
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S"Hrain

PERFORMANCE COMPARISON OF HIGH LEVEL ALGEBRAIC NETS DISTRIBUTED
SIMULATION PROTOCOLS

Karim Djemame
Mohamed Bettaz

Computing Science Institute
University of Constantine

Constantine 25000, ALGERIA

ABSTRACT

This paper addresses the problem of developing dis­
tributed simulation techniques to analyze ECATNets.
ECATNets (Extended Concurrent Algebraic Term
Nets) are a kind of High-Level Algebraic Nets used for
specifying various aspects of distributed and parallel
systems. Their most distinctive feature is that their se­
mantics is defined in terms of rewriting logic. The con­
servative and optimistic approaches of Distributed Dis­
crete Event Simulation (DDES) are used as the start­
ing point to discuss a simulation framework for study­
ing the behaviour of ECATNet models. The ECAT­
Net model to be simulated is partitioned into several
connected subnets. The various subnets are simulated
in parallel by several Logical Processes. Next we de­
velop two distributed simulation protocols to execute
discrete-event simulations of ECATNets.

1 INTRODUCTION

Petri nets (Murata 1989) are an important graphical
and mathematical tool applicable to many systems.
They are a promising tool for describing and studying
information processing systems that are characterized
as being concurrent, asynchronous, distributed, par­
allel, nondeterministic and/or stochastic. ECATNets
are a kind of High-Level Algebraic Nets. They are pro­
posed as a way for specification, modeling and vali­
dation of applications from the area of communication
networks, computer designs and other complex systems
(Bettaz et al. 1993a, Bettaz et al. 1993b). They are
built around a combination of three formalisms. The
first two formalisms constitute a net/data model, and
are used for defining the syntax of the system, in other
terms to capture its structure. The net model, which
is a kind of advanced Petri net (Jensen and Rozenberg
1991), is used to describe the process architecture of
the system; the data model, which is an algebraic for­
malism (Ehrig and Mahr 1985), is used for specifying
the data structures of the system. The third formalism,

621

Dennis C.Gilles
Lewis M.Mackenzie

Computing Science Department
University of Glasgow

Glasgow G12 8QQ, Scotland, UK

which is a rewriting logic (Meseguer 1992), is used for
defining the semantics of the system, or in other words
to describe its behaviour. According to this logic, the
system behaviour may be explained by formal reason­
ing. Transforming our logic into a rewriting system
(Bettaz and Mehemmel 1993) may be used for rapid
prototyping and automatic proving of a system under
design. However, the achieved models had two draw­
backs: the occultation of the problem of time and a bad
exploitation of the parallelism inherent to the studied
models. In a previous paper (Djemame and Bettaz
1995), we presented an approach for the treatment of
time in ECATNets, by introducing in each transition a
firing delay to perform the operations "remove/deposit
tokens". Simulation of these models can not only per­
form their validation, but can evaluate their perfor­
mances as well. Simulation can also be amenable to
parallel execution in order to exploit the inherent par­
allelism of these models. It is worth mentioning that
we are dealing with the parallelism at two levels: the
inter-module level, where the parallelism is achieved by
partitioning the "initial" models w.r. t. a "separation
of concern" strategy; the intra-module level, where the
detection of the parallelism is permitted by the use of
our rewriting logic.

In Distributed Discrete Event Simulation (DDES),
the system being modeled is viewed as being composed
of some number of Physical Processes (PPs) that in­
teract at various points in simulated time. The sim­
ulator is constructed as a set of Logical Processes (or
simply LPs), one per Physical Process. Logical Pro­
cesses exchange timestamped event messages to inter­
act. However, relationship between events may exist,
so concurrent execution of these events must be syn­
chronized, otherwise causality errors can occur. Dis­
tributed Discrete Event Simulation falls into two cat­
egories (Fujimoto 1990): conservative and optimistic.
In the following, we consider synchronization protocols
based on the Chandy-Misra scheme (CM) described
by (Misra 1986) (conservative), and on Time Warp de­
scribed by (Jefferson 1985) (optimistic, based on the

