
Proceedings of the 1996 Winter Sim,ulation Conference
ed. J. !vI. Charnes, D. J. lvIorrice, D. T. Brunner, and J. J. Snrain

EVENT SCHEDULING SCHEMES FOR TIME WARP ON i)ISTRIBUTED SYSTEMS

Eunnli Choi

Department of Computer Science
Michigan State University

East Lansing, MI 48824-1027, U.S.A.

ABSTRACT

To design an efficient event scheduling strategy for
Time Warp on distributed systems, we study two ma­
jor factors. The first factor is the amount of compu­
tation to be processed in a processor between two
consecutive communication points. The computation
granularity nlust be small enough to prevent Time
Warp from progressing events over-optimistically,
while large enough to minimize the degrading effects
of performance due to the communication overhead.
The second factor is the balancing progress of logi­
cal processes in a processor. Within the range of the
given computation granularity, logical processes as­
signed to a processor progress at different speeds and
this may cause more rollback situations. Consider­
ing these two factors, we propose two event schedul­
ing schemes: the Balancing Progress by Execution
Chance (BPECj scheme and the Balancing Progress
by 'Virtual Time Window (BPVTW) scheme. The
BPEC scheme controls the progress of a process by
limiting the number of chances for the process to
schedule events, while the BPVTW scheme controls
the progress by using a virtual time window, which
allows events to be executed only if their timestamps
are within the interval of the virtual time window.
We have performed experiments on a cluster of DEC
Alpha workstations to demonstrate the performances
of both schemes.

1 INTRODUCTION

In simulating large VLSI circuits on distributed nlem­
ory systems, one of the most important considera­
tions for the Time Warp (Jefferson 1985) is to sched­
ule events. Although the number of processors in
distributed-memory systems is nluch smaller than that
of the logical processes in VLSI circuits, the local
memory size of each processor is so large that nlany
logical processes can be allocated to a processor. The
ratio of the number of logical processes to the num-

GG1

Dugki Min

Department of Computer Engineering
KonKuk University

MoJinDong KwangJinGu Seoul, KOREA

ber of physical processors is called the LP ratio. It
represents the number of assigned logical processes
per processor. For the simulation of VLSI circuits in
which hundreds of thousands of gates are integrated
in a chip, the LP ratio on distributed-memory sys­
tems of hundreds of processors is in the range of a
couple of thousands. In addition to the large LP ratio,
because of the optimi~ticcharacteristic of Time Warp,
many processes allocated in a processor are likely to
be active with many unprocessed events. Among the
unprocessed events of active processes, the processor
decides which event is executed first. The order of
event execution determines the progress of the pro­
cesses, and therefore it can significantly affect the
performance of Time Warp on distributed-memory
systems.

In this paper, we investigate two major factors
in order to design an efficient event scheduling strat­
egy for Time Warp on distributed-memory systems.
The first factor is the amount of computation to be
processed in a processor between two consecutive in­
terprocessor communication points. This quantity is
called the computation granularity. By adjusting the
cOluputation granularity to be larger than a certain
degree, we can prevent the communication overhead
from dominating the overall simulation performance.
A large granularity, however, could increase the num­
ber of rollbacks, wasting the simulation tlple for re­
computations. That is, while processors execute a
large number of events \vithout communication, pro­
cesses could propagate many immature events and
therefore the protocol should recover the earlier sys­
tem state fronl the wrongly-advanced state when an
event arrives whose tinlestamp is smaller than the
current LVT (Local Virtual Time). ~~ considerable
amount of overhead can occur in the rollback situa­
tions because the past state of each process should
be saved and recovered by re-conlputations. As a
consequence, the appropriate conlputation granular­
ity might be small enough to prevent Time \\larp from
progressing events over-optinlistically, \vhile keeping

662

large enough to n1inin1ize the con1n1unication over­
head. The second factor is the balancing progress of
logical processes in a processor. Son1e logical pro­
cesses may advance too far ahead of others, possibly
leading to inefficient usages of men10ry and exces­
sive rollbacks, especially for large application prob­
lems. By adjusting the granularity, we can control
the degree of optimism appropriately as described in
the first factor. However, within the range of the
given COll1putation granularity, the logical processes
assigned to the same processor would progress at dif­
ferent speeds and this lllay cause more roll back situa­
tions. If we control the speed of each process by giving
more chances of executing events to slower processes,
we may reduce the frequency of rollback situations.
We study two schemes of balancing the progress of
processes; one of which is to restrict a process to exe­
cute events no 1l10re than the given nUll1ber of till1es,
and the other is not to allow an event to be executed if
its timestamp is far ahead of other events in different
processes. The details of those schen1es are studied
in Section 3.

