Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

A TESTBED FOR PARALLEL SIMULATION PERFORMANCE PREDICTION

Alois Ferscha
James Johnson

Institut fir Angewandte Informatik

Universitat Wien
Lenaugasse 2/8, A-1080 Vienna, AUSTRIA

ABSTRACT

The overwhelming complexity of influencing factors
determining the performance of parallel simulation
executions demands a performance oriented develop-
ment of logical process simulators. This paper presents
an incremental code development process that sup-
ports early performance predictions of Time Warp
protocols and several of its optimizations. A set of
tools, N-MAP, for performance prediction and visu-
alization has been developed, representing a testbed
for a detailed sensitivity analysis of the various Time
Warp execution parameters. As an example, the ef-
fects of various performance factors like the event
structure underlying the simulation task, the aver-
age LVT progression per simulation step, the com-
mitment rate, state saving overhead, etc. are demon-
strated. We show how the scenario management fea-
tures provided by the N-MAP tool can be efficiently
utilized to predict performance sensitivities. For the
particular example, the Time Warp protocol, though
highly involved, N-MAP was able to predict the per-
formance sensitivity that was measured from the full
implementation executing on the Meiko CS-2.

1 INTRODUCTION

A huge variety of Time Warp (TW) parallel simula-
tion (PS) protocols have been proposed in the liter-
ature, with a primary focus on correctness issues in
their presentation. Performance aspects of the pro-
tocols, due to an overwhelming interweaving of in-
fluencing factors, have mostly been studied on the
basis of abstractions (models) of the target execution
platform, the TW implementation and the simula-
tion problem. In most of the literature, performance
analysis is used to motivate the optimization of the
TW protocol with respect to one or more of these
concerns, or to assert the performance gain obtained
with optimizations. Specifically the question on the
relative qualities of TW protocols (in protocol opti-

637

mization studies) has often been raised, but general
rules of superiority cannot be formulated since perfor-
mance cannot be sufficiently characterized by models.

In the first category of TW performance analysis,
all of the three influence factors (target platform, TW
implementation, simulation problem) are implicitly
or explicitly abstracted into models, mostly stochas-
tic models. As an example, in the analysis by Gupta
et. al. (1991) event processing time is assumed to be
exponentially distributed, time stamps of messages
are Poisson distributed in virtual time, the destina-
tion logical process (LP) for each message is randomly
chosen and equally likely for every LP, etc. Perfor-
mance investigations based on analytical models often
fail to achieve a satisfactory accuracy due to unrealis-
tic assumptions in the modeling process itself, as well
as simplifying assumptions that make the evaluation
of those models tractable (e.g. symmetry, homogene-
ity, M — M property). Since performance evaluation
based on analytical models is prone to modeling er-
rors, only relative trust can be placed in the results
obtained (See Gupta et al. 1991 and Akyildiz et al.
1993 for exceptions).

As an improvement, performance investigations
have been conducted upon full TW implementations,
but operating under synthetic workloads, thus defin-
ing a second category of TW performance analysis.
In this category, the analysis is based on a real sys-
tem as far as the hardware and TW software is con-
cerned, but the simulation task to be executed in this
environment is still an abstraction (model) of the real
simulation task - leaving just a single source of po-
tential performance analysis bias due to modeling er-
rors. The most prominent synthetic workload model
for TW is PHOLD (Fujimoto 1990) which has been
widely used in the community to demonstrate the per-
formance sensitivity of TW implementations to the
(event) structure of the simulation task. Another ap-
proach where a mixture of a real simulation task and
a model of the execution environment 1s studied is
trace driven simulation. Here, the behavior of a hy-

638

pothetical environment is studied under the real load.
Finally, in the third analysis category, even full
TW implementations with real workload sets often
prohibit performance comparisons if different imple-
mentation strategies were followed or different target
platforms were selected for the execution. Here, per-
formance analysis potentially suffers from an “incom-
parability” dilemma addressed in (Ferscha and Chiola
1995). There we have developed a performance com-
parable implementation design, which isolates hard-
ware from implementation and TW protocol related
performance influences. A maximum of source code
reuse gained from a conditional compilation imple-
mentation technique allows for a further reduction of
incomparability to an acceptable level.