622 DjelTIarnC et ai.

virtual time paradigm). The conservative mechanisms
strictly avoid the possibility of any causality error ever
occurring by forcing LPs to block as long as there is
the possibility for receiving messages with lower times­
tamp. The optimistic mechanisms use a detection and
recovery approach, this means that causality errors are
detected and a rollback mechanism is invoked to re­
cover. Recently, (Chiola and Ferscha 1995) proposed
a new DDES protocol called probabilistic, a perfor­
mance efficient compromise between the two classical
approaches.

The contributions of distributed simulation in the
area of Petri nets and reported in the literature include
(Ammar and Deng 1991, Nicol and Roy 1991, Thomas
and Zahorjan 1991, Chiola and Ferscha 1993). They
all deal with Timed and/or Stochastic nets. In (Chiola
and Ferscha 1993), Petri net structural analysis is ex­
ploited for the efficient implementation of DDES tech­
niques using both approaches: conservative and opti­
mistic. To the best of our knowledge, no attention has
been given to high-level Petri nets distributed simula­
tion. We are only aware of the work in progress by
Schof on parallel simulation of THOR nets (Timed Hi­
erarchical Object-Related Nets) (Schof et al. 1995). It
is worth mentioning that concerning simulation tech­
niques for high-level nets with arc inscriptions, the en­
abling test and the firing operations are substantially
more complex.

This paper is organized in the following way: in
section 2, we review some basic notions about ECAT­
Nets, and illustrate their use by a complete example.
Section 3 describes synchronization protocols based on
the conservative and optimistic approaches for ECAT­
Nets distributed simulation. Section 4 presents some
empirical results derived from the implementation of
DDES strategies for ECATNet models. Some conclud­
ing remarks and perspectives of the research for future
developments are given in section 5.

2 ALGEBRAIC TERM NETS

2.1 Basic Concepts

The graphical representation of a generic ECATNet is
given by Figure 1. IC, DT and CT are multisets
of (equivalence classes of) terms. The terms are de­
fined by an algebraic specification of an abstract data
type given by the user. TC (Transition Condition) is a
boolean expression which may contain variables occur­
ring in IC (Input Condition), DT (Destroyed Tokens)
and CT (Created Tokens). Each place is associated
with a capacity C (p) defined as a multiset of closed
(equivalence classes of) terms. The marking M(p) of
a place p of the net, which is itself a multiset of closed

O DT(Plt)·1 C() I 0
P IC(p,t) ~__T__t_t CT(q,t) ~~

Figure 1: A Generic ECATNet

terms, is defined w.r.t. the capacity (which may be
infinite) .

A transition t is fireable when various conditions are
simultaneously true. The first condition is that every
IC(p,t) for each input place p is enabled. The second
condition is that TC(t) is true. Finally the addition of
CT(q,t) to each output place q must not result in q ex­
ceeding its capacity when this capacity is finite. When
t is fired, DT(p,t) is removed from the input place p and
simultaneously CT(q, t) is added to the output place
q. Transition firing and its conditions are expressed
by rewrite rules which are strongly depending on the
form of the syntactic notation used for representing
Ie. Those rewrite rules (metarules) together with a set
of deduction rules define a rewriting logic which gives
the semantics of the net. They act as a parallelizing
compiler which tries to find sequences of "code" which
may be executed in parallel. Examples on concrete in­
stantiations and practical use of our metarules may be
found in (Bettaz et al. 1992, Bettaz 1993, Bettaz and
Maouche 1993, Bettaz et al. 1994).

