
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S,vain

EVENT SENSITIVE STATE SAVING IN TIME WARP PARALLEL DISCRETE EVENT SIMULATIONS

Sven Sk6ld
Robert Ronngren

Simulation Laboratory
Department of Teleinformatics
Royal Institute of Technology

Stockholm, SWEDEN

ABSTRACT

In this paper we present event sensitive state saving as a
novel idea for sparse state saving in Time Warp synchro­
nized parallel discrete event simulations. This state sav­
ing model is aimed at efficient simulation of models
where the execution time or granularity for different
types or classes of events typically has a large variance.
The event sensitive state saving mechanism is sensitive
to which class of event the previously executed event
belongs, and decide when to save simulation state based
on this information. We present an analytical analysis and
compare this new state saving model with the perfor­
mance of an existing adaptive state saving model as well
as the traditional Time Warp state saving model with
fixed state saving interval.

1 INTRODUCTION

The most well known optimistic parallel discrete event
simulation mechanism is Time Warp, proposed by (Jef­
ferson 1985). Any parallel simulation mechanism should
guarantee that the simulation is synchronized such that
the output is free from effects generated by causality
errors. Time Warp uses a detection and recovery mecha­
nism to address these issues. In Time Warp, a causality
error is detected when a timestamped message arrives at
a logical process (LP) and the timestamp of the message,
i.e. the message receive time, is less than the time of the
last processed event at that LP. The event that causes the
causality error is called a straggler event. To recover from
an erroneous state, the LP is rolled back in time to a state
before the straggler event. Before resuming the execu­
tion, any possible effects from all messages that have
been sent with timestamps greater than the straggler
timestamp need to be undone. This is achieved by re­
sending negative versions of previously sent messages,
so called anti-messages, which will annihilate the origi­
nal messages and thus undo the effect from the original

messages. However, these anti-messages might possibly
act as straggler messages themsel yes and hence cause
further rollbacks at other LPs. Despite what may appear
as a complicated mechanism, Time Warp has proved to
be a promising mechanism for parallel simulation
(Fujimoto 1990). I-Iowever, there exist some performance
issues related to Time Warp which still merits further
attention by the research community.

One potential performance bottleneck of Time Warp is
the need to periodically save the state for each LP to later
be able to roll back to earlier states. Without an effective
memory manager combined with an efficient state saving
method, the amount of time as well as memory needed to
save states could severely degrade performance. Further­
more, it might also put a limit on the maximum size of
the models possible to simulate due to excessive memory
consumption. During the last decade, two methods to
reduce the state saving overhead has been proposed:
incremental state saving (Bauer, and Sporrer 1993)
(Palaniswamy, and Wilsey 1993) and sparse or infrequent
state saving (Lin et al. 1993). In this paper we focus on
sparse state saving methods.

Traditionally in Time Warp simulations, the state or
state variables are saved after or before the processing of
each event at an LP. This is usually referred to as copy
state saving. However, one can observe that a state can be
restored by reloading an earlier state and re-executing or
coasting forn'ard all events in between. Thus one could
potentially save execution time and memory by not sav­
ing the state after each event, but instead save the state of
an LP at some specific time interval which is greater than
one - hence the name infrequent or sparse state saving.

Several methods for sparse state saving has been pro­
posed. To our best knowledge these models are, without
exceptions, based on the assumption that the execution
time of events in coast forward can be approximated with
a mean execution time, i.e. with an underlying assump­
tion that the execution time, or granularity, show little
variance. However, there exist many important classes of

654 Skold and Ronngren

2 SPARSE STATE SAVING

3.2 Adaptive Sparse State Saving Methods

In the simplest method, all LPs use the same static state
saving interval, i.e. the simulation state for each LP is
always saved after every Xth event execution, where X is
the state saving interval. These methods work best when
the simulation model is homogeneous, i.e. all LPs are
identical and do not change behavior over time. The
question is how to select an optimal state saving interval
X. (Lin et al. 1993) developed a manual regression model
which works well for homogeneous models.