1.1 The need for performance predicition

In an existential discussion within the parallel and
distributed simulation community (Fujimoto 1993),
the availability of performance prediction methods for
PS protocols has been pointed out as being critical
for the future success and general acceptance of PS
methods in practice (Lin 1993). For example, it is
important for a simulationist to be able to evaluate
the suitability of certain PS protocols for a specific
simulation task before substantial efforts are invested
in developing sophisticated PS codes. Another aspect
is the early evaluation of the anticipated performance
of a new PS protocol being developed.

None of the three performance analysis categories
above appears adequate for these demands. Mod-
els, although able to give fast predictions, are too
vague to be meaningfully applied. Analysis that con-
siders full implementations, although accurate, Jjust
brings to light the design flaws committed earlier,
which are irrevocable or very hard to repair at the
time when major part of the development work is al-
ready done. In this paper we present a performance
prediction testbed for Time Warp, N-MAP, designed
and implemented to support performance engineering
endeavors from the early design phase of TW proto-
cols in order to avoid late and costly re-engineering.
The performance engineering activities in a super-
visory role escort the development of TW, ranging
from performance prediction in the early development
stages, to measurements of performance metrics of
the preliminary or final program in the testing, de-
bugging and tuning phase. Implementing TW incre-
mentally in N-MAP, i.e. starting from a code skeleton
and providing more and more detailed program code
towards the full implementation, allows for very early
performance based design decisions, systematic in-
vestigations of performance sensitivities using an au-
tomated scenario manager, and a maximum of code

Ferscha and Johnson

reuse when trying different TW optimizations using
an automated version manager. In the next chapter
we briefly recall TW performance factors. In Sec-
tion 3 we develop a TW skeleton in N-MAP, upon
which - as a demonstration - we investigate the per-
formance effects of global virtual time (GVT) com-
putation, throttling the optimism via the available
memory, and the choice of the size of the checkpoint-
ing interval. We have executed the performance sce-
narios on the Meiko CS-2, and present the results in
Section 4.

2 TW PERFORMANCE FACTORS

Collected arguments on the TW performance charac-
teristics and influences have been reported in (Ferscha
1996). (See also Ronngren et al. (1993) for perfor-
mance issues related to the implementation of Time
Warp and some of its protocol optimizations, or Das
et al. (1994) for a TW implementation with a minimal
amount of event processing overhead.) Here we enlist
some of them, outlining the overwhelming complexity
of the performance issue:

¢ Simulation Task The structure of events un-
derlying the simulation task exhibit properties
such as persistency, concurrency, mutual exclu-
sion, synchronization, causal connectedness, etc.
which determine the potential TW performance.
TW optimizations often utilize these properties.

e Partitioning A paramount TW performance
factor is how the global simulation task is de-
composed into LPs, and how these are assigned
to processors.

¢ Target Hardware Raw Performance: pro-
cessor speed, communication latency, memory
hierarchies/size, cache levels, etc.

¢ Communication/Synchronization Model
The target hardware together with several lay-
ers of system software influence performance via
the routing strategy, policies for multicasting,
scattering, buffering, etc.

¢ Implementation related Optimizations
“Tricky” implementations of e.g. memory allo-
cation at run time, active messages, interrupts,
data referencing etc. can considerably acceler-
ate TW simulations.

¢ Protocol related Optimizations e.g. aggres-
sive/lazy cancellation, lazy re-evaluation, roll-
back filtering, infrequent /incremental state sav-
ing, cancelback, artificial rollback, time win-
dows/buckets, GVT calculation, fossil collec-
tion and many others.

)

A Testbed for Parallel Simulation Performance Prediction 639

e Partitioning related Optimizations like the
balancement of inter- and intra-LP load, the
event-per-message ratio, rollback prevention by
blocking, etc. have severe performance impact.
Usually, information necessary for partitioning
decisions is not available statically, claiming for
methods optimizing the execution performance
at runtime.

¢ Simulation Engine Yet another source of po-
tential accelerations is the organization and im-
plementation of the event list (binary heaps,
splay trees, calendar queues, skip lists, etc.),
other data structure manipulations (input queue,
output queue, state stack, etc.), time progres-
sion, random number generation, etc.