2.2 Aspect of Time

In (Djemame and Bettaz 1995) we have chosen to in­
troduce in each transition a (marking) related rate.
This will lead to take into account a firing delay "d"
to perform the operations "remove/deposit tokens".
This choice allows to preserve the incremental approach
used for defining ECATNets and preserves the seman­
tic framework defined in terms of rewriting logic. Thus,
firing times as defined for Timed Petri nets are offered
leading to modeling activities duration. Note that
there will be two kinds of transitions. Timed transi­
tions are specified by annotating each timed transition
ti with a firing rate Ai. Let A: T ---. R assigns firing de­
lays Ai to T-elements ti E T. Zero delays are associated
with transitions that are called immediate. ECATNets
enriched with temporal specification are then suitable
to discrete simulation. This is an important step in
their quantitative performance evaluation.

High-Level Algebraic Nets Distributed SiInulation Protocols li2:3

2.3 An Example of Modeling with ECATNets

This example, borrowed from (Bettaz 1993), deals with
the behaviour of the Ethernet transmitting station. It
comprises four modules, each module is specified by an
ECATNet model. The first module deals with the func­
tions of formatting and transmitting starting. The sec­
ond module is relative to the functions of transmission
with success and acknowledgement. The third module
is relative to the retransmission function. The fourth
module treats essentially the functions of collision han­
dling and acknowledgement (Figures 2-5).

The transmitter station transmits one frame at a
time. The user is not allowed to request the transmis­
sion of a new frame before receiving the ackowledge­
ment of the previous one. The formatting function
starts when a token of type "d,s,data" is deposited
in place FROM_USER. This token is considered as a
primitive transferred from the user layer to the MAC
layer for requesting the transmission of data "data",
from a source "s" to a destination "d". The frame
"d.s.data.fcs" is then deposited as soon as it is com­
posed in a transmission register (TRANS-REG). The
formatting function is consisting of the concatenation
of sequences of bits corresponding to the addresses
"d" and "s", to the data "data", and to the error
control sequence "fcs" previously computed. On the
other hand, the MAC layer is listening to the medium
(CARRIER.5ENSE) in order to avoid any collision oc­
curring with a current transmission. The place CAR­
RIER..5ENSE is an interface between the MAC layer
and the physical layer. When the medium becomes free
(a token "false" is present in place CARRIER..5ENSE),
it waits a certain amount of time corresponding to the
inter-frame spacing delay. Then, considering that the
transmission may terminate with success (deposit of a
token "false" in place BUSY_CHANNEL and a token
"true" in place SUC_TRANS), it takes possession of
the medium (CHANNEL-ACCESS) and the transmis­
sion starts (deposit of a token "true" in INIT_TRANS).

3 A DISTRIBUTED SIMULATION
FRAMEWORK FOR ECATNETS

FROM_USER

Figure 2: Starting of Transmission Module

TO_USER

USER LAYER

MAC LAYER

PHYSICAL LAYER

Figure 3: Transmission With Success Module

Figure 4: Retransmission Module

For each LP, we identify three components: the work
partition assigned to it, its communication behaviour
and its simulation engine are the constituent parts of
the distributed simulation framework.

3.1 Net Partitioning Performance Impact

Starting from the" separation of concern" strategy and
according to the conservative and the optimistic mech­
anisms, details about the protocols developed using
such partitioning are found in (Djemame and Bettaz

RETRANS-REO RETR-ATMPTS

624 Djel11aIllC et ai.

TO-USER Subnet 1

Subnet :3

CHANNEL

ASSEMB..FRAME

FROM.USER

To Subnet 1

TO.USER

OMPUTE..FCS

fC'~

ACKI

j=nUj

PHYSICAL LAYER

MAC LAYER

COLLISION .DETECT CHANNEL

Figure 6: ECATNetfpartition

Figure 5: Collision Handling Module

1995). However, it has been seen that for performance
reasons the generality of a partition should be limited
in such a way that conflicting transitions together with
all their input places should always reside in the same
LP (Nicol and Roy 1991, Chiola and Ferscha 1993).
Such partitioning avoids the implementation of a dis­
tributed conflict resolution algorithm and minimises
overhead.