The following section describes the simulation 1110­
del and the terll1inologies used in this paper. In Sec­
tions 3, the event scheduling schell1es are presented
with the issues of COll1putation granularity and bal­
ancing progress of processes. Section 4 shows the
experimental results on a distributed systell1. The
concluding remarks are presented in Section .5.

2 THE SIMULATION MODEL

Time Warp has been studied by several researchers
recently on distributed-Inell10ry systell1s. Carothers
et al. (1994) studied the effect of COll1munication de­
lay on a distributed system when the computation
granularity is fixed to the event granularity. Preiss
and Loucks (199.5) studied lllell10ry managell1ent tech­
niques on a distributed system. This paper focuses on
event scheduling issues of the optimistic protocol on
distributed-ll1ell1ory systell1s. Our ill1plen1entation of
Time Warp on distributed-men10ry systems is called
Distributed Optim.istic Protocol (DO?). The DOP ex­
:cutes events in an event-driven and optin1istic fash­
Ion.

2.1 Rollback Handling

To handle the rollback situation, we use a cancellation
mechanism called the im.mediate cancellation (Chung
and Chung 1991). In this cancellation 11lechanisll1
the process that receives a straggler re-starts to pro-'
cess froll1 the point of the straggler's till1estall1p, by
ignoring all n1essages sent so far and all the already­
processed events. The cancellation schen1e applies to

the input event queue where a straggler arrives. In
the in1mediate cancellation, there is no antimessage to
correct the already-sent wrong events unlike the ag­
gressive cancellation mechanism (Jefferson 1985) and
the lazy cancellation n1echanism (Gafni 1988). At
this point, it is the same as the direct cancellation
11lechanisn1 (Fujimoto 1989) on shared memory sys­
tems.

2.2 Data Structure for Event Manipulation

In parallel discrete event simulation, the events that
are generated but not yet executed are pending in the
input queues. Each processor schedules the pend­
ing events according to the event scheduling strat­
egy. The in1plell1entation of data structures of event
queues and the event scheduling strategy have crucial
influences on the silllulation performance.

In our ilnplementation, each logical process has
its own event queue where all unprocessed events are
pending and the already processed events are stored
together. This type of implementation with an in­
dividual event queue per process is better than one
central event queue shared by all processes in a pro­
cessor, especially when the LP ratio is large. If all
processes share one event queue together in a proces­
sor, it takes times to search and manipulate all pend­
ing events and rollbacked events. The data struc­
ture of the individual event queue per process is also
easily adaptive to the situation of migrating a pro­
cess to another processor by a dynamic load manage­
11lent 11lechanislll. In each process's event queue of
our implelllentation, all the events are sorted in the
increasing order of timestamps. Instead of using sep­
arate output event queues, using a single event queue
which can be used as both input and output event
queues can reduce the queue manipulation till1e when
a straggler arrives, by eliminating the corresponding
event moving and queue handling from output event
queues.

Our event scheduling schemes described in the
next section basically follow the 'smallest-tilllestamp­
first' selection scheme. Since searching all assigned
processes linearly for the smallest timestamped event
takes a lot of tillle in a large-scale application, we
use a central priority queue structure for scheduling
events in a processor. Several data structures of the
priority queue have been proposed such as the calen­
dar queue (Brown 1988) and the skew heap (Jones
1989). In this paper, we use the heap structure for
the priority queue. Each item in the priority queue
has a timestamp as the key to be sorted and a pro­
cess index number. After each processor evaluates
processes and deterll1ines whether they are active or
not, unprocessed events are selected from the active

Scl1enles for TiIne -VVarp on Distributed SystclllS fi(j:)

processes according to the event scheduling scheme,
and enqueued with the timestamps into the priority
queue by the processor scheduler. From the schedul­
ing heap, each processor dequeues the smallest one
from the top and executes the event on the corre­
sponding process.

