to
achieve some simple end.

2. Simplify the structure of tasks.: This requires
the designer to take account of the limitations of human
memory. This is often conceptualised as short term
memory, which is often believed to be capable of
holding 7+2 items and long term memory, which seems
to develop conceptual frameworks within which new
experiences are considered. Thus, software must not
overload short term memory, and it should be a good fit
with the users' conceptual frameworks. Software that
clashes markedly with a user’s likely conceptual
framework is likely to be difficult to learn and will be
€ITOT prone in use.

3. Make things visible. Designers should struggle
to ensure that sufficient information is visible to the user
to enable them to do what they wish, within the
limitations of the software. This clearly relates to the
first principle of using knowledge in the world - it
requires the designer to ensure that suitable cues are
available to the user.

4, Get the mappings right. This principle requires
the designer to ensure that the user can understand the
links between the options, the information presented
and the tasks that they wish to perform. The links
between the users' intentions and the actions open to
them in the software need to be made very clear. It also
relates to the need to ensure that users have appropriate
conceptual models, otherwise they may misunderstand
the function of the system and its components.

5. Exploit the power of constraints: Constraints
are those are restrictions that are deliberately built into
the software to ensure that dangerous or bizarre actions

684

cannot be attempted. This might mean, on occasions,
frustrating the user who wishes to cut corners.

6. Design for error. This principle requires the
designer to assume that the user may make mistakes. It
is vital, therefore, to ensure that, if mistakes and slips
occur, the behaviour of the software is safe and helpful
to the user. It is unreasonable and downright stupid to
assume that even experts never make mistakes.

7. When all else fails, standardise. The idea of
this final principle being to limit the amount of learning
that the user must achieve in order to accomplish their
required tasks.

Clearly, these principles are inter-dependent and
overlap with one another. But their overall message is
very clear. Focus on the user and make things easy for
them. This requires the designer to know who the likely
users will be and to understand what they may wish to
do.

3.3 Some Principles of Learning

Kay (1990) builds on Bruner (1962) in suggesting that
human cognition is made up of three interlinked aspects
as follows, from the simplest through to the more
abstract. As learning occurs, an individual moves
through these levels.

1. The enactive mentality. In this, there is a focus
on direct experimentation, on trying things out. It
relates to very concrete thinking. Expressed in computer
interface terms, this requires the user to be aware of
exactly where they are in the system and exactly what is
open to them at that point. Given that Bruner (op cit)
argues that this is the way in which many of us start to
learn about new things, this suggests that the interface
be designed to ensure that its exploratory use can do no
harm.

2. The iconic mentality. In this, the individual
tries to recognise, compare and configure different
aspects of their surroundings. This is rather more
abstract than an enactive approach in that it suggests
that a person may wish to change the world in some
way or other and to make simple inferences. In
computer interface terms, this means that the user needs
recognisable images and objects whose function is clear.
This should then reduce the need for learning by
enactment and experimentation.

3. The symbolic mentality. In this, the individual
tries to tie together chains of reasoning in a way that
may be very abstract. In essence, the person has
conceptual models which are applied to the task at
hand. There is thus a need to see the connect between
different symbols and to understand how they may be
linked to achieve particular tasks. In discrete simulation
terms, the interface should support modelling.

Pidd

In these terms, simulation modelling operates with a
symbolic mentality, but Kay(op cit) points out that this
will not be achieved unless the other two levels are in
place. That is, the ability to conduct symbolic reasoning
sits on iconic and enactive foundations. Thus, useful
discrete simulation software must make provision for all
three.

3.4 The Effect of the Interface

Finally, it is important to bear in mind the comment
made by Lansdale and Ormerod (op cit). Though they
are insistent that good, user-centered design must be
based on a good fit between task, technology and the
user, they argue that one other aspect is of crucial
importance. This is that the users’ goals may not be
static through time. There are two reasons for this, one
of which may not be obvious.

The obvious point is that the task itself may change
for reasons quite unconnected with the software. Its
scale might increase (e.g. air traffic controllers might
need to deal with a much more crowded airspace) or
other changes may take away much of the task (e.g.
decisions on the sharing of air space amongst national
traffic controllers). Thus a sensible task analysis needs
to look at possible changes in the task.

