Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

A PERFORMANCE ANALYSIS MODEL FOR DISTRIBUTED SIMULATIONS

David B. Cavitt
C. Michael Overstreet
Kurt J. Maly

Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529-0162. U.S.A.

ABSTRACT

Distributed simulation has proved to be a cost effective
technique for studying and understanding complex real-
world systems. Many distributed simulations need to
incorporate hundreds or even thousands of processors,
across both local and wide area networks. As the size
and complexity of distributed simulations increase so do
the demands on the hardware and software resources
that provide simulation services, causing performance
bottlenecks that limit the effectiveness of distributed
simulation. Different abstractions of performance are
needed depending on who is analyzing the distributed
simulation and for what reason. This paper proposes a
framework for identifying the factors affecting
performance and provides a technique for associating
the performance factors with high-level system metrics
that describe the behavior of the physical and logical
resources and services used in the design and
implementation of distributed simulations. Dynamic and
static analysis of the performance information provides
feedback on the execution of the simulation and can
provide meaningful information as a guide in making
decisions about the configuration and control of the
available hardware and software resources for
distributed simulation exercises.

1 INTRODUCTION

Distributed simulation is an effective technique for
systems studies in research, acquisition, and training
environments. For many applications, distributed
simulations consist of using large numbers of
workstations integrated into local-area and wide-area
networks. To improve the benefit of distributing a
simulation’s computations and run-time environment it is

629

necessary to understand the simulation’s performance
characteristics in the context of the distributed
environment. The concept of distributed simulation
performance is multifaceted and not easily characterized.
Concurrent execution of simulation models and
replicated resources and services are based on abstract
models of computation, and performance
characterizations of this system can be difficult to
understand. The need for greater realism results in
demand for resources that often exceeds the nominal
capacity (both spatially and temporally) of the
workstations currently used as simulation engines. When
assessing distributed simulation performance, the goal of
simulation speedup dominates most of the literature
(Fujimoto 1990, Carothers and Fujimoto 1994, Falsafi
and Wood 1994). Number of entities per workstation
(where an entity is defined as some simulated real-world
object) is also used as the singular metric of performance
in Vrablik and Richardson (1994) and the ModSAF 1.4
Reverse Engineering Report (1995). Speedup and entities
per workstation however are not sufficient for a full
characterization of distributed simulation performance.
This is especially true when distributed simulation is
used in training and other man-in-loop environments.
Performance information relates not just to the speed of
computation, but to the efficiency and effectiveness of
the simulation in utilizing the many shared resources and
services within the distributed environment. Performance
information characterizing concurrency, scaling,
replication, and coordination can help characterize the
simulation’s ability to meet the many goals of the
simulation study.

Further complicating the notion of performance, the
utility of information depends on the needs of the
intended audience. Different phases of the simulation
life-cycle require people in different roles, each requiring

630 Cavitt. Overstreet, and Maly

different kinds of information relating performance with
simulation goals. The roles include that of model
developers and simulation programmers, configuration
and experimentation planners, and system analysts or
program managers. Performance information gathered
and used by these people during the various phases of the
simulation life cycle differentiates between the
distributed simulation’s different physical and logical
components (i.e., hardware, O/S, application, models,
experimentation). A systems analyst or project manager
will generally be interested in high-level performance
information on the simulation’s capabilities, utilizations,
and bottlenecks as they relate to the simulation study’s
goals. A model developer or programmer can use some
of the same high-level information, but will most likely
need additional measured data to derive lower-level
information. Configuration and experimentation planners
also need high-level information that allows them to
assess the performance of the simulation. With the
recognition that the distributed environment imposes
certain constraints on the simulation’s processing
requirements, configuration and experimentation
planners must have both low-level and high-level
performance information that allows them to understand
the affects of computer, network, and other architectural
components.

Typical hardware performance information in
distributed simulations, like CPU and network
utilization, are easy to identify and measure using
traditional tools. Obtaining performance information
specific and meaningful to each of the life-cycle roles
requires alternative methods, deriving the information
from the composition of data characterizing the local run-
time performance of individual services and resources,
and global data on the structure and performance of the
entire distributed simulation environment. The
perception of both local detail and global structure
provides both coarse and fine-grained views of
distributed simulation performance. The performance
information is represented at a level of detail that is
sufficient for both the design and development, and the
configuration and execution of distributed simulations.