2.3 GVT Computation

The GVT (Global Virtual Time) computation is nec­
essary in optimistic protocol for fossil collection and
for checking the termination condition. The GVT on
distributed-memory systems is obtained by comput­
ing the minimum value of LVTs from all processes
and the timestamps of events in the in-transit mes­
sages, which are sent by a sender processor and not
yet received by the receiver processor, where the LVT
of a process is determined by the smallest unpro­
cessed event in a process. Since each processor main­
tains many processes, PVT (Processor Virtual Tin1e)
is computed as the minimum value of LVTs among
the processes in a processor with considering the in­
transit messages, and it is used to compute the GVT.
Thus, the GVT can be computed as the n1inimum
value of PVTs from all processors. We use a to­
ken passing mechanism to collect PVT values asyn­
chronously from processors and compute the GVT
value.

3 EVENT SCHEDULING

As one of the most popular simulation applications,
VLSI circuits involve a large number of objects per­
forming a small amount of cOll1putation for each COll1­
municating event. A VLSI circuit usually has several
tens to more than hundreds of thousands of gates
(or logical processes). The manipulation of an event
requires around a hundred machine instructions; its
event granularity is very small. In contrast, distributed
memory systems consist of a much smaller number of
big processors and the interprocessor communication
latency is large. Thus, each processor should schedule
the unprocessed events of a large number of assigned
processes efficiently in order to achieve good perfor­
mance. As we mentioned in Section 1, there are two
important considerations we should make as we de­
sign an event scheduling strategy: the computation
granularity and the progress balancing.

3.1 Computation Granularity

Computation granularity is the amount of computa­
tion to be processed by a processor between two con­
secutive interprocessor communication points (Choi
and Chung 1995). This quantity is also called the

grain Sl=e. If there is little overhead of interprocessor
communication, the computation granularity is not a
matter of concern. In this case, the ideal strategy is
to perforn1 an interprocessor communication for each
event execution in order to exchange inforn1ation as
soon as possible. Frequent communications, however,
may cause excessive rollbacks due to the tendency of
overly optimistic execution in Time Warp. Therefore,
a mechanism for restraining the overly optin1istic ex­
ecution is required in this case. The in1plementations
of Time Warp on shared memory systems use this
'communication-per-event' style for the COlnn1unicat­
ing pattern. As an exception, Das et al. (1994) dis­
cuss about the possibility of improving performance
by processing a batch of k events, where k is the size
of the batch. They claim that the batch process­
ing approach reduces queue ll1anagement overheads
somewhat.

In distributed-memory systems, the communica­
tion latency is long, and therefore the computation
granularity must be an important issue to be stud­
ied. An experin1ental study (Carothers et al. 1994)
has investigated the effects of comn1unication over­
head on the perforn1ance of Till1e Warp, considering
two types of sin1ulation applications; one with a large
event granularity and the other with a sn1all event
granularity. In the study, the con1putation granular­
ity is fixed to the event granularity without allowing
several events to be executed all at once. According
to their perforn1ance results, the communication la­
tency in distributed computing environments can sig­
nificantly degrade the efficiency of Time Warp in the
application problems which contain a large number
of logical processes with a small event granularity. In
contrast, for applications having large grained events,
the communication latency appears to have little ef­
fect on the performance of Time Warp.

It is clear that a substantial amount of compu­
tation should be performed between interprocessor
communications in order to yield appropriate perfor­
mance results on distributed systems. In VLSI cir­
cuit simulations which have a small event granular­
ity, a large computation granularity could be achieved
by handling a batch of events together between com­
munication points. However, the batch processing of
a number of events with infrequent communications
may unbalance the progress of logical processes in a
processor from those of other processors. In this case,
there is a high possibility that the incoming events
from other processors become stragglers. The con1­
putation granularity, thus, should be tuned properly,
depending on the characteristics of simulation ap­
plication problen1s and the used computer systen1s.
The optin1al granularity should be large enough that
the simulation performance cannot be degraded by

664 (:hoi and l\lin

the comnlunication overhead, and snlall enought that
rollback situations cannot be excessive.