The less obvious point, and the one that matters for
discrete simulation, is that the nature of the interface
may change the task itself. To use a non-simulation
example, consider word processors. They have two main
virtues. The first is that they enable any trained user to
produce work that is well-presented, hence this
conference can provide presentation guidelines that
enable authors to meet their requirements for camera-
ready copy. The second is that it changes the nature of
the task by allowing people to adopt a different
approach to their writing. Writing with pen and ink
requires a sentence, a paragraph even, to be composed
in the head before it is committed to paper. This forces
the pen-and-paper writing style to be thoughtful and
considered (in the opinion of Stoll (1995)) or
ponderous, in the opinion of others. Using a word
processor, especially one with a good outliner, allows
the user to hammer away at the keyboard with a stream
of ideas that can later be expressed as lucid prose.
Hence the software, and its interface, can change the
nature of the task.

Model Development and HCI 685

4 IMPLICATIONS FOR DISCRETE

SIMULATION SOFTWARE

4.1 User-centered Design

Norman'’s seven principles can, perhaps, be reduced to
four when viewed within the use of today’s window-
centric world. These are as follows.

a) Simplify the structure of tasks.

b) Get the mappings right.

¢) Exploit the power of constraints.

d) Design for error.

This is not to say that today’s windowing operating
systems are perfect, far from it. However, adherence to
their norms at least helps to enforce Norman’s other
three principles. A user who is familiar with other
windowing software will at least have useful knowledge
in the head and will know where to look for knowledge
in the world. Such systems are also essentially visual
(which presents severe problems for some users of
computers with disabilities) and they provide some form
of standardisation.

Principles a) and b) above relate to Kay’s point about
symbolic, iconic and enactive mentalities. That is, they
relate to the need to ensure that the conceptual model of
the software is abundantly clear in its interface and for
it to fit with that assumed by the user. Those of the user
are provided, in part at least, by the conceptual
frameworks of their long term memory. The interface
and its metaphors need to be consistent, clear and must
make sense to the user, but this is not easy.

Task or Task or
machine? machine?

Task or
machine?

Task or Task or
machine? machine?

Task or Task or Task or
hine? hine? hine?

Figure 1: Task network or machine network

Consider for example, the metaphor that is usually
employed in Visual Interactive Modelling Systems
(VIMS). In these, the user develops a model by placing
icons on-screen and by linking them with directed arcs
in a network of some kind, see Figure 1. Though it may
not be obvious, there are at least two ways in which this
can be done - and this will not be obvious to the naive
user.

1. Make this a task network. This is the approach
employed in software such as Microsaint (op cit).
Each node represents a task and each of these
tasks may employ several resources which are
committed during the duration of the task. Thus,
for example, a medical consultation may require
the co-operation of a patient, a doctor, a nurse and
some specialised equipment. These resources are
freed at the end of the task. One of these resources
is modelled as the system entity which flows
through the task network.

2. Make this a machine network. This is the
approach commonly taken on manufacturing-
oriented VIMS such as Witmess (op cit). Each
node represents a system resource that will be
occupied as a system entity (usually an item being
manufactured) passes through it. The node
represents a machine that may well be capable of
performing several tasks.

These distinctions will be not be obvious to a naive
user from the interface nor may they be obvious from
simple examples. The user may suddenly be brought to
the jarring realisation that their conceptual model is a
task network (or vice versa) and the simulation software
assumes a machine network (or vice versa).

Principles ¢) and d) relate to the need for safety. They
aim to minimise the risk that the user may make slips
(accidental errors and abuses) or errors (deliberate
actions that turn out to be misconceived). The interface
and its metaphors must be clearly designed with this in
mind. In the case of discrete simulation software, if
designers wish to take these ideas seriously, then serious
issues about various statistical aspects of the model and
the simulation need to be taken into account. As a
simple example, most VIMS permit the use of Normal
distributions, but even sophisticated users may
sometimes forget that Normally distributed variates
range from plus to minus infinity. In most cases, users
and modellers are probably assuming bounded Normal
distributions. Whether this is what they will get may not
be clear. If it is what they get, the bounds may not be
stated anywhere that is easily accessible to the user.

4.2 Needs of Different Groups

It is probably true to say that early simulation software
systems concentrated on the needs of modellers and
programmers. The idea being to give maximum support
to the technical aspects of the task in hand. That this
effort has been successful is evident in the widespread
use of VIMS and the growing acceptance of layered
systems and approaches. Though the early, first-
generation user interfaces of these systems now seem
somewhat crude, the latest generation does seem to have

686

taken some of the lessons of user-centered design to
heart - assuming, that is, that the technical people are
the users.