Traditionally, most performance measurement and
analysis methods of distributed simulations have been
application specific. The facilities for measuring and
analyzing the performance are generally tightly-coupled
to the structure of the simulation and are intrusive during
run-time execution, adversely impacting simulation
performance measurements. System metrics are typically
based on a set of criteria that indicate achievement or not
of a particular performance goal, but do not articulate the
reasons for the observed performance and behavior.
Speedup or the number of simulated entities per
workstation are examples of such metrics. The number of

components that make up a distributed simulation and the
complexity of interaction among the components make
identifying all the performance factors a difficult task. A
well-defined performance model establishes a
relationship among these factors and the constructs and
abstractions used in the simulation’s design and
implementation. The fundamental resource and service
components of simulations, model characteristics, and
distributed systems, provide a basis for identifying the
performance model abstraction. The level the
performance information is presented at is determined by
the role and intended use of the information. The goal is
to provide performance information to different decision
makers - in terms of choices available to that individual -
which could for example improve performance or
indicate potentials for additional model actions. The
intended use of the performance information defines
what metrics are necessary to develop an understanding
of the simulation’s performance.

This paper discusses the preliminary concept and
design of a distributed simulation performance model.
The model describes the framework we are using to
guide the process of identifying metrics that provide a
specification of distributed simulation performance. The
key components of the performance analysis model are
still under development. An initial implementation of the
model has provided data for evaluating the processing
overhead of the performance measurements and verified
the utility of aggregating and presenting meaningful
performance information to decision makers. Section 2
defines the performance model abstraction and the
semantics of the performance information as it relates to
the physical and logical components of distributed
simulation. Section 3 discusses the use of the
performance model, the presentation of performance
information, and gives examples of its use with ModSAF,
a distributed wargaming simulation built by Loral
Advanced Distributed Simulation and used for military
training and doctrine development. Section 4 summarizes
the proposed model.

2 PERFORMANCE ANALYSIS MODEL

Performance information typically has both space and
time dimensions and can be considered the specification
of the simulation’s execution. To specify the execution
we must describe where and when in the distributed
simulation certain behaviors exist, which correlates with
the space and time dimensions. The performance model
represents the space dimension by using three sets of
logical components that are a part of distributed
simulations; distributed resources, simulation services,
and simulation model characteristics. Distributed
resources are considered objects or entities that utilize

A Performance Analysis Model for Distributed Simulations 631

some key characteristics of distributed systems (such as
concurrency). Simulation services are those logical
components used in the architecture of present day
discrete event simulations (such as event schedulers).
The model characteristics are those components used to
define and represent a simulation model (such as the
entity attributes). Each set of components makes up a
single dimension and when combined make up a three
dimensional discrete space of factors effecting the
performance of distributed simulations. Each factor is a
function of one component from each dimension.
Performance information associated with each factor is
derived during the simulation exercise from the
combined effect of each of the components. Simulation
metrics establish a mapping between the performance
factors defined by the model and the simulation’s
physical and logical resources and services. The
performance information associated with each factor can
consist of many metrics. A fourth dimension, time,
represents the changing phases of simulation
performance as time passes during the simulation
exercise. Figure 1 is a graphical representation of the
space and time dimensions of the performance model.
Each shaded cube represents all possible factors that
affect the simulation’s performance at any instant in time.
This representation attempts to define a framework from
which a full spectrum of simulation metrics can be
defined and used for performance analysis.

2.1 Space and Time Components

As described above, the three dimensions representing
the space of performance factors consist of a set of
distributed simulation components. The components
represent the distributed simulation’s resources, services,
and model characteristics and define where and why in
the simulation’s execution space a certain behavior or
performance factor is observed. One of the primary
purposes of developing this performance model is to
present a unified framework for describing the
performance of distributed simulation. The challenging
aspect of defining the model is to make sure the
enumerated sets of components comprising the

Time

crvices

Model |

Figure 1: Representation of Performance Factors

performance model encompass the full spectrum of
physical and logical components used in the distributed
simulation’s design and implementation. Figure 2 shows
the three dimensions and the corresponding components
used to define the model’s performance factors.