3.2 Balancing Progress of Processes

The major characteristic of Time Warp is that each
process can asynchronously execute its unprocessed
events without considering causality effects. Due to
this characteristic, some logical processes Inay ad­
vance too far ahead of others, possibly leading to
the inefficient use of memory and excessive rollbacks.
This situation might happen particularly for a large­
scale simulation application with a small event granu­
larity, such as VLSI circuits. By using the scheduling
scheme of balancing the progress of logical processes,
we can prevent the simulation fronl propagating in­
correct computations too far ahead and reduce se­
riously excessive rollback situations. Two balancing
schemes are presented in the following subsections.

3.2.1 Balancing Progress by Execution
Chance (BPEC)

The BPEC is a scheme that balances the progress of
logical processes. It linlits the number of chances (op­
portunities) of executing events per logical process.
In this scheme, we have two controllable parameters:
one parameter for the conlputation granularity and
the other parameter for balancing progress.

As the first paranleter to control the computation
granularity, this schenle sets the nlaximum nunlber
of events that can be executed by a processor be­
tween con1munication points. This quantity is called
the maximum batch size (!vIBS). Within the limit of
the MBS, the processor scheduler selects events from
logical processes through the central scheduling pri­
ority queue. That is, each processor selects and exe­
cutes events up to the limit of the MBS. The sched­
uler counts the number of events executed in the
processor since the last communication point while
selecting events from the priority queue. Once the
number of executed events reaches ~IBS, the proces­
sor stops scheduling events and performs the inter­
processor comnlunication. The second parameter is
the maximum number of chances needed to execute
events per logical process. When the scheduler se­
lects events fronl the logical processes through the
priority queue, it also counts the nunlber of executed
events per logical process. The purpose of counting
events per process is to balance the progress of pro­
cesses. By giving the appropriate execution chances
to processes, \ve can achieve the benefit of using par­
allel optinlistic protocol. As well as boosting only
processes far behind, the overall progress of processes
can advance by optinlistically executing all processes.

The maximum number of chances that a logical pro­
cess can execute events between interprocessor com­
munications is called the Balancing Progress Chances
(BPC). If a logical process no longer has unprocessed
events or it has already executed as many events as
the BPC, then the logical process is not allowed to
enqueue its events into the priority queue.

By controlling the maximum allowable chances of
executing unprocessed events per logical process, the
BPEC schenle not only balances the relative speed of
the processes' progress, but also controls the compu­
tation granularity. In the case that the MBS is set
to be larger than the optimal value of grain size, the
computation granularity can be adjusted by using the
proper BPC value. When all logical processes are in­
dividually controlled by the BPC, the total number
of executed events in a processor cannot increase too
much, and the granularity between two communica­
tion points will be adjusted properly. The BPC is also
able to control the event schedule by giving an equal
number of execution chances to the logical processes.
Instead of only executing events on a specific logical
process, every process has the same chance to exe­
cute its events. Thus, the BPEC scheme contributes
to progress balancing of logical processes and reduc­
ing the consequent rollback situations. Due to the
characteristic of confining the strict upper bound of
the number of events that can be executed by a pro­
cessor between interprocessor communications, this
scheme is a static method of controlling computation
granularity.

3.2.2 Balancing Progress by Virtual Time
Window (BPVTW)

Unlike the BPEC scheme, the BPVTW does not have
the strict upper bound of execution chances for each
logical process before interprocessor communication.
Rather, the relative progress of logical processes is
controlled with regard to the timestamp of events.
That is, the scheduler prevents a process from exe­
cuting events if the process is far ahead of the other
processes in virtual time. For this purpose, we employ
a virtual time window whose base is the GVT such
that logical processes can execute only events hav­
ing timestamps within the interval of the virtual time
window. This virtual tinle window is called the Bal­
ancing Progress Window and the size of the window
is denoted by BPW. Thus, the Balancing Progress
Window has the interval [GVT, GVT + BPW].