3 IMPLEMENTING TW IN N-MAP

The N-MAP toolset aims at providing the software
developer with an integrated environment for the de-
velopment of performance efficient parallel programs.
Starting from a rough description of the program’s al-
gorithmic structure in the form of skeletal code, the
program is iteratively and incrementally refined by
providing a more and more detailed description of the
program’s component behavior and execution time
requirements in each successive development step. Un-
der the constant supervision of performance predic-
tion tools, the thus emerging program source code
is tuned and modified in the direction of the most
promising implementation strategy ultimately yield-
ing a fully functional, performance efficient parallel
program.

In the early development phases of TW implemen-
tations, the software developer is confronted with the
difficult problem of choosing the TW implementation
strategy which is most efficient and suited to the spe-
cific simulation task at hand from an huge wealth of
possible implementation strategies which, each in its
turn, offer a wide spectrum of possible performance
optimizations. As a testbed for the development of
parallel simulation protocols, N-MAP provides tools
for performance prediction which allow the developer
to determine the influence of performance critical fac-
tors and detect sources of performance loss. Fur-
thermore, a meaningful TW performance analysis de-
mands an in-depth investigation of all performance
influencing factors and their interrelationship. For
this, the N-MAP scenario management comes into
play (see Figure 1).

At any point in program development, any vari-
able used in the program source may be declared as a
mutable and is subsequently handled by the N-MAP
scenario manager. Each such mutable may then be

assigned a unique value, or a selection of values to
be systematically altered in different scenarios by the
scenario editor. N-MAP then automatically creates
a suite of simulation/execution runs by taking the
Cartesian product over all mutable values in which
each point in the resulting space represents a specific
setting of mutable values.

For gathering performance data, N-MAP defines
a standard set of responses which represent common
performance metrics (e.g. execution time; busy, idle
and communication time; packets/bytes sent /received
etc.) which may be chosen for inclusion in the sce-
nario. In addition to the standard responses, N-MAP
also allows the definition of new, application specific
responses.

Mutables Cases Responses
Mituy) by} = N-MAP w _N-MA.P R4y P2
Mz (M) By} = Scenario < mﬂ Slmul.:mon >Ry (P21 Py)

Manager T / Engine
Mg (Kap Hoae) =9 > Rea(Pm1: Anze---)

Figure 1: N-MAP Scenario Management

Contrary to other modeling techniques which, as
a final result of modeling efforts, yield a model of
program performance, the N-MAP methodology pro-
duces operable source code which may be translated
into native C code for a variety of parallel platforms
as well as for simulated execution on the local unipro-
cessor by means of N-MAP’s built-in translation ca-
pabilities.

In the following, a general purpose TW simula-
tor for timed Petri Nets is developed in the N-MAP
environment. The principle features of the N-MAP
toolset and methodology are demonstrated.

3.1 The Time Warp Task Structure

In the N-MAP environment, program behavior 1s de-
scribed in the form of a task structure specification
(TSS) which defines the sequential stream of task and
communication calls to be performed on each proces-
sor. The syntax of the TSS is basically that of C with
extensions for representing parallelism. The TSS for
the TW implementation under investigation i1s shown
in Figure 2.

The code segment labeled LP defines MAXP logical
processors 1p(0) through 1p(MAXP-1) operating in
an SPMD mode of execution. The for loop which en-
capsulates the whole of the TW source code serves to
gather performance data over the number of simula-
tion runs specified in the mutable RUNS. Each run be-
gins with the initialization of the simulator and model
(i.e. Petrl net) in the code segment INIT.

During initialization the net description file (spee-
ified in the mutable NETFILE) is read and partitioned

640 Ferscha and Johnson

process lp(i) where (1=0:MAXP-1;} LP

/* Run several simulations one after the other ./
tor (run=0; run<RUNS; run+s+)
<€

/* Initialize simulator and model */ INIT
initialstate(NETPILE, EVENT_POOL);

/* Insert initial internal events into EVL ./
while(ie=next_ie()) chronological_insert(ie,EVL);

/* Log this state on state stack ./
log_new_state();

/* Main simulation loop */ LOOP

while (GVT < ENDTIME)
¢
7% Read all messages from the input buffer */ INPUT
while (msnext_IB())
«
/* Btraggler message? .
1t (ts_less_than_LVT(m))
(

/* Invoke rollback? v’
dualsdual_exists(m,IQ);
if ((positive(m) && Idual) || (negative(m) && dual))