3.1 Fixed Sparse State Saving Method

As the use of the Time Warp mechanism for optimistic
synchronization of parallel discrete event simulations has
increased, many researchers have presented different
sparse state saving methods which differ in how to select
the state saving interval. The approaches can be divided
into two groups: fixed sparse state saving, where the cho­
sen state saving interval is kept constant during the entire
simulation, and adaptive sparse state saving, where the
state saving interval is dynamically adapted to changes in
monitored simulator parameters.

3 RELATED WORK

When a straggler event occurs, the saved state closest
before the straggler event in simulation time (X in Figure
1) is recovered and the simulation coasts forward (with­
out re-sending any messages) to the time of the straggler
(8 in Figure 1) where nonnal forward execution is
resumed. We can therefore divide the simulation progress
cycle of an LP into three different phases (Lin et al.
1993): forward execution phase; rollback phase; and
coast forward phase.

If the frequency of state saving is reduced, the time to
save states is also reduced and hence the cost for the for­
ward execution phase is reduced. However, this reduction
is at the expense of possibly longer rollbacks and of
longer coast forward phases which increase the state res­
toration time. An appropriate state saving interval in a
sparse state saving method should obtain a low cost from
the forward execution phase while maintaining a low cost
for the rollback and coast forward phases. Hence, this
choice is dependent on the relations between the time to
save the state of an LP; the time to coast forward or re­
execute an event; the number of rollbacks; as well as the
number of events involved in a rollback.

sx

coaghf~~ard
__- __~_--fo_rw...;...ar...;;.d...;;.ex...;;.e..;;.;;cu~tion_ --.

: rollback phase

Sparse or infrequent state saving approaches are based on
the observation that one simulation state can be recreated
from an earlier state by re-executing the events between
the two states. Thus, the simulation state does not need to
be saved or checkpointed after the processing of each
event. Hence, we can trade the overhead of saving state
after each event for the overhead of restoring a state by
coasting forward, or re-executing, the events in between
the latest previously saved state and the current state
(Preiss, Loucks, and MacIntyre 1994). For state restora­
tion purposes and to assert the simulation can progress it
is sufficient that at least one earlier state before the strag­
gler event has been saved as well as all subsequent events
that have been processed but not checkpointed, see the
simulation snap shot example in Figure 1.

simulations where this obviously is not a good or even
valid assumption. Consider for example battlefield simu­
lations or simulations of mobile communication systems
where many events are simple position updates for
mobile entities. These events in general have very low
granularity. However, these models typically also feature
very large grain events which occur when entities in bat­
tlefield simulations enter into combat or when mobile
units in a personal communication system perfonn han­
dovers or interference measurements.

In this paper we propose an event sensitive state saving
method for sparse state saving. This method takes into
consideration the granularities of different event types or
classes in the simulation. We present a simple analysis
and compare this new state saving method to the perfor­
mance of an adaptive state saving method (Rbnngren,
and Ayani 1994) as well as a traditional Time Warp simu­
lator with a fixed state saving interval. We use two simple
mobile communication network models as benchmarks.

This paper is organized as follows: Section 2 gives a
short introduction to sparse state saving in Time Warp;
other related work in this area is summarized in Section
3; Section 4 describes the event sensitive state saving
approach; Section 5 shows our experimental results with
this new state saving model; and finally Section 6 con­
cludes the paper and summarizes this work.

o events that have not been processed X = restored state

o events that have been processed but not checkpointed S = straggler event

• events that have been processed and checkpointed

Figure 1: Simulation Snap Shot with X= 5

(Fleischmann, and Wilsey 1995) perfonned an empirical
study on sparse state saving approaches and present a
heuristic algorithm for adapting to changes in the simula­
tion model execution behavior. This method measures the

Event Sensiti,'c State Saving in Parallel Sinlulations

time to execute N events and compares this measurement
with the previous measurement. If the execution time has
increased "significantly", the state saving interval is
decreased by one otherwise it is increased by one.