The discrete space representation of the performance
model provides a well-defined abstraction of logical
components affecting the performance of distributed
simulations. An important point about the representation
is that since each dimension in space represents an
enumerated set of components, no notion of magnitude or
value is associated with the dimension (as is done in
vector analysis). The location of each component in its
dimension is merely a recognition of the existence of that
component as a contributing factor to simulation
performance. The discrete space representation results in
a set of sixty potential performance factors, each factor
being a function of the combined effect of distributed
resources, simulation services, and model characteristics.
Assessing simulation performance at any instant in time
can be obtained by analyzing the three-dimensional
discrete space model. A broader understanding of
simulation performance can be gained by examining the
changes to the discrete space model throughout the
simulation exercise. Thus the time dimension is included
as part of the model, relating the run-time characteristics
of the distributed simulation to changes in performance.
The resulting discrete space-time representation provides
a high-level abstraction for identifying and
communicating the spatial and temporal aspects of
distributed simulation that effect performance.

The model’s set of distributed resource components
are derived from properties of distributed systems:
concurrency, scaling, replication, and coordination. To
benefit from the use of workstations in current network
topologies, distributed simulation environments must be
designed to incorporate, exploit, and compensate for
these properties. Although these components interact,
each can be considered separately to achieve an overall
design objective. Concurrency, the parallel execution of
simulation and model components, is an artifact of
physically separate computers providing simulation
resources and services (e.g., the coexistence of
simulation entities). Scaling entails increasing the
number of shared or replicated resources, services, and
simulation entities with a goal of having no single
simulation resource or service being in restricted supply.
Replication, the existence of multiple copies of
simulation data, is a mechanism to increase reliability
and fault tolerance (a qualitative goal), and achieve better
performance as it relates to higher availability of shared
resources and services. Coordination synchronizes the
timing and ordering of simulation events including the
proper ordering of human intervention with the

632 Cavitt, Overstreet, and Maly

Event Manageme%t

[}
8
Y §,
Libraries/Utilities 2S
2
Simulation Control e E
Entity Management -E- 7
= l

Time ManagemJnt

Activities

pe Interrelationship

" Model Characteristics
&" (Entity Based)
g

Figure 2: Performance Factors Representation

simulation (where applicable). Each of these components
is used to define performance factors of distributed
simulation.

Another dimension of the performance factor space
deals with simulation service components. The model’s
service components are the functional components that
are part of discrete event simulations. The services
include the management of events and event schedulers,
entity management, simulation administration and
control, and support routines and libraries (such as
random number and random variate routines).
Distributed ~ simulations generally have multiple
schedulers executing concurrently on each of the
computers participating in the simulation. The schedulers
must invoke events in some coordinated or synchronized
manner, assuring either correct program behavior or the
recovery from errors induced by uncoordinated activity.
The schedulers should ideally also execute efficiently,
independent of the number of events that must be
serviced as the size of the simulation experiment is scaled
up or down. The aggregate cost of maintaining and
accessing multiple and replicated events lists and other
data structures can be significant and is considered along
with each of the distributed resource components. Entity
management in distributed simulation is affected by
concurrency, scaling, replication, and coordination. The
simultaneous creation, execution, and deletion of entities
on separate computers relates the concurrency resources
to the entity management services and the ability to
increase the number of entities in the simulation relates
the scaling component. Similarly, the replication and
coordination requirements of the simulation affect the
management of the simulation entities.

The control of distributed simulations (e.g., start-up,
termination, cleanup operations) also affects run-time

behavior and must be considered when assessing
simulation performance. Additionally, for some
simulations graphical displays and high levels of user
interaction and intervention can be intrusive to the
simulation and its impact on performance must be
understood. Lastly, the library and utilities associated
with distributed simulations are diverse and application
dependent. However, the affect on performance can be
dramatic depending on the amount of concurrency and
replication, and whether or not the data associated with
the libraries and utilities are shared.