«
/* Rollback to earliest state before timestamp */
LVTareatore_earliest_state_before(ts(m));
/* Generate antimsgs resulting from rollback ./
generate_antimessages(LVT);
/* Insert antimessages into 0Q .
while(ee=next_se()) chronological insert(ee,0Q);
)
}
/* Insert message into IQ or annihilate ./
if (!remove_dual(m,IQ)) chronological_insert(m,IQ);
)

/* Was a GVT packet received? */ GVT/FOSS
if (gvt_packet_received)
«
advance _GVT(); /* Calculate GVT estimate ./
/* Perform emergency fossil collection if memory .
/* exhausted and checkpointing is used ./

if (percent_events_used()>MEMORY_LIMIT&&CHECKP_INTERVAL)
incr_fossil collection();

else
fossil _collection():

/* Loop back if insufficient memory */ GUARD
if (percent_events_used()>MEMORY_LIMIT) continue;

/* Get the next event to process from EVL or IQ .

/* If no events to process loop back te INPUT .

if (le = get_first EVL_or _IQ()) continue;

7* Set LVT to timestamp and event and simulate +/ SIM
LVT = ta(e);

simulate_occurrence_of(e);

/* Insert the internal events generated into the EVL */

while(iesnext_ie()) chronological_insert(ie,EVL);

/* Remove pre-empted internal event from the EVL .

while(ie=next_preampted_ie()) remove_event(ie, EVL);

/* Insert external events into output queus only if .

/* &ual does not exist (lazy cancellation) .

while (ee=next_ee())
1f (1dual_update(ee,0Q)) chronological_insert(ee,0Q):

/* Log this state incrementally onto the stack */ LOG
/% if checkpointing used and checkpoint not yet reached */
if (icheckpoint &«& CHECKP_INTERVAL) log_incr_state():

/* Log the complete state information onto the stack .
/* if checkpoint hed or nting not used ./
if (checkpoint || !CHECKP_INTERVAL) log_new_stata();

/* Pill the output buffer */ OUTPUT

£411_0B(LVT);
/* Send out messages in the output buffer 4
send_out_contents(0B);

)

/* Pree up all memory used during simulation */ INIT
clean_up();

)

/* Print out performance data ./
print_results();
}

Figure 2: The Task Structure Specification for TW

among the processors and a pool of free events al-
located on each processor. The number of available
events (specified in the mutable EVENT_POOL) remains
constant during simulation thus providing a means for
limiting optimism through the limitation of available
memory. Model initialization produces a list of initial
internal events which are inserted into the event list
(EVL) and the resulting initial state is subsequently
logged on the state stack. The main simulation loop is
then executed until GVT reaches the value contained
in the mutable ENDTIME.

In the INPUT segment, incoming messages are read
from the input buffer (IB) and their time stamps are
checked against the current LVT. In the case of a

causality violation, the rollback mechanism is invoked
to restore the first consistent state prior to the time
stamp of the straggler message and antimessages gen-
erated in the course of the rollback are inserted into
the output queue. Finally, each incoming message is
inserted into the input queue (IQ) or annihilated.

If a GVT calculation packet has been received
during the INPUT phase, the GVT/FOSS code segment
is executed. Using the information contained in the
packet, the LP calculates a new GVT estimate, up-
dates its own information in the GVT packet and
forwards it to its successor (the GVT algorithm im-
plemented 1s described in detail below). Based on the
new GVT estimate, fossil collection is then performed
in the state stack.

The following segment GUARD checks if sufficient
memory (specified in the mutable MEMORY_LIMIT) is
available to perform the local simulation of the next
event. If not, the simulator loops back to INPUT to
await the arrival of further messages or GVT calcula-
tion packets until sufficient memory is freed through
the occurrence of a rollback (arrival of a straggler
message) or fossil collection (arrival of a GVT calcula-
tion packet). In the case that no events are scheduled
for local simulation in the IQ or EVL (i.e. the par-
tition has become depleted of tokens), the simulator
also loops back to the INPUT segment.