(Ronngren, and Ayani 1994) developed an adaptive
state saving method where the simulator dynamically
changes the state saving interval for each LP depending
on the individual LP's rollback behavior. Using this
approach, a near optimum choice of the state saving
interval can be selected at run time. For each LP, the
monitored parameters are the number of processed events
Robs (including events that have been rolled back) and the

number of rollbacks kobs during an observation period. It

is then possible to calculate the state saving interval Xmin'

see Equation (1), which minimizes the sparse state saving
overhead for the LP. In this equation, bs is the mean time

needed to save the simulation state and Oc is the mean

execution time for an event in the coast forward phase.
Equation (1) is then used to iteratively refine X while
adapting to changes in the rollback frequency Robs / kobs'

tion and coast forward times, we can treat each class as
"individual events" without loosing generality. For a gen­
eral simulation model the execution time for different
event classes in an LP might vary considerably. We there­
fore propose a new sparse state saving method, called
event sensitive state saving (ESSS), where we take this
variance into consideration when selecting the optimal
state saving interval.

4.1 The ESSS Approach

To further reduce the state saving overhead in sparse state
saving methods we target the coast forward phase in the
simulation progress cycle (see Figure 1). The time to exe­
cute this phase depends on the length of the state saving
interval X as well as the individual coast forward times
for the events in the coast forward phase. The mean num­
ber of events in the coast forward phase is (X-I)/2 under
the assumption that state saving points and stragglers are
independent. If we denote the mean coast forward time
for all event classes as bc the average state saving over-

head due to one coast forward phase is estimated as:

(1)
(2)

Recent work (Ronngren et al. 1996) shows that this
adaptive method gives the best results when comparing
the state saving perfonnance for various sparse state sav­
ing techniques when simulating large, realistic cellular
communication systems.

4 EVENT SENSITIVE STATE SAVING

We observe that previous work in estimating the optimal
state saving interval typically depend on an estimation of
the mean time for execution or coast forward of an event
(Oe or 0c) or the estimation of the time to save state and

time to coast forward (Ds / Dc) ratio. However, for these

estimations to be optimal the variance should not be
large, i.e. all types of events should have similar perfor­
mance when comparing execution and coast forward
times. Intuitively, even if there exist simulation models
where the event execution and coast forward time varia­
tions are negligible, this can not generally be true.
Clearly the coast forward time could be reduced if it was
possible to reduce the probability of having to coast for­
ward over large granular events. We therefore claim that
this variance in event characteristics is an important fac­
tor when selecting state saving interval in a Time Warp
synchronized discrete event simulation.

If we divide all possible types of events in a simulation
model into a set of event classes, where members of each
class exhibit a similar behavior when it comes to execu-

In traditional sparse state saving models, the state of an
LP is saved after or before the execution of any event in a
simulation run. From the coast forward point of view, this
might not be the best approach. If the model under simu­
lation is described by events where the coast forward
time for different events has high variance, it should be
more efficient to save the state after events that is expen­
sive, i.e. with long coast forward times, compared to after
events with short coast forward times. By employing a
state saving technique that favors state saving after
expensive events we could reduce the mean bc' i.e. it

would be possible to reduce the effective Oc that will add

to the coast forward overhead Tcoh in Equation (2).

The goal of the ESSS approach is therefore to imple­
ment a sparse state saving model where state saving is
more probable after expensive high granularity events,
than after events with lower granularity.