The service components, when considered with the
distributed resource components, define where in the
distributed simulation’s execution space a certain
performance factor can be observed. The simulation’s
model characteristics make up a third dimension in the
performance factor space and are combined with the
resource/service pairs of components to define sources of
performance information. The model characteristics are
defined by entity attributes that describe some real-world
object, entity activities that are the modeled behaviors of
the entity, and entity interrelationships that are defined as
any dependencies, interactions, or shared behaviors that
exist among entities. The concurrent simulation of
entities can cause resource and service contention,
especially as the number of entities is scaled up. When an
interrelationship exists between entities the replication
and coordination components can significantly affect
performance.

2.2 Simulation Metrics

The performance information associated with each factor
defined in the space-time representation can be derived
from run-time measurements of the distributed
simulation and from static code analysis of the simulation
code. Simulation metrics map the components of the
space-time representation to physical and logical services
and resources used in the distributed simulation
environment (i.e., CPUs, network interfaces, event
schedulers). The metrics become a specification of the
simulation’s execution expressed in terms of these
services and resources; time-varying functions that
characterize the distributed simulation’s performance.
The domain of metrics includes time, rate, utilization,
reliability, and availability for each of the services and
resources that contribute to a performance factor. The
time metric domain is related to the throughput or
responsiveness of the simulation in providing the service.
The rate metric domain is related to the productivity or
the frequency with which the simulation provides the
service. The utilization metric domain is related to the
utilization or the amount of the service the simulation
uses or needs. The reliability metric domain relates to the

A Performance Analyvsis Model for Distributed Simulations 633

correctness with which the simulation provides the
service and its ability to meet the deadlines when
providing the service. The availability metric domain
relates to the simulation’s ability to provide the service as
required. These metric domains are applicable to each
computer participating in the simulation and provide
information on individual machines’ performance. The
same domains are used to define a global view, relating
the concurrency, scaling, replication, and coordination
components of the performance model with the overall
progress and performance of the distributed simulation

Table 1 shows one possible set of simulation metrics
that map the entity management services of a distributed
simulation with the distributed resource components. The
model characteristics are implicit within the definition of
the metrics. The column labeled "Autonomous
Simulation" shows metrics for the service as that metric
pertains to each individual computer participating in the
simulation exercise. The metrics relating the distributed
resource components to the entity management service
are listed in their respective columns and provide a global
view of performance. The metrics shown primarily
address the processing times associated with simulation
entities. The processing time is the simulation work
cycles spent executing entity behaviors and activities as
well as the modification of entity attributes. The term
"node" refers to any specified computer participating in
the distributed simulation exercise. The time and rate
domains are generally inversely related, the former
giving the average amount of time the service takes for
each entity type and the latter specifying the average
frequency that the service is provided. The global metrics
specify the performance across all computers
participating in the simulation exercise. The individual
metrics provide a more fine-grained view of the
performance of specific computers. The reliability
metrics assume certain deadlines or thresholds exist for
processing entities and the metrics associated with the
scaling component of the distributed resources assumes
that certain nominal capacities exist. These deadlines and
capacities could be defined by simulation requirements,
previous empirical studies, or set arbitrarily.

The sample metrics present performance information
at a consistent level of detail and are at a sufficiently
high-level of abstraction, should allow an intuitive
understanding of performance as it relates to the
resources and services that are part of distributed
simulation. Low-level simulation metrics such as
transmission rate for a network interface or the average
search time for getting the next event off of the event list
are not presented. Low-level performance data, however,
might be needed for deriving higher-level performance
information.

The physical resources that make up a distributed
simulation environment include CPUs, memory and
buses, disk drives, network interfaces and transmission
media. The operating system functions and interfaces
provide access to these resources. The simulation
services that request the resources include event
schedulers, event-list management routines, clock and
timer routines, random number generators, user interface
and input/output routines, database routines, and others.
The measurement of these physical and logical resources
contributes data used to derive simulation metrics. The
data can include count data, frequency data, and trace
data. Count and frequency data of the physical and
logical resources is considered low-level in terms of
information content and it is used to derive higher-level
simulation metrics that are defined by the performance
model. Trace data may be low-level or high-level
(containing actual measures of performance). For many
distributed simulations, especially long running ones, the
volume of measured data can be prohibitive to store, so
processing low-level data into high-level trace
information can have a distinct advantage (smaller
storage requirements and reduced network utilization).
The disadvantage of saving only high-level trace data is
that it is difficult or impossible to recreate the analysis
since content is lost once the data are processed into
higher-level performance information.