Separation of Subnets The partitioning has to be
related to the firing rule : an LP should be a set of
transitions along with their input places such that lo­
cal information is sufficient to decide upon the enabling
and firing of any transition. If P, T and A are respec­
tively the set of places, the set of transitions and the
set of arcs of the "intial" ECATNet model, the parti­
tion is a set of n subnets such that:
ECATNeti = (Pi,Ii,Ai,Ai) where U Pi = P, U Ii =
T, Ai C (Pi X Ti) U (n x Pi), i=I ..n.

~i is the set of rates of local transitions in Ii. We
did not consider the multisets of terms IC, DT, CT and
the boolean expression TC. They are defined as in the
"initial" model and appear in the graphical represen­
tation of the subnets.
Definitions A place Pi E Pi in LPi is said to be a
member of the set of input places (IPi) of LPi if there
exists a transition t j ¢ LPi which Pi is an output place.
A transition ti E Ii in LPi is said to be a member of
the set of output transitions (On) of LPi if there ex-

ists a place Pi ~ LPi which ti is an input transition. A
communication arc is an arc connecting a place (tran.
sition) in LPi to a transition (place) in LPj.
For each output transition t in subnet i, define:
Ptou~ = list of places to indicate which (input) places
are related to t and the kind of relation that exists
(CT).
Example Let's take the example of section 2.3, the
modular specification of the Ethernet transmitting sta­
tion. The partition is a set of three subnets, each sub­
net is simulated by an LP. Places and transitions are
partitioned among the subnets as follows (Figure 6):
Subnet 1: 2 places, 2 transitions;
Subnet 2: 11 places, 8 transitions;
Subnet 3: 2 places, 1 transition;

TRANS..REG and TO_USER are input places
in subnet2 and subnet3 respectively. In subnet1 ,

ASSEMB-.FRAME is an output transition. (AS­
SEMB..FRAME, TRANS-REG), (ASSEMB..FRAME,
RETRANS..REG), (TRANS-FRAME, CHANNEL)
are communication arcs.

3.2 The Communication Interface

The decomposition of ECATNets requires an inter­
face among ECATNet partitions preserving the be­
havioural semantics of the whole ECATNet. Such an
interface has to be implemented by an appropriate pro­
tocol among the partitions according to the simula­
tion strategy. If there is a communication arc from

High-Level Algebraic Nets Distributed SiInulation Protocols 625

an output transition t to an input place p, there ex­
ists a unidirectional channel between them. This is
motivated by (output) transitions which have to inter­
act with their (input) places for sending tokens when
these transitions fire. We can map the set of arcs (Tk
x P,) interconnecting different subnets to the chan­
nels of the communication interface. We define Ik =
(CHANNELS,m) of 8ubnetk to be the communication
interface with CHANNELS = Ui,j chi,j where chi,j =
(LPi ,LPj) is a set of directed channel from LPi to LPj
corresponding to the arcs (tk ,PI) E (Tk X P,) carrying
messages of type m.

3.3 Chandy-Misra's Strategy

The simulation engine implements the simulation strat­
egy. The simulation of events is performed in virtual
time according to their causality. The data structures
according to the conservative approach, a local virtual
time (LVT) (representing an accumulated value of fir­
ing time in LPi), a list of events (EVL) ordered by time
of occurrence, input queues (IQ) (one queue per each
input channel, which collects recently arrived messages
ordered by time), and output queues (OQ) (one queue
per output channel, which keeps messages to send, or­
dered by time) have to be maintained.

3.3.1 Lookahead Computation

Loohahead is required in conservative mechanisms to
avoid deadlock situation (Misra 1986). It is the pro­
cess' ability to predict what will happen, or more im­
portantly, what will not happen in the simulated time
as regards to its behaviour and when next it may af­
fect other processes. It prevents incorrect computa­
tions from propagating too far ahead into the simu­
lated time. Lookahead provides a "window" such that
all events with timestamps in this window can be ex­
ecuted safely and without further communication be­
tween LPs. To highlight lookahead that exists in Petri
nets simulation, if a transition starts firing at Tsim, an
LP can predict exactly when the tokens generated by
this firing are deposited (Tsim+d, where d is the fir­
ing delay associated with t). Lookahead comes directly
from the ECATNet structure, and is the increment fir­
ing time of succeeding timed transitions in the LP plus
the firing time of the transition of the output border of
the LP. The value of lookahead can be established for
a pair of transitions in each subnet by a static analysis
of the subnet's structure.