4.2 Execution Time Model

To understand the effects on the state saving overhead in
sparse state saving we use Ronngren's execution time
model (Ronngren, and Ayani 1994) where the simulation
execution time T for an observation period when adopt­
ing a state saving interval X is estimated as:

T(X) =R ~+k 8 +k 8 (X-I)+R 8 (3)
obs X obs robs c 2 obs e

656 Skold and Ronngren

4.3 The ESSS Model

(8)

(7)

A comparison can be performed by estimating the sim­
ulation state saving overhead during an observation inter­
val for ESSS and SSS respectively using Equation (4):

An important Time Warp simulation measurement is
the efficiency parameter E which shows the ratio between
the total number of committed events and the total num­
ber of processed events (both committed and rolled back
events). This parameter together with the average roll­
back length RL, i.e. the average number of events a strag­
gler causes the simulation to roll back across, can be used
to describe the rollback frequency kobs / Robs:

4.4 Analytical Evaluation of ESSS

Our goal is to reduce f>eESSS in Equation (6) by saving

heavy events with higher probability than light events,
i.e. for heavy events we would like a high Pi and for light

events a low Pi. By this approach it is possible to reduce

the re-execution overhead in the coast forward phase.

the simulation state is not saved after each event which
would imply copy state saving) as:

To evaluate the ESSS approach we compare the ESSS
model to a sparse state saving (SSS) model with a fixed
state saving interval given by minimizing Toh(X) in Equa-

tion (4), see Equation (1). We choose first to analytically
study a simple model with the following parameters:

We have two event classes with events from each class
equally frequent, i.e. N=2 and 11=12=0.5. Events of class

i=2 are considered heavy with a heavy factor HF, i.e.
0c2=HFOc1 . To find an estimate on how well the ESSS

model perfonns we compare the state saving overhead
when varying P1 and P2' The mean coast forward time for

the ESSS model is described by Equation (6) and for the
SSS model the mean coast forward time is:

(5)

(4)

XESSS = 1/(f P;!,]
1=1

In the ESSS approach we classify each event class i in an
LP by the following data and parameter estimations: ii,
the relative frequency of event class i, i.e. the observed
number of executed events of class i divided by the total
number of observed events; and bei , the mean coast for-

ward time for class i events.
Events that belong to an event class with high coast

forward times or high granularity are called heavy events
and correspondingly, events that belong to an event class
with low coast forward times or low granularity are
called light events. In Equation (3) and Equation (4), the
execution time is estimated for an X which does not
explicitly account for whether the events in the coast for­
ward phase are light or heavy. To be able to take this dif­
ference in event characteristics into consideration when
deciding when to save state (provided that events of dif­
ferent classes are evenly distributed in time and events of
the same class are not lumped together), we introduce a
simulation tuning parameter: Pi' the probability of state

saving after events of class i where 0.0 < Pi < 1.0.

Thus, the average state saving interval XESSS for the

ESSS model with N event classes can be described as:

In this expression, Robs is the number of observed

event executions (committed and rollbacked events), bs is

the average time to save one state of the LP, kobs is the

number of observed rollbacks, b, is the average time to

restore the state of the LP, be is the average execution

time for an event in a coast forward phase, and be is the

average execution time of an event in nonnal forward
execution. The first tenn in the sum refers to the esti­
mated time to save states. The last term is the time to exe­
cute events during forward execution, and together with
the first term it reflects the time to execute the forward
execution phase. The second term corresponds to the
time to perfonn rollbacks and restore old states, i.e the
rollback phase, and the third term estimates the time
spent in coast forward phases, c.p. Equation (2).

The state saving overhead which depend directly on
the state saving interval X is tenn 2 and 3 in Equation (3):

and the average coast forward event execution time
beESSS (provided that at least one Pj is less than one, i.e.

kobs _ 1- E

Robs - RL
(9)

Event Sensitive State Saving in Parallel Simulations 657

and the simulation state overhead comparison in Equa­
tion (8) can be estimated as:

Furthermore we assume that the time to save the entire
LP state bs in this simple model is the same as the time to

re-execute or coast forward over a light event, i.e. bel =
Os· The state saving interval X that minimizes the state

saving overhead for SSS can be estimated by Equation
(1) with 0e equal to 0eSSS. This gives the Xsss estimation:

Figure 3: Analytical Estimation of State Saving
Overhead for ESSS compared to SSS when varying
the Efficiency E (HF=8,f1=12=0.5)