The occurrence of the next scheduled local event
1s simulated in the SIM segment and LVT is set to the
occurrence time of event in the model. The model re-
turns three lists of events to the simulator: 1) a list of
the new internal events (transition firings) resulting
from the occurrence of the event in the model which
are to be scheduled for future simulation, 2) a list of
previously scheduled events (transition firings) which
have now been pre-empted by the occurrence of the
event and 3) a list of new external events (token ar-
rivals in other partitions) which must be sent to the
respective LPs. The state of the simulator is updated
to reflect the occurrence of the event by inserting the
internal events into the EVL and removing the pre-
empted events. External events are inserted into the
OQ or alternately annihilated if a dual message is
present in the OQ (lazy cancellation).

The current state of the simulation is saved in the
LOG segment by copying the EVL to the state stack as
well as the state variables used by the model. If check-
pointing is enabled (mutable CHECKP_INTERVAL set to
a value > 0), state information is saved incrementally
on the stack between checkpoints and the complete
state information only every CHECKP_INTERVAL sim-
ulation steps.

Finally, messages stored in the OQ having time
stamps less or equal to the current LVT are moved
to the output buffer (OB) and sent to the respective

A Testbed for Parallel Simulation Performance Prediction 641

=/l GVT_PACKETS <int> 1
CHECKP_INTERV <int> 0
MEMORY LIMIT <float> 0.90

41 *MAXP <int> 32

48 ENDTIME <float> 1000.0

4l EVENT_POOL <int> 100000
NETFILE <string> net.net
RUNS <int> 20
SEED <int> time(0)

Figure 3: N-MAP Mutables List

LPs in the OUTPUT code segment and the simulator
loops back to the INPUT phase. The current simula-
tion run terminates when GVT reaches ENDTIME and
all memory used by the simulation is freed before the
next run begins. Upon program termination, the per-
formance data gathered over all runs is averaged and
the results printed.

3.2 Mutables

The mutables used in the TSS are shown in the Muta-
bles List (Figure 3). Here, mutables may be assigned
a unique value (left list) or alternately, a subset of mu-
tables selected for variation in a scenario (right list).
The following list summarizes the mutables defined
in the TSS:

e MAXP: number of processors.
e ENDTIME: GVT at which simulation terminates.

e EVENT_POOL: number of events allocated on each
processor during initialization.

e NETFILE: name bf the Petri net description file.
e RUNS: number of simulation runs to execute.

o SEED: random number generator initialization.
e GVT_PACKETS: number of GVT packets.

o CHECKP_INTERVAL: steps between checkpoints.

e MEMORY_LIMIT: amount of memory available.

3.3 Execution Time Requirements

A schematic representation of the algorithmic struc-
ture and execution time requirements of the TW im-
plementation is shown in Figure 4. The tasks defined
in the TSS are grouped according according to their
requirement types and the primary run-time factors
influencing their execution times.

The simulation of the occurrence of an event in the
model as well as GVT calculation are assumed to have
fairly constant execution times. The group of tasks

[InpUT |

¥
Probe input buffer Insert event into 1Q Insen anitmessages
for messsages or hil E into OQ ~
Vo

No

N

B Restore carliest state
s W) before imesta
GVT packet -
recevied? Yes Calculate new GVT Fossil
estimate and forward collection
No
1 9 No
E fossil collection

No
Sufficient memory? GUARD

Yes
Sufficient Memory?
GVT/FOSS

Yes
SIM <> Condition
t

Eventin IQ or EVL 10 process?

Requirements

Constant

Remain fairly constant
in each invocation
Logarithmic
Proportional to logs N
(N 15 current list 1ehgth)

Linear

Insert intemal events
into EVL

Remove pre-empted

events from EVL
With respect to number

a Insert external events
into OQ
of events processed
Variable
Lo Dependent largely on
run-time factors
Lo plete EVL
E amfslale variables
Dependent largely on
OUTPUT C chapr:clcrisuusgnfy
communication subsystem

External
events?

Dependent on current
E number of events processed
during task execution

Checkpoint
reached?

o
Fill output buffer
with events from OQ
| Send out contents
! of output buffer

Dependent largely on
M charactenistics of
simulation model

i
&

Figure 4: Algorithmic Structure and Execution Re-
quirements of the Time Warp Simulation Protocol

involving list operations can be assumed to be loga-
rithmic in their requirements since sorted lists have
been implemented as “skip lists” (Pugh 1990) which
have optimal element insertion/deletion costs of the
order O(logsN), N being the current list length. Fur-
thermore, skip lists have low overall execution times.