In this scheme, the overall progress is controlled
by each logical process not by each processor. As in
the BPEC scheme, the processor scheduler selects the
smallest timestamped event from the central schedul­
ing queue. The scheduler, however, does not count

Schemes for Time Warp on Distributed Systems 6GS

4.1.1 Effects of the MBS

1000 2000 3000 4000 5000
MBS

the number of executed events. When a logical pro­
cess has an unprocessed event and its timestamp is in
the interval [GVT, GVT + BPW], the event is en­
queued into the central scheduling queue. If there is
no unprocessed event whose timestamp is in the inter­
val [GVT, GVT + BPW], the process does not have
any chance to execute events until the next cycle after
communication. In other words, the scheduler han­
dles events until there are no available unprocessed
events in the scheduling queue. Once the schedul­
ing queue is empty, the processor communicates with
other processors.

The computation granularity in the BPVTW sche­
me is indirectly controlled by the BPW value. Since
there is no static limitation of the maximum number
of events to be executed by a processor per commu­
nication, we do not employ the MBS. Instead, the
BPVTW scheme concerns the real progress of pro­
cesses with their timestamps in order to balance the
progress of logical processes. The computation granu­
larity is consequently adjusted when the scheduler re­
stricts scheduling events according to the BPW value.
Because there is not a limited number of executed
events, the actual computation granularity may vary
depending on the progress of the simulation. In this
sense, the BTVTW scheme is considered a dynamic
method of controlling the computation granularity.

A similar concept has been proposed as Moving
Time Window (MTW) (Sokol et al. 1989). Although
the MTW mechanism didn't provide considerable im­
provement on some cases (Fujimoto 1990), as it will
be shown from the experimental results in Section 4,
the BPVTW scheme achieves a good performance im­
provement for large-scale and small-event-granularity
applications on parallel and distributed systems due
to its ability to control the computation granularity.
In addition, for those applications with a large LP
ratio, the BPVTW scheme provides the balancing ef­
fects as well as control over the degree of optimism.

4 EXPERIMENTAL RESULTS

This section presents the experimental results on a
cluster of six DEC Alpha workstations interconnected
by a DEC GIGASwitch through FDDI. The DEC
Alpha 3000 workstation has a 133 MHz clock rate
and a 32 MB memory. The GIGAswitch supports a
peak data transfer rate of 200Mbits per second. As
benchmark circuits, we use several circuits from the
ISCAS89 benchmark suite. In the circuits, we have
the D flf clocking interval set to be the same as the
input clocking interval. The logical processes are ran­
domly partitioned into processors. For parallel pro­
cessing and the interprocessor communication on the
distributed system, we use the PVM (Parallel Virtual

800
700
600

T 500
400
300
200 ~~ ----.....-----....:::::l
100 "'--------'-------L..__.L.-_-L-_--L---J

o

Figure 1: Total Execution Time (T) with BPEC
Scheme for S38584 (Curves with Stars), S35932
(Curves with Triangles), S38417 Circuits (Curves
with Dots)

Machine) 3.3 (Oak Ridge National Laboratory 1994).
Time Warp is implemented on the distributed system
as a master-slave model.

4.1 Performance Measurement with
the BPEe Scheme

This subsection explains the experinlental results
when the BPEC scheme is applied as the event schedul­
ing technique to Time Warp on the distributed sys­
tem.

To study the effect of varying the MBS, we have per­
formed experinlents with three different circuits. Fig­
ure 1 shows the total execution time for the S38584
(curves with stars), S35932 (curves with triangles),
and S38417 (curves with dots) circuits as a function
of the MBS. The solid curves represent the case of
BPC == 1 and the dotted curves show the case of
BPC == 00. The nunlber of input vectors is 50,
and the BPC is set to 1 and the unlimited value.
The three circuits have the following LP ratios; 6733,
5357, and 6074, respectively.