3 USE OF MODEL

A primary concern of distributed simulation exercise and
configuration planners is how to best utilize the available
hardware and software to achieve the goals of the
simulation exercise or experiment. The performance
model provides a framework for specifying the
simulation’s performance at a level of abstraction that is
suitable for making utilization decisions. Once the
simulation is capable of providing the raw performance
data, the metrics can be derived and the associated
performance information analyzed to identify major
performance problems. The global simulation metrics are
used to observe overall performance. If a bottleneck
exists somewhere, a finer-grained analysis can be done
by isolating the components of the performance model
that are contributing to the bottleneck, and analyzing the
individual simulation metrics associated with each factor.
After observing and analyzing the performance
information, any changes in system configuration can be
formulated, and further analysis done to assess the impact
on performance. This kind of analysis can be an iterative
process, repeatedly looking at performance information
to identify exact reasons for performance problems. Why
and where there are problems in the simulation’s
execution is just one aspect of using the performance

634 Cavitt, Overstreet, and Malyv
Table 1: Mapping of Service and Resource Components to Simulation Metrics
Distributed Resources (Global Metrics)
Simulation Metric A Simulati
Service Domain (Individual Metric) Concurrency Scaling Replication Coordination
Avg. Time To Process An Avg. Time To Process An Avg. Time To Process Avg. Time To Process
Est. A in Time 1o Process . -
Replication Per Node Enuty Coordination Tasks
Enuty Entity Per Node An Entity Per Node With phcauy y
Time Entity Addiion/Deletion
Vanance in Time To
Process An Enuty Per
Node
Avg. Number Of Entities Avg. Number of Enuties Est. A in Number of Avg. Number of Avg. Number of Entity
Processed Per Unit Time Processed Per Unit Time " .u Replications Processed Per Coordination Tasks Per
Per Node E""“F Processed Per Unit Time Unit Time
Unit Time w/Entity
Rate Addiuon/Deletion
Vanance tn Number of
Entities Processed Per
Unit Time
Entity Total Number of Enuues Avg. Number of Enuties Variance in Number of Total Number of Total Number of Entity
Management Utilization Processed Processed Per Node Entities Processed Per Replicated Entities Interactions
Node
Percentage of Total Run- Avg. Number of Enuties Est A in Number of Percentage of Total Run- Avg. Number of Entity
Time Entity Processing Missing Deadlines Per E v AL:d ums/ ro Time Replication Interactions Using Stale
Misses Deadlines Node nity iuons/ Processing Misses Data
_ Deletions To Deadline Deadlines
Reliability Variance in Percentage of
Total Run-Time Entity
Processing Misses
Deadlines
Avg. Elapsed Time Entity Concurrency Index Est. Allowable Number of Replication Index Percentage of Total Run-
Spends Waiting To Be (Variance In The Number Enuty Addiuons/Deletions (Variance In The Number Time Spent Processing
Processed. of Enuuies Processed Per of Replications Processed Enuty Coordinaton Tasks
Availability Percentage Of Towl Run- | UMt Time For All Nodes) Per Unit Time For All
Time Spent Processing Nodes)
Enuues.

model. In what phase of execution does the simulation’s
performance become limiting? This question is answered
by analyzing the simulation metrics over time. The
performance model provides the framework for
analyzing independently, the different phases of the
simulation’s execution.

As an example of how the model can be used,
consider an implementation of Loral’s ModSAF, a
Distributed Interactive Simulation (DIS) used for combat
training and military doctrine development. A primary
goal of ModSAF is to replicate the behavior of simulated
military units, vehicles, and weapons systems to a level
of realism sufficient for training military personnel
(ModSAF Software Architecture Design and Overview
Document 1995). Meeting this goal requires the
simulation to heavily populate the virtual battlefield,
simulating entity on entity combat engagements in an
autonomous manner while allowing a user to maintain
supervisory control of a large number of military units or
individual vehicles.