But what of the other groups of people involved in a
simulation project? When a simulation model is used or
viewed by someone who is not the developer, the user is
modelling - comparing their conceptual model of the
system with the perception of what the simulation
model is doing. How can this be supported?

The most common approach has been to improve the
quality of graphics and visualisation. Welcome though
this is, it does carry some problems. Last year the author
visited a state-of-the-art engineering company who were
planning the development of a highly expensive flexible
manufacturing line. As part of this, they developed a
discrete simulation which they were keen to show off.
The graphics and visualisation were stunning with 3
dimensions, correct proportions, panning and zooming
..etc.. But, the simulation itself was, in analytical terms,
probably a waste of time. Simple calculations showed
where the bottlenecks would occur and, given the
discrete nature of the system components, it was pretty
obvious what design would be needed. The author has a
strong suspicion that this simulation may have hindered
a sensible decision making process rather than
supporting it. Though graphics and visualisation are
important, it must be remembered that their role should
be a support to people in their thinking. Sometimes a
simple representation may be a better support to
thinking than a complex one.

As with user-centered design for the analyst, so too
for the other groups, the basic questions concern the
tasks to which the different users wish to put the system.
It may be that this implies that well designed systems
should offer support to these users as they experiment
with simulation models. If Bruner and Kay are correct,
then these users will wish to enact scenarios in an
attempt to learn about the model and to make inferences
about the system being simulated. If appearances are
deceptive, perhaps superb visualisation is not the be-
and-end-ali for non-technical users?

REFERENCES

Bruner E. (1962) On knowing: essays for the left hand.
Harvard Univ Press, Cambridge, Mass.

Clementson A.T. (1991) The ESCL Plus system manual.
AT Clementson, The Chesmuts, Princes Road,
Windermere, Cumbria, UK.

Coupland D. (1995) Microserfs. Flamingo, London.

Dahl O. and Nygaard K. (1996) SIMULA - an Algol-
based simulation language. Comm ACM, 9, 9, 671-
678.

Pidd

Hurrion R. (1976) The design, use and requirements of
an interactive visual computer simulation language to
explore production planning problems. PhD Thesis,
University of London.

Kay A. (1990) Interview. In Laurel B. and Mountford
S.J. (1990) The art of HCI design. Addison-Wesley,
Reading, Mass.

Lanner Systems (1996) WITNESS User manual. Lanner
Systems, Redditch, Worcs, UK.

Lansdale M.W. and Ormerod T.C. (1994)
Understanding interfaces: a handbook of human
computer dialogue. Academic Press, New York.

Law AM. & Kelton W.D (1991) Simulation modelling
& analysis, second edition. McGraw-Hill, New York.

Micro Analysis & Design (1992) Getting started with
Micro Saint for Windows. Micro Analysis & Design
Simulation Software Inc., Boulder CA.

Norman D.A. (1988) The psychology of everyday
things. Basic Books, New York.

Norman D.A. (1990) Interview. In Laurel B. and
Mountford S.J. (1990) The art of HCI design.
Addison-Wesley, Reading, Mass.

Pidd M. (1992) Computer simulation in management
science, third edition. John Wiley & Sons Ltd,
Chichester.

Pidd M. (1996a) Tools for thinking: modelling in
management science. John Wiley & Sons Ltd,
Chichester.

Pidd M. (1996b) Five simple principles of modelling. In
Proceedings of the 1996 Winter Simulation
Conference, San Diego CA.

Stoll C. (1995) Silicon snake oil: second thoughts on
the information superhighway. Doubleday, New
York.

Szymankiewicz J, McDonald J. and Turner K. (1988)
Solving business problems by simulation. McGraw-
Hill, Maidenhead, Berks, UK

AUTHOR BIOGRAPHY

MIKE PIDD is Professor of Management Science in
the Management School of Lancaster University in the
UK. He has written two books on simulation, of which
the best known is Computer Simulation in Management
Science (John Wiley). He has just completed a new book
for the same publisher (Tools for thinking: modelling in
management science) which addresses the issues often
raised by critics of rational modelling. His current
interests in computer simulation include object oriented
methods.