(11)

(10)

(XESSS - 1)

2

Os (1 - E)
-+--0
Xsss RL Csss

~+(I-E)O
XESSS RL C£sssTohESSS (x)

TohSSS (x)

- r 2 RL Os 1- rJ RL 2 1Xsss - (1 - E) 0cSss - 2 (1 - E) (1 +H F)

If we for this analytical model vary the heavy factor
HF and efficiency E, for a fixed rollback length RL of 2,
we get the results in Figure 2 and 3 respectively. In Fig­
ure 2 we can see that the possible relative gain in reduced
state saving overhead when using the ESSS state saving
model is increased as the heavy factor is increased, i.e. a
higher variance in the event coast forward time has a
larger impact on state saving performance. For the situa­
tion when 0e2=80e1 , the optimum choice of the state sav-

ing probabilities are P1=0.0 and P2=1.0, Le. states are
only saved after the heavy event (i=2). Performance
improvement in the overhead directly associated with the
state saving for the ESSS model compared to SSS is in
this case close to a factor two.

When we vary the efficiency in the simple analytical
example (see Figure 3) we can see that for lower effi­
ciency (around 80%), i.e. for cases when the LPs are per­
fonning frequent rollbacks, the performance
improvement is larger than for higher efficiencies. This
also indicates that our attempt of targeting the coast for­
ward phase could be a promising approach.

Summarizing the results from our analytical evaluation
of ESSS, we claim that the ESSS model has a good
potential to reduce the state saving overhead in sparse
state saving approaches for simulation models which
show a large variance in coast forward execution times.

5 PERFORMANCE EVALUATION

Figure 2: Analytical Estimation of State Saving
Overhead for ESSS compared to SSS when varying
the Heavy Factor HF (E=0.8,11=12=0.5)

The impact of the ESSS model has been evaluated by
implementation of the ESSS model on a Time Warp sim­
ulator targeted to shared memory multiprocessor work­
stations. The simulator is written in C and uses
aggressive direct cancellation (i.e. anti-messages are sent
immediately upon rollback) and static assignment of LPs
to processors. GVT calculations as well as fossil (gar­
bage) collection are performed once every second and on
demand. Synchronization primitives are supplied by the
p4 macro library (Butler, and Lusk 1994). The experi­
ments were performed on a SUN multiprocessor work­
station with 4 processors and 128 MB internal memory.

As simulation models we have selected a synthetic
model, in which we could modify the parameters and
hence the model behavior, as well as a real world simula­
tion model which describes an existing physical system.

658

5.1 Experiments with a Synthetic Model

Skold and Ronngren

The synthetic model is a modification of the PHOLD
model (Fujimoto 1989) which is a closed stochastic
queueing model with a fully connected net of 64 nodes.
Two types of equally probable messages are forwarded
within the net. One type of message is labelled light and
triggers an event that takes 30 microseconds to process,
the other is labelled heavy and the time to execute the
corresponding event is HF times longer. The message
population is constant and messages are routed with 20%
probability to the sending process and with 25% proba­
bility to one of eight so called hot spots that randomly
move around in the network. Otherwise messages are
equally likely to be routed to any of the other nodes. This
model could be seen as a simple model of a mobile com­
munication system with 64 nodes and 8 mobile terminals
moving around in the system. The lighter messages trig­
ger mobile position updates, whereas the heavier mes­
sages correspond to resource allocation events which
typically are more costly.

Each node's state size is 1Kbyte and the time to save
that state is approximately the same as the coast forward
time for the lighter event, i.e. O/Oclight =1. In the experi-
ments we measured the event rate, the efficiency and the
rollback length for various combinations of the two state
saving probabilities PI (light event) and P2 (heavy event).

In each experiment approximately 300,000 events were
committed, and each experiment was run three times.