Examine the availability metric at the bottom of Table
1. The proposed metric estimates the allowable number
of entities that can be added to the existing simulation
workload. The performance analysis model identifies this
metric by the interdependencies of the entity
management component of the simulation services
(schedular), a scalability component of the distributed

systems resources (time available for additional
processing), and the entity attributes, activities, and
interactions characterizing simulation models. An initial
version of the performance model has been implemented
by instrumenting ModSAF. During an experiment, data
points were measured and derived from three aspects of
the execution space of the DIS simulation; 1) the number
of vehicles simulated on a single workstation, 2) the
percentage of vehicle processing time spent handling the
DIS interprocessor communication data packets called
Protocol Data Unit (PDUs), and 3) the amount of time
available for additional vehicle processing, referred to as
slack, within the time constraints defined for the update
rates of vehicle state data (Foster et al. 1994). Figure 3
shows a plot of the data. Note that the curve has not been
smoothed, revealing the variations in required processing
times dependent upon vehicle behavior.

The availability metric provides an estimate on the
number of vehicles that can be added to a simulation
exercise while still achieving acceptable simulation
performance. This metric may be a linear or non-linear
function of the slack time and the per vehicle processing
time. Referring to Figure 3, we can see with 25 simulated
vehicles approximately 140 milliseconds of slack exists
(given a 2 Hz update rate for vehicle state). Assuming a
simple linear function for calculating the availability
metric, then a vehicle processing time of 14.4

A Performance Analysis Model for Distributed Simulations 635

8
—/

R
L

Number of Vehicles

Figure 3: Relationship Among Number of Vehicles,
Vehicle Assertion Processing, and Slack Available
for Vehicle Processing

milliseconds per update means it is possible to add
approximately 9 more vehicles and still meet the required
2 Hz update rate. This information could be derived at
run-time and used for example by an analyst or decision
maker who requires a greater number of vehicles to
enhance the realism of a particular ModSAF simulation
exercise.

This example serves to illustrate how a performance
model that presents performance information at a high-
level of abstraction can be used to guide analysts and
configuration personnel in assessing distributed
simulation performance. The implementation shows the
feasibility of data collection and no sophisticated
understanding was required of the simulation’s hardware
or software processing requirements (ie., CPU or
function timing data) nor any specialized tools required.

4 SUMMARY

The need to assess the limiting factors in the performance
of distributed simulation lends itself to the development
of a performance analysis model. Development of the
model requires the identification of performance
problems by understanding why the simulation performs
the way it does, where the bottlenecks in performance
occur, and when the effective performance of the
distributed simulation is no longer adequate. This paper
has discussed a performance model for distributed
simulation. The need to specify performance using a
high-level of abstraction, makes the proposed model
suitable for performance assessment during all phases of
the simulation life cycle. The model components are
defined using a service/resource paradigm that maps the
actual physical and logical components used in

distributed simulations to the resource and service
abstractions of the performance model. The model
defines metrics that characterize distributed simulation,
specifies what aspects of the simulation and distributed
environment are to be observed, the analysis to be
performed, and clarifies the semantics and use of the
analysis results. Examples of the use of the model, while
somewhat artificial in terms of scenario, were
representative of the utility of a high-level abstraction for
distributed simulation analysis.

An initial implementation of the performance analysis
model has demonstrated the ability to collect
performance data at a low level of intrusiveness, and can
be used to derive metrics which help decision makers
during the design of ModSAF training exercises. Future
work will involve the refinement and validation of the
performance model components, a complete definition of
simulation metrics to fully map the set of service and
resource components with the model characteristics, and
the design and implementation of statistical techniques
for presenting meaningful performance information
usable throughout the simulation life-cycle. Attempts
will be made to validate the use of the performance
model during actual simulation exercises using the
ModSAF simulation. Areas for future research include
exploring the use of static code analysis for identifying
resource and service requirements of the simulation as
well as potential interactions and dependencies between
simulation entities. Open research issues also include the
design, use, and assessment of predictive techniques to
guide decisions on how to better utilize hardware and
software resources used in distributed simulation.

636 Cavitt, Overstreet, and Maly

ACKNOWLEDGMENTS

Support for this research was funded by BMH
Associates, Inc., Norfolk, VA, under grant number BMH-
01N61339-65-C-0030.