3.3.2 Types of Messages

The form of the messages exchanged between LPs
is (TypeJl1essage, source, destination, timestamp,

type_token). Source and destination are either a place
(in LPi) or a transition (in LPj). Type_token is the
abstract data type of the token moved among sub­
nets. The causality of events is preserved over all LPs
by sending timestamped token messages of type To­
kens...Deposited(t,p,TT,CT) in non-decreasing order.
This message is carrying Created Tokens when t in
LPi fires leading to a deposit of tokens in place p in
LPj . Tokens-Deposited (t,p,TT, Null) is a Null mes­
sage which is sent for synchronization purpose. It is a
promise not to send a new message timestamped earlier
than TT.

3.3.3 LP's Behaviour

The conservative approach allows only the processing
of safe events, firing of transitions up to LVT for which
the LP has been guaranteed not to receive messages
with smaller timestamps. The behaviour of the con­
servative simulator is to process the first event of EVL
if there is no token message in one of the lQis with
smaller timestamp, or to process the token message
with the minimum token time in IQs. Each input queue
IQi has a clock CCi associated with it that is equal to
either the timestamp of the message at the head of the
queue if the queue contains a message, or the times­
tamp of the last received message if the queue is empty.
The LP blacks as soon as the minimurn timestamp of
messages in IQs is not larger than the occurrence time
of the first event in EVL (if IQi becomes empty, the
value of CCi is changed to 0). The firing of a tran­
sition t is as follows: if t E (On) in LPi, then a bf
Tokens-.Deposited message is generated and inserted in
the corresponding output queue (OQ). If t has an out­
put place in LPi, it schedules an event End..Firing of
t. A Null message is also deposited for every output
border transition in the corresponding OQ.

3.4 Time Warp Strategy

In order to simulate an ECATNet partition, the data
structures of an LP we maintain with an optimitic sim­
ulator according to Time Warp are an input queue
(IQ) which collects recently arrived messages (positive
and negative), an output queue (OQP) which contains
the positive messages to send, an output queue (OQN)
which contains the negative copies of the messages re­
cently sent (antimessages for unsending the originals),
and an event stack (ES) which records all state vari­
ables such that a past state can be reconstructed in case
of a rollback. The form of the entries is (ti,LVT,M)
where ti is the transition that has fired at time LVT
yielding a new marking M.

626 DjelllaJlle et ai.

3.4.1 Types of Messages

Tokens-Deposited(t,p,TT,CT(t,p» is a message
carrying Created Tokens when t E Oli fires leading
to a deposit of tokens in place p in LPj. The times­
tamp of this message is the accumulated firing time of
transition t. Tokens_Cancelled is used in the rollback
mechanism needed for synchonization. In this message,
TT indicates which message should be cancelled.

The simulation engine's main task is not only to
synchronize the LPs simulating the various subnets by
controlling the timestamp (TT) of each message and
the local virtual time (LVT), but also to implement
the functions of the communication arcs. An LP pro­
cesses messages in the input queue (IQ) by checking
the sign (positive or negative) and the timestamp of
each one (these messages are ordered by TT, the head
of the queue corresponds to the smallest TT). Messages
with timestamp> LVT are inserted in IQ. In case of
a positive message, it is inserted in timestamp order,
otherwise (the sign is negative) it annihilates the pos­
itive message in IQ previously sent. If the message is
a straggler (timestamp of the message < LVT) , the LP
must roll back and restore a valid state. As for the con­
servative simulator, the processing of the first event in
EVL or the first message in IQ generates either new
events in EVL or output messages.