As we mentioned in the previous section of the
BPEC scheme, the conlputation granularity is con­
trolled by values of the MBS and the BPC. To focus
on only the effects of the MBS, in this subsection
we consider only the dotted lines where the BPC has
the unlimited value in Figure 1. As sho\vn by the
dotted lines, the total execution tinle can be nlini­
mized when the NIBS is tuned properly. When the
MBS is near to 1, the total execution tinle increases
very sharply as the MBS decreases. In this situation,
the conlputation granularity deternlined by the iVIBS
is so sOlall that the siolulation spends most of the
time in the frequent coo1munications. It implies that

6G6 Choi and l\fin

BP ,= 1
BPC=2 ~
BPC =5 -A-

BPC = 00 -e--

700

600
500
400
300

200 ~~=======+==========::::1

T
........ .

1e+6

R 3e+6

5e+6

1000 3000
MBS

,5000 500 1000 1500 2000
MBS

Figure 2: Number of R.ollbacks (R) with BPEC
Scheme for S38584 (Curves with Stars), S35932
(Curves with Triangles), S38417 Circuits (Curves
with Dots)

Figure 3: Total Execution Time (T) with BPEC
Scheme for S13207 Circuit

the MBS should be larger than such a small value
and that a substantial anl0unt of computation could
be performed between interprocessor comnlunication
points. The appropriate MBS will minimize the de­
grading effects of the communication overhead. In
the extreme case of MBS = 1, the computation gran­
ularity is the same as the event granularity.

On the contrary, the total execution time increases
linearly as the MBS increases after 200, approximately.
It is because a large computation granularity may in­
crease the number of rollbacks. To observe this re­
lationship, Figure 2 shows the nunlber of rollbacks
varying the value of the MBS. Again, the dotted lines
are for the case when the BPC is set to the unlinlited
value and the solid lines are \vhen the BPC is set to
1. As mentioned before, we focus on the dot ted lines
in this subsection to focus on the effect of the NIBS.
In the dotted lines, the number of rollbacks is very
small when the NIBS is near to 1 because the overall
sinlulation advances in a conservative fashion. As the
MBS increases, the nunlber of rollbacks increases al­
most linearly. This result implies that the larger the
computation granularity is, the higher the probabil­
ity is that inlillature events are propagated to other
processors.

As a consequence, the appropriate value of the
MBS should be as sillall as possible, but larger than
a certain value so that the cOillmunication overhead
can be red uced as Illuch as possible. As for the cases
in Figure I, the optilllal perforillance occurs \vhen the
NIBS is around 200.

4.1.2 Effects of the BPC

In this subsection, \\'e consider all the curves in Fig­
ure 1 to study' the effects of the BPC. When the MBS
is Illuch larger than the optinlal value, the sinlula­
tion perforIllance depends on the BPC value. Fig-

ure 3 shows the simulation results with the 513207
circuit. In the simulation, 100 input event vectors
are used. Like the circuits in Figure 1, the curves
in Figure 3 also reach steady performance when the
BPC has small values, such as 1, 2, and 5. At this
steady state, the BPC value controls the computation
granularity because of the limited number of executed
events per process. With a snlall BPC, processes have
limited chances to execute events although they have
more unprocessed events. Thus, a fast process is pre­
vented from executing too many events so that the
process cannot go too far ahead of the others, and
we are then able to obtain the balancing effect with
a small BPC value. In the interval between the op­
tinlal and the steady states, the computation granu­
larity is controlled not only by the BPC, but also by
the MBS. The depth of the valley of each curve at
the optimal performance is deeper as the value of the
BPC becomes larger. As shown in Figure 3 for the
S13207 circuit, the simulation results with the BPC
== 1 produce better performances than when the BPC
is larger.

4.1.3 Effects of the LP Ratio

In order to study the effects of the LP ratio, we stage a
set of simulations with three variations of the 535932
circuit. The experin1ental results are given in Fig­
ure 4. The D3,5932 circuit and the T35932 circuit are
the circuits that are constructed by connecting the
original S35932 circuit double and triple times, re­
spectively. Therefore, the T35932 circuit has around
a hundred thousand logic gates. Since the two circuits
have logical gates multiple times of the S35932 circuit,
they have multiple times higher LP ratios than the
S3,5932 circuit. For all three curves, the BPC is fixed
at 1. As before, each curve shows the optinlal and
the steady performances as the MBS varies. However,
unlike the S13207 circuit which has the steady perfor­
nlance with the optimal performance on all the ranges