A further group of tasks are characterized by var:-
able execution requirements since their execution times
are dependent largely on run-time factors, e.g. tasks
which involve interaction with the communication sys-
tem or state restoration which is dependent on the
“severity” of the rollback. The last group of tasks
which deal with state saving and fossil collection can
be considered to have linear requirements with re-
spect to the number of events processed in the invo-
cation of the task. These linear requirements stem
primarily from the fact that during state saving each
individual event to be saved must be duplicated and
placed on the state stack. Similarly during fossil col-
lection, each event must be freed individually and re-
turned to the pool of free events.

Judging from the structure of the TW implemen-
tation under investigation, it appears as if optimiza-
tion efforts should be concentrated primarily on re-
ducing state saving/fossil collection costs as well as
lowering the probability and severity of rollbacks.

642 Ferscha and Johnson

3.4 Limiting Available Memory

As a mechanism to limit the optimism in TW, the
potential performance gain of memory based throt-
tling (Das and Fujimoto 1994) is investigated, here in
the context of a distributed memory implementation
of TW. In this approach, whenever an event occur-
rence is to be simulated, an artificial throttle (mu-
table MEMORY_LIMIT) will delay the execution for a
constant amount of CPU time. For example, a value
of 0.7 for MEMORY_LIMIT will cause the effect of throt-
tle to set in when 70% of available memory has been
used. Thus, the willingness of the simulator to exe-
cute the next event occurrence is related to the degree
of memory exhaustion.

3.5 Checkpointing Interval

The checkpointing method implemented here saves a
complete copy of the event list and state variables ev-
ery CHECKP_INTERV simulation steps. Between check-
points, only those events which have been added to or
removed from the event list and state variables which
have changed as a result of the simulation of an event
are stored on the state stack in a form suitable to
allow for subsequent restoration of any intermediate
state in the case of a rollback.

The cost and memory requirements for incremen-
tal state saving in the case of Petri net simulation
(Chiola and Ferscha 1993) is much lower than for
complete state saving since each simulation step (tran-
sition firing) alters only a small portion of the event
list and state variables. Especially when a large num-
ber of transitions in the partition have been scheduled
for firing in the event list (resulting most likely from
a large token population), incremental state saving
costs can be considerably lower. For very large check-
pointing intervals, however, the coast forward costs
incurred during rollbacks may serve to mitigate the
positive effect of incremental state saving.

3.6 GVT Calculation

LPO LP1 LP2 LP3 LPN-1 GVT

min LVT 16754 15732|14.56215.921| --- {16054 [15732

7

from LP 1

from LP 2

from LP 3

Increment

Message Receipt Confirmations

from LP N-1 15 - 12 s

Figure 5: Structure of a GVT Packet

The GVT calculation method implemented uses one
or more GVT packets which circulate on complete,

closed pre-defined paths among the processors. Fig-
ure 5 shows the structure of a GVT packet. To ac-
count for unprocessed “in transit” messages, outgo-
ing messages are stamped with a sequence number for
each output channel (Lin and Lazowska 1990). Upon
receipt of a GVT packet, each processor posts mes-
sage receipt confirmations in the GVT packet on a per
channel basis by writing the sequence number of the
last packet received on that channel which does not
break the complete series of sequence numbers. Each
processor can then calculate the set of unconfirmed
messages by inspecting the message receipt confirma-
tions posted in the GVT packet by the other proces-
sors and then calculate the minimum of its present
LVT and the time stamps of all unconfirmed mes-
sages (minLVT) and post this in its respective column
in the GVT packet. A GVT estimate is calculated by
taking the minimum of all minLVTsin the GVT packet
before forwarding the GVT packet to its successor on
the path.

The increment field of the GVT packet contains
an integer which is relatively prime to the total num-
ber of processors, MAXP, and which each processor
adds to its own processor number (modulo MAXP) to
determine its successor processor in the path. Each
GVT packet in the network has a different increment
so that no two GVT packets circulate along the same
paths. Thus, in a network of 8 processors, the GVT
packet with increment 1 travels on the path 1-2-3-
4-5-6-7-0-1 whereas the packet with increment 5 is
forwarded along the path 5-2-7-4-1-6-3-0-5.