For the first set of experiments, the heavy factor HF is
eight and in average there is one light and one heavy
message per node. The efficiency for this model is around
80%, i.e. this synthetic model is very similar to one of the
analytical models studied in Section 4.4.

From the analytical analysis we would expect to get the
best performance for the situation when states rarely are
saved after light events (PI is close to zero) and almost

always are saved after heavy events (P2 is close to one).

From the simulation results for the first set of experi­
ments with the above described synthetic model, see Fig­
ure 4, we can see how varying the state saving
probabilities affect the event rate, i.e. committed events
per second. The results show that for this synthetic model
the performance is improved when state is rarely saved
after light events and more probably after heavy events,
as would be expected from the analysis in Section 4.4.
However, the best performance is not for (Pb P2) = (0.0,

1.0) but for (0.0, 0.6), i.e state should not be saved after
every heavy event, but approximately after every second
heavy event even though the performance difference is
very small compared to (PI' P2) = (0.0, 1.0).

If we compare the ESSS performance for the synthetic
simulation model and the first set of experiments with the

Figure 4: Simulation Results from the PHOLD
Model with Hot Spots lfl=/2=0.5, HF=8)

best simulation performance when employing other
sparse state saving techniques, we get the results in Table
1. However, these results show that the ESSS model does
not outperform the sparse state saving method with fixed
state saving interval of 4. This contradicts what we might
have expected after studying the analytical analysis in
Section 4.4. One factor contributing to this is the high
variance in the actual state saving interval for the ESSS
model compared to sparse state saving with fixed X.

Table 1: Comparing Simulation Performance for the
PHOLD Model with Hot Spots lfl=/2=0.5, HF=8)

State saving model
Mean Efficiency Rollback Event rate

X [%] length [events/s]

Copy SS 1 79.82 1.85 14,073

Sparse SS 4 85.39 1.75 17,403

Adaptive SS 4.39 84.85 1.76 16,683

ESSS (Pb P2)=(O.O, 0.6) 3.32 83.97 1.78 17,223

For this PHOLD simulation model, rollbacks are typi­
cally short, only one or two events are rolled back, and
even the rather high rollback frequencies of approxi­
mately 10% do not introduce high state saving overhead
compared to the time needed for nonnal forward execu­
tion. The ESSS model shows better performance than
Ronngren's adaptive state saving method, which partly
can be explained by the overhead introduced by the
adaptability in Ronngren's model. The traditional copy
state saving that saves simulation state after each pro­
cessed event is about 20% slower than the ESSS model
as well as the sparse state saving method with X=4.

For a second set of experiments, the heavy factor HF is
sixty and in average there are two light and one heavy
messages per node, i.e. 11=2/3 and/2=1/3. The efficiency

for this model is lower than for the first set of experi­
ments, around 75%. The reason to study this synthetical
model is its resemblance with the real model to be stud­
ied in Section 5.2.

Event Sensitive State Saving in Parallel Simulations 659

The results from the second set of experiments show
that for a model with high variance in event granularity,
the best performance is when state is rarely saved after
light events and more frequently saved after heavy
events. For this model the best performance is for (pb P2)

=(0.0, 1.0), see Figure 5.

Figure 5: Simulation Results from the PHOLD
Model with Hot Spots lf1=2/3,/2=1/3, HF=60)

A performance comparison for different state saving
methods for the second model is found in Table 2. This
PHOLD model also has short rollbacks, about two events
in each rollback phase. However, the variance in event
granularity is considerably higher for this model which
results in increased rollback frequencies as well as
decreased optimal state saving intervals. The ESSS
model shows better performance than the other state sav­
ing methods for this set of experiments. The maximal
event rate measured for ESSS is approximately 4% better
than the event rate for Ronngren's adaptive method.