Scllemes for Tilne vVarp on Distributed S'ystellls (j67

5 CONCLUSION

In this paper, we propose two efficient event schedul­
ing schemes on the optimistic protocol: the BPEC
scheme and the BPVTW scheme. The BPEC scheme
limits the number of executed events per logical pro­
cess between interprocessor comnlunications by using
the BPe paranleter. The BPVTW schenle controls

schenle shovvs good perfornlance even \vith \'ery snlall
values of BPW. It is because each process adds the
unit delay of virtual tinle in executing events, and
many events exist in the narrovv virtual time inter­
val. The interval of BP\\l \vhich contains the opti­
mal perfornlances is qui te wide in conlparison to the
sharp optimal range in the BPEC scheme. Thus, the
progress balancing between logical processes with the
virtual tinle window is effective and works \vell in the
wide interval of BPW. This is because the BPVTW
scheme concerns the actual progress of processes with
their timestamps.

On the contrary, when the BPW is larger than
2000, the curves of total execution time increase with
different rates as the BPW increases. In this larger
window interval, the virtual time window does not
take an important role of balancing progress of logi­
cal processes because there are nlany executed events
in this interval. Also, the computation granularity is
not restrained by the BPW. Thus, too many unpro­
cessed events are executed, propagating lots of inl­
mature events. The larger the LP ratio is, the more
unprocessed events are generated. In the figure, the
T35932 circuit shows the worst performance when
the BPW is larger than 2000. The D35932 circuit
is worse than the S35932 circuit. Therefore, when
the BPVTW scheme is used as the event scheduling
nlet.hod, the BPW nlust be tuned properly. Other­
wise, the simulation perfornlance will be as bad as if
there were no limit of the MBS and the BPC in the
BPEC scheme.

As discussed in Section 3, the BPVTW scheme
does not control the computation granularity in a di­
rect way as in the BPEC schenle. Rather, by using
the virtual time window per logical process, the com­
putation granularity is indirectly controlled while the
progress of logical processes are balanced. In order to
observe the effects of the BPW on the computation
granularity, the average number of executed events
between interprocessor comnlunications are also shown
in Figure 6. In the figure, where the sinlulation shows
the almost optimal perfornlance, the average number
of executed events per communication is around 400
or 700, depending on the circuit. This amount is sim­
ilar to the optinlal grain sizes for the same circuits as
shown in Figure 4.

535932 -+­

D35932 A­
T35932 -+-

1000 2000 3000 4000 5000 6000
MBS

1800
535932

1400 D35932
T 1000 T35932

600

200

0 2000 4000 6000 8000 10000
BPW

600

500

400
T

300

200
100 ""'----------'-_--L-_----Io-_--'----_--'--------J

o

Figure 4: Effect of Granularity on Total Execution
Time (T) by Varying LP ratio

Figure 5: Total Execution Time (T) with BPVTW
Schenle for S35932

4.2 Performance Measurement with
the BPVTW Scheme

of MBS when the BPC is 1, the steady performances
of the three circuits in Figure 4 are much higher than
their optimal performances. The larger the LP ra­
tio is, the larger the difference is. Interestingly, even
if tens of thousands of logic gates are assigned in a
processor, the simulation shows reasonably good per­
formance on distributed systems if the MBS is tuned
appropriately. These results imply that the effects
of computation granularity on the performance be­
come more significant as the LP ratio becomes large
enough.

Additional sets of experiments have been performed
with the BPVTW scheme on the distributed system.
Figure 5 presents the experimental results in terms
of the total execution time, varying the BPW. The
three circuits, S35932, D35932 and T35932, are used,
which are descri bed in Section 4.1.3.

In the figure, all three circuits show good perfor­
mances up to the BPW value of 2000. Unlike the
BPEC scheme which shows sharp increases in total
execution tinle for small values of BPC, the BPVTW

668 Choi and l\Iin

-e--

2000 4000 6000 8000 10000
BPW

Das, S, R. M. Fujimoto, K. Panesar, D. Allison, and
j\I. Hybinette. 1994. GTW: A Time Warp System
For Shared Memory Multiprocessors. In Proceed­
ings of the 1994 Winter Simulation Conference
1332-1339. '

Fujimoto, R. M. 1989. Time Warp on a Shared Mem­
ory Multiprocessor. In Proceedings of 1989 Inter­
national Conference on Parallel Processing 3:242­
249.