In a network of MAXP processors and using one
GVT packet, each processor must wait MAXP-1 GVT
calculation steps until it again receives the GVT cal-
culation packet. By allowing 2 GVT packets to circu-
late in the network, the latency between the receipt of
GVT packets is reduced and the frequency of GVT
progression is increased on each processor thus al-
lowing for more frequent fossil collections. For large
processor counts or for simulations with large mem-
ory requirements, a more frequent GVT calculation
(i.e. more GVT packets) may be advantageous de-
spite increased communication costs. In other cases,
however, a single GVT packet may provide for best
performance.

4 SCENARIO EXECUTION ON THE CS-2

Figure 6 shows N-MAP’s Scenario Editor. The mu-
tables which have been chosen for variation in the sce-
nario (GVT_PACKETS, CHECKP_INTERV, MEMORY_LIMIT)
are displayed in the left listbox of the window. Each
mutable is assigned a list of values which it is to as-
sume in the scenario in a separate dialog window.
The values may be given as a simple white space sep-

o

1

S

A Testbed for Parallel Simulation Performance Prediction

.0 (Not simulated) =
+1 (Not simulated)
©2 (Not simulated)
<3 (Not simulated)
.4 (Not simulated)
<0 (Not simulated)

*RSP_BUSY 0.0
2RSP_COMH 0.0
*RSP_EXEC_TOTAL 0.0
[“RSP_IDLE 0.0

(ot simulated)

.0 [Not simulated)
-1 (Not simulated)

Figure 6: N-MAP Scenario Editor

arated list of values or alternately as a range of values
by specifying an upper and lower bound and an incre-
ment which may be additive or multiplicative. The
following values have been chosen for investigation:

Mutable Values

GVT_PACKETS 124

CHECKP_INTERV | 0 100 200 300 400 500
MEMORY_LIMIT 0.1 0.30.50.70.9

Figure 7: Scenario Variation of Mutable Values

The Petri net chosen as the simulation task (Fig-
ure 8) consists of 64 “regions” linked together in a
ring fashion. Each region R; can be considered to
emulate the behavior of a more complex Petri net
partition containing one input place P;, one output
transition 7; and a subnet ¥;. Both T; and ¥; are
infinite servers with exponentially distributed service
times Aezt = 0.1 and A;n: = 1.0 respectively. Initially,
each place P; contains n = 8 tokens.

The results of scenario execution are shown in Fig-
ure 9. The best results are obtained for the mutables
setting GVT_PACKETS=1, CHECKP_INTERVAL=100 and
MEMORY_LIMIT=0.5.

The use of checkpointing (CHECKP_INTERVAL>O)
is the most important factor contributing to perfor-
mance improvement. The resimulation cost incurred
during rollback or are obviously insignificant com-
pared to the state saving and fossil collection costs

S

Figure 8: A Petri Net Simulation Task Consisting of
64 “Regions” Mapped onto 32 Processors

..... ! ired L2 St : Region R, '

643

Execution Time (sec)

a) 1 GVT Packet

Figure 9: Results of Scenario Execution on CS-2

avoided through the use of checkpointing. The ac-
tual checkpointing interval used (100-500) appears
to have little effect on performance. Point investi-
gations for the mutable settings GVT_PACKETS = 1,
MEMORY_LIMIT = 0.5 with CHECKP_INTERVAL = 1000,
2000, 5000 showed significant performance loss only
after an interval of 2000.

In most cases, performance drops only slightly by
using more GVT_PACKETS although an increased num-
ber of packets, providing for a more frequent GVT
calculation, does serve to improve performance in cases
of high memory requirements (CHECKP_INTERVAL=0)
and where memory is very limited (MEMORY_LIMIT <
0.5). For this particular simulation task partitioned
and mapped onto 32 processors, however, the GVT
calculation frequency achieved with one GVT packet
appears quite sufficient.

5 CONCLUSIONS

The availability of performance prediction methods
and tools for parallel simulation protocols is without

644 Ferscha and Johnson

any doubt critical for the future success and general
acceptance of parallel simulation in practice. For a
simulationist it is of utmost importance, to to be
able to evaluate the suitability of a certain parallel
simulation protocol for a specific simulation task, for
a certain multiprocessor system and a certain oper-
ational environment before substantial programming
efforts are invested.