Table 2: Comparing Simulation Performance for the
PHOLD Model with Hot Spots if1=2/3,12=1/3, HF=60)

State saving model
Mean Efficiency Rollback Event rate

X [%] length [events/s]

Copy SS 1 74.57 2.09 4,558

Sparse SS 3 78.16 2.03 4,542

Adaptive SS 2.87 78.00 2.09 4,590

ESSS (Pb P2)=(0.0, 1.0) 2.49 75.49 2.12 4,772

5.2 Experiments with a Real World Model

The third simulation model is a mobile telecommunica­
tion network simulator which models a simple "ring"
highway with uniformly distributed base stations. All
cells are of equal size and have the same number of chan­
nels available. Calls from mobile users arrive according
to a Poisson process and have exponentially distributed
call durations. An initiated call is placed at a uniformly
distributed random position on the highway. Mobility is
modeled as a constant truncated Gaussian distributed ran-

dom speed in one of the two possible directions. Each
cell is simulated as an LP. The arrival of calls are gener­
ated by a central generator LP, and handover between
cells is attempted by sending messages between cell LPs.

The model used for the performance evaluation include
20 base stations, each with 10 available channels, and
each in a cell with size 2000 meters. Calls arrive at the
rate of one call per second and with an average holding
time of 120 seconds. The mobile terminals move with an
average speed of 90 kilometerslhour. After an initializa­
tion phase, the mobile terminals will be approximately
uniformly distributed over the cells.

The two most frequent types of events are position
updates and resource allocations which account for about
two thirds and one third of all events respectively. A
resource allocation (heavy event) takes approximately 60
times longer than a position update (light event) due to
the computation needed to calculate signal to interference
ratios when allocating channel resources. For this model,
the time to save the state of an LP is approximately the
same as the coast forward time for the lighter event, i.e.
O/fJclight =1. In the experiments we measured the event
rate, Le. the number of committed events per second for
various combinations of the two state saving probabilities
p1 (light event) and P2 (heavy event). In each experiment
300,000 events were committed, and each experiment
was run three times.

Comparing the ESSS performance for this model with
the best performance for the other three sparse state sav­
ing approaches, we get the results in Table 3:

Table 3: Comparing Simulation Performance for
Mobile Communication Model

State saving model
Mean Efficiency Rollback Event rate

X [%] length [events/s)

Copy SS 1 88.38 116.38 9,464

Sparse SS 12 87.46 129.39 10,150

Adaptive SS 12.70 87.48 126.72 10,089

ESSS (PbP2)=(0.05, 0.15) 10.06 87.58 137.11 10,124

These results show that the ESSS model detects the
difference in event granularity and hence the best perfor­
mance for the ESSS model is for a lower mean state sav­
ing interval compared to the sparse and adaptive state
saving methods. The choice of parameters (pb P2) =

(0.05,0.15) indicates that the ESSS optimal perfonnance
is reached when the probability of saving state after light
events are lower than after heavy events. This is in accor­
dance with the analytical model. For this simulation
model the ESSS, sparse and adaptive state saving meth­
ods reach about the same peak event rate. This is some­
what contradictory to the results from the second set of
experiments with the synthetic model with high variance

660 Skold and Ronngren

in event granularity. The reason for this is the difference
in model geography. The synthetic, fully connected,
model has a larger fan-out than the one dimensional real
model which results in a higher number of rollbacks and
shorter rollback lengths for the synthetic model. This dif­
ference indicates that the ESSS model has a larger poten­
tial for models with many and short rollbacks. This can
be understood by considering the fact that most rollback
recoveries start with a coast forward phase. In the case of
ESSS there is a lower probability that the first event in a
coast forward phase is a heavy event when ESSS is used
compared to the other methods for sparse state saving.
Thus for a constant efficiency ESSS is favored by a
higher number of short rollbacks as compared to cases
with fewer and longer rollbacks.

6 CONCLUSIONS

In this paper we have introduced a novel approach for
sparse state saving in Time Warp synchronized discrete
event simulation, event sensitive state saving (ESSS).
This method is based on the observation that the time to
execute the coast forward phase in the simulation
progress cycle is dependent on the re-execution time of
the coast forwarded events. For many imponant types of
simulation models such as battle field simulations and
simulations of mobile communication systems there is a
significant difference in the coast forward cost for differ­
ent types of events. This has not been captured in previ­
ously proposed methods for sparse state saving. In
contrast, the ESSS state saving method uses information
on the coast forward cost for individual events to decide
when to save or checkpoint a state of logical processes.