REFERENCES

Carothers, C. D., and R. M. Fujimoto. 1994. Effect of
Communication Overheads on Time Warp
Performance: An Experiment Study. In Proceedings
of the 8th Workshop on Parallel and Distributed
Simulation, ed. D. K. Arvind, R. Bagrodia, Jason Yi-
Bing Lin, 118-125, IEEE Computer Society Press,
Los Alamitos, California.

Falsafi, B., and D. A. Wood. 1994. Cost/Performance of a
Parallel Computer Simulator. In Proceedings of the
8th Workshop on Parallel and Distributed Simulation,
ed. D. K. Arvind, R. Bagrodia, Jason Yi-Bing Lin,
173-182, IEEE Computer Society Press, Los
Alamitos, California.

Foster, L., P. Maassel, and D. McBride. 1994. The
Characterization of Entity State Error and Update
Rate for Distributed Interactive Simulation. In
Proceedings of the 11th DIS Workshop on Standards
for the Interoperability of Distributed Simulations,
September 1994, 61-73, Institute for Simulation &
Training, Orlando, Florida.

Fujimoto, R.M. 1990. Performance of Time Warp Under
Synthetic Workloads. In Proceedings of the SCS
Multiconference on Distributed Simulation, ed. David
Nicol, 23-28. Society for Computer Simulation, San
Diego, California.

ModSAF 1.4 Reverse Engineering Report. 1995.
Technical Report. Applied Research Laboratories,
University of Texas at Austin.

ModSAF Software Architecture Design and Overview
Document (SADOD) 1995. LADS Document
Number 94070v1.0. Loral Advanced Distributed
Simulation, Cambridge, Massachussetts.

Vrablik, R., and W. Richardson. 1994. Benchmarking and
Optimization of ModSAF. In Modular Semi-
Automated ~ Forces: Recent and Historical
Publications, LADS Document No. 94007 v.1.0, 141-
147. Loral Advanced Distributed Simulation,
Cambridge, Massachussetts.

AUTHOR BIOGRAPHIES

DAVID B. CAVITT is a doctoral student at Old
Dominion University, Norfolk, Virginia. He received a
BS degree in Computer Science at Old Dominion
University. He has 9 years of experience in the use and
development of simulations for military and engineering
applications. His research interests include modeling and
simulation, performance analysis, and distributed
systems. David Cavitt is a member of ACM, and IEEE
CS.

C. MICHAEL OVERSTREET is an Associate
Professor of Computer Science at Old Dominion
University. He is immediate past chair of the Special
Interest Group in Simulation (SIGSIM) of the ACM. He
received his B.S. from the University of Tennessee in
1966, an M.S. from Idaho State University in 1968, and
an M.S. and Ph.D. from Virginia Polytechnic Institute
and State University in 1975 and 1982 respectively. He
has been a visiting research faculty member at the
Kyushu Institute of Technology in Japan. His current
research interests include model specification and
analysis, distributed simulation, high performance
networking, support for interactive instruction, and static
code analysis in support of software maintenance tasks.
He is currently a principal investigator in tasks funded by
ARPA, ICASE at NASA Langley, and the National
Science Foundation. Dr. Overstreet is a member of ACM,
and IEEE CS.

KURT J. MALY received the Dipl. Ing. degree from the
Technical University of Vienna, Austria, and the M.S.
and Ph.D. Degrees from the Courant Institute of
Mathematical Sciences, New York University, New York,
NY. He is Kaufman Professor and Chair of Computer
Science at Old Dominion University, Norfolk, VA.
Before that, he was at the University of Minnesota, both
as faculty member and Chair. He also 1s Visiting
Professor at Chengdu University of Science and
Technology, People's Republic of China and is Honorary
Professor at Hefei University of Technology, PRC. He
was a member of Board of the Microelectronic and
Information Sciences Center, Minneapolis. His research
interests include modeling and simulation, very high-
performance networks protocols, reliability, interactive
multimedia remote instruction, Internet resource access,
and software maintenance. His research has been
supported by DARPA, NSF, NASA, CIT, ARPA and the
U.S. Navy among others. Dr. Maly is a member of the
IEEE Computer Society and the Association for
Computing Machinery.