A performance prediction methodology and set of
tools, the N-MAP testbed, has been developed, eas-
ing performance engineering endeavors of PS proto-
cols from the early design phase in order to avoid late
and costly re-engineering. As a testbed, N-MAP in
a fully graphical user interface offers very early per-
formance based implementation design decisions, sys-
tematic investigations of performance sensitivities us-
ing an automated scenario manager, and a maximum
of code reuse when trying different TW optimization
using an automated version manager. N-MAP is pub-
licly available.

To demonstrate some of the features of the testbed,
we have investigated the performance effects of GVT
computation, of throttling the optimism via the avail-
able memory, and of the choice of the size of the
checkpointing interval in a distributed memory im-
plementation of Time Warp. Performance scenarios
were defined and executed on the Meiko CS-2.

ACKNOWLEDGEMENTS

This work was partially supported by the Qesterre-
ichische Nationalbank under grant No. 5069, and the
Human Capital and Mobility program of the EU un-
der grant CHRX-CT94-0452 (MATCH).

REFERENCES

Akyildiz, I. F., L. Chen, R. Das, R. M. Fujimoto, and
R. F. Serfozo. 1993. The effect of memory capac-
ity on Time Warp performance. Journal of Par-
allel and Distributed Computing, 18(4):411-422.

Chiola, G., and A. Ferscha. 1993. Distributed sim-
ulation of timed Petri nets: Exploiting the net
structure to obtain efficiency. In Proceedings of
the 14" Int. Conf on Application and Theory
of Petri Nets 1993, ed. M. Ajmone Marsan, 146
165. Lecture Notes in Computer Science, Springer
Verlag, Berlin.

Das, S., R. Fujimoto, K. Panesar, D. Allison, and
M. Hybinette. 1994. GTW: A Time Warp system
for shared memory multiprocessors. In Proceed-
ings of the 1994 Winter Simulation Conference,
ed. J. D. Tew and S. Manivannan, 1332-1339.

Das, S., and R. M. Fujimoto. 1994. An adaptive
memory management protocol for Time Warp par-

allel simulation. In Proc. of the 1994 ACM Sig-
metrics Conf. on Measurement and Modeling of
Computer Systems, 201-210. ACM.

Ferscha, A. 1996. Parallel and distributed simulation
of discrete event systems. In Parallel and Dis-
tributed Computing Handbook, ed. A.Y. Zomaya,
1003-1041. McGraw-Hill.

Ferscha, A. and G. Chiola. 1995. Adaptive dis-
tributed simulation of Petri net models. In Pro-
ceedings of 1995 Summer Computer Simulation
Conference (SCSC '95).

Fujimoto, R. M. 1990. Performance of Time Warp
under sythetic workloads. In Proceedings of the
SCS Multiconference on Distributed Simulation,
ed. D. Nicol, 23-28.

Fujimoto, R. M. 1993. Parallel discrete event simu-
lation: Will the field survive? ORSA Journal of
Computing, 5(3):218-230.

Gupta, A., I. Akyildiz, and R. Fujimoto. 1991. Per-
formance analysis of Time Warp with multiple
homogeneous processors. [EEE Transactions on
Software Engineering, 17(10):1013-1027.

Lin, Y-B. 1993. Will parallel simulation research sur-
vive? ORSA Journal of Computing, 5(3):236-238.

Lin, Y-B. and Lazowska, E. 1990. Determining the
global virtual time in a distributed simulation. In
1990 International Conference on Parallel Pro-
cessing, (111)201-209.

Pugh, W. 1990. Skip lists: A probabilistic alternative
to balanced trees. Communications of the ACM,
33(6):668-677.

Ronngren, R., R. Ayani, R. M. Fujimoto, and S. R.
Das. 1993. Efficient implementation of event sets
in Time Warp. In Proceedings of the " Work-
shop on Parallel and Distributed Simulation, ed.
R. Bagrodia and D. Jefferson, 101-108. IEEE
Computer Society Press, Alamitos, Calfornia.

AUTHOR BIOGRAPHIES

ALOIS FERSCHA is an Associate Professor at the
Department of Applied Computer Science and Infor-
mation Systems at the University of Vienna, Aus-
tria. His current research interests include perfor-
mance modeling and prediction, computer aided per-
formance engineering of parallel software, distributed
simulation and neural networks.

JAMES JOHNSON has been a Research Assistant
the Department of Applied Computer Science and In-
formation Systems at the University of Vienna since
1994. His research interests are in tools for computer
system performance analysis.