In this paper we have presented an analytical analysis
of the potential benefits from using an event sensitive
approach. This analysis indicates that overhead due to
sparse state saving in some cases can be reduced by
nearly 50% when using the ESSS approach compared to
other methods presented in the literature. Results for syn­
thetic as well as realistic simulation models show that the
ESSS model is a promising approach for simulation mod­
els where event granularity or execution time has large
variance. ESSS is in particular favored by short rollbacks
which often occurs in real well behaved simulation mod­
els. Our experimental results show that the ESSS
approach could result in a more than 4% over all perfor­
mance improvement to other state saving methods.

The result from this work shows that an efficient state
saving method which takes more of the simulation mod­
elling details (such as event granularity) into consider­
ation is likely to improve state saving performance. We
plan to continue this work and implement adaptive ver­
sions of the proposed method for sparse state saving.

REFERENCES

H. Bauer, and C. Sporrer. 1993. Reducing Rollback
Overhead in Time Warp Based Distributed Simulation
with Optimized Incremental State Saving. In Proc. of
the 26th Annual Simulation Symposium, 12-20.

R. Butler, and E. Lusk. 1994. Monitors, messages, and
clusters: the p4 parallel programming system. Parallel
Conzputing: 20.

J. Fleischmann, and P. A. Wilsey. 1995. Comparative
Analysis of Periodic State Saving Techniques in Time
Warp Simulators. In Proc. of the 9th Workshop on Par­
allel and Distributed Simulation, 50-58.

R. M. Fujimoto. 1989. Time Warp on a Shared Memory
Multiprocessor. Transactions of the Society for Com­
puter Sinzulation, Vol. 6, No. 3:211-239.

R. M. Fujimoto. 1990. Parallel Discrete Event Simula­
tion. Comm. of the ACM, Vol. 33, No. 10:30-53.

D. R. Jefferson. 1985. Virtual Time. ACM Transactions
on Programming Languages and Systems, Vol. 7, No.
3:404-425.

Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D.
Lasowska. 1993. Selecting the Checkpoint Interval in
Time Warp Simulation. In Proc. of the 7th Workshop
on Parallel and Distributed Simulation, 3-10.

A. C. Palaniswamy, and P. A. Wilsey. 1993. An Analyti­
cal Comparison of Periodic Checkpointing and Incre­
mental State Saving. In Proc. of the 7th Workshop on
Parallel and Distributed Simulation, 127-134.

B. R. Preiss, W. M. Loucks, and I. D. MacIntyre. 1994.
Effects on the Checkpoint Interval on Time and Space
in Time Warp. ACM Transactions on Modeling and
Computer Sinzulation, Vol. 4, No. 3:223-253.

R. Ronngren, and R. Ayani. 1994. Adaptive Checkpoint­
ing in Time Warp. In Proc. of the 8th Workshop on
Parallel and Distributed Simulation, 110-117.

R. Ronngren, M. Liljenstam, J. Montagnat, and R. Ayani.
1996. A comparative study of state saving mechanisms
for Time Warp synchronized parallel discrete event
simulation. In Proc. of the 29th Annual Simulation
Symposium, 5-14.

AUTHOR BIOGRAPHIES

SVEN SKOLD is a Ph.D. student in the Department of
Teleinfonnatics at the Royal Institute of Technology,
Stockholm, Sweden. His research interests include effi­
cient simulation techniques and in particular parallel dis­
crete event simulation.

ROBERT RONNGREN is an associate professor in the
Department of Teleinfonnatics at the Royal Institute of
Technology, Stockholm, Sweden. His research interests
include sequential and parallel discrete event simulation.