Fujimoto, R. M. 1990. Parallel Discrete Event Simu­
lation. Communications of ACM 33:30-.53.

Gafni, A. 1988. Rollback Mechanisms for Optimistic
Distributed Simulation Systems. In Proceedings
of the SCS Multiconference on Distributed Simu­
lation 19:61-67.

Jefferson, D. 1985. Virtual Time. ACM Transactions
on Programming Languages and Systems 7:404­
425.

Jones, D. W. 1989. Concurrent Operations on Prior­
ity Queues. Communications of ACM, 132-137.

Preiss, B. R., and W. M. Loucks. 1995. Memory
Management Techniques for Time Warp on a Dis­
tributed Memory Machine. In Proceedings of the
9th Workshop on Parallel and Distributed Simu­
lation, 30-39.

Sokol, L. M., B. h~. Stucky, and V. S. Hwang. 1989.
MTW: A Control Mechanism for Parallel Discrete
Sinlulation. In Proceedings of the 1989 Interna­
tional Conference on Parallel Processing 3:250­
2.54.

The Oak Ridge National Laboratory. 1994. PVM 3
User's Guide and Reference Manual.

4000

3000

ANEE 2000

1000
o......~----L__---l-__..L--_---l..__--.J

o

the progress of processes in virtual tillle by using the
BPW parameter, and prevents processes frOlll execut­
ing events far ahead of other processes.

We experimented with the DOP considering the
design issues of the control of the computation gran­
ularity and the event selection schemes on a cluster
of DEC Alpha workstations. According to our ex­
perimental results, both schemes show good perfor­
mances when the computation granularity is adjusted
properly. Otherwise, communication overheads or ex­
cessive rollback situations lllay significantly degrade
the simulation performance. The results also showed
that the progress balancing among logical processes
have significant effects on obtaining the optilllal per­
formance. In addition, it is shown that the LP ratio
and the characteristic of the simulated circuit affect
the simulation performance.

Figure 6: Average Number of Executed Events
(.A.N EE) with BPVTW Scheme for S35932

REFERENCES AUTHOR BIOGRAPHIES

Brow~, R. 1988. Calendar Queues: A Fast 0(1) Pri­
orIty Queue Implelllentation for the Simulation
Event Set Problem. Communications of ACM
1220-1227. '

Carothers, C. D., R. M. Fujimoto, and P. England.
1994. Effect of COlllll1unication Overheads on Time
Warp Performance: An Experimental Study. In
Proceedings of the 8th Workshop on Parallel and
Distributed Sinlulation, 118-125.

Choi, E., and M. J. Chung. 1995. An Illlportant Fac­
tor for Optimistic Protocol on Distributed Sys­
tems: Granularity. In Proceedings of the 1995
Winter Simulation Conference, 642-649.

Chung, Y., and M. J. Chung. 1991. Time Warp for
Efficient Parallel Logic Silllulation on a Massively
Parallel SIMD IvIachine. In Proceedings of the
Tenth Annual IEEE International Phoenix Con­
ference on Computers and Comnlunications, 183­
189.

EUNMI CHOI is a Ph.D. candidate in computer
science at Michigan State University. Her current
research interests include parallel asynchronous pro­
tocols, parallel logic simulation on parallel and dis­
tributed systems, and parallel and distributed algo­
rithms. She received an M.S. in computer science
from MSU in 1991, and a B.S. from Korea Univer­
sity in 1988. She is a member of ACM and the IEEE
Computer Society.

DUGKI MIN received a B.S. degree in industrial
engineering from Korea University in 1986, an M.S.
degree in 1991 and a Ph.D. degree in 1995, both in
computer science from Michigan State University. He
is currently an Assistant Professor in the Depart­
ment of Computer Engineering at Konkuk Univer­
sity. His research interests include parallel and dis­
tributed computing, distributed multinledia systems,
and computer simulation.