3.4.2 Message Cancellation

When an LP rolls back, it first inserts the straggler
message into IQ and updates LVT. The state at (new)
time LVT is restored. If rollback is applied with aggres­
sive cancellation, all messages in OQN with token time
> LVT are annihilated by removing them from OQN
and sending them. All incorrect computation is un­
done by poping out all the records prematurely pushed
in ES. The simulator can also apply lazy cancellation.
In the case reevaluation yields exactly the same posi­
tive messages as already sent before, the new positive
message is not resent. This will prevent unnecessary
message transfers as well as possibly new rollbacks in
other LPs.

3.4.3 Global Virtual Time

The Global Virtual Time (GVT) is considered as the
virtual clock for the system as a whole. The knowledge
of (GVT) reduces past state savings in ES. Any mes­
sage in an input or output queue whose virtual time is
< GVT can be discarded.

4 SIMULATION RESULTS

In the absence of a parallel computer, our parallel pro-

grams have been implemented in .a ne:wor~ of (Sun
Sparc) workstations. All our code IS wrItten In C plus
MPI (Message Passing Interface) (MPI 1995). We have
decided to run our initial tests for distributed simula­
tion on discrete-event ECATNet model of the Ethernet
transmitting station. The simulation has been running
for 10,000 simulated time units. We have considered
the simulator's implementations of the ECATNet par­
titioning in a parametrization: ADELAY = 1.0, proba­
bility of occurrence of a collision = 0.5, and N = 1,2,3,
4 processors respectively. Process 0 is a special process
whose task is to start the simulation by assigning LPi ,

i=1 ..3 to a dedicated processor and to compute GVT.
We faced two primary problems with the conserva­

tive approach. The first problem is related to cyclic
models. A Null message sent out by one Logical Pro­
cess could possibly circulate through a series of other
Logical Processes and arrive back at the original sender
at the time it was sent (eg. a Null message generated
after transition DELAY in LP2 fires). In some cases,
exponential firing times are used, and because these
have a minimum delay of zero, models must be modi­
fied for use on distributed simulation. To cope with this
situation, a firing transition identifier was introduced
in each Null message generated by a timed transition.
If the Null message arrives back at the original sender
at the time it was sent, it is simply discarded. Dead­
lock is avoided because there are no cycles in which the
collective timestamp increment of messages traversing
these cycles is O. The second problem is related to
the number of Null messages exchanged between LPs.
Since a large number of transitions in LP2 are imme­
diate, there is no need to generate new Null messages
when these transitions fire if there is no timed transi­
tion among the succeeding transitions up to the output
border, i.e the accumulated firing time is 0, and this
does not change lookahead.

With Time Warp, we faced the situation where a
straggler positive message changes the marking in LP2

but does not cause the enabling of any new event in the
past. In such case, LP2 does not have to rollback. The
simplified mechanism which has been used to recover
was an appropriate insertion of firings made on ES,
and the top of ES was copied considering a potential
change in the marking.

The results show that communication time between
LPs is quite important. LP1 and LP3 contain one
single input transition in the output border, whereas
LP2 contains four. LP2 is the process with the largest
event processing time because of its large number of
transitions (8) and places (11) leading to an important
number of events to schedule. The performances of
the conservative simulator (Chandy-Misra's approach
with deadlock avoidance) and the optimistic simulator

High-Level Algebraic Nets Distributed SiInulation Protocols i:")
v /

Table 1: LPs Execution Profiles (CM Approach, Number of Processors = 4)

LogIcal SimulatIon Positve Null Time Evt. Time Time Time Term.
Process Steps Messages Messages Processing Communication Blocking Protocol

1 20001 20002 10001 11.442 347.310 290.862 0.010
2 75000 20000 10001 66.773 282.757 213.071 0.027
3 20000 10000 10001 03.496 356.383 326.377 0.010

Table 2: LP2 Execution Profile (CM Approach)

Number SImulatIon Positve Null Time Evt. TIme Time Time Termin.
Proc. Steps Messages Messages Processing Communication Blocking Protocol

1 75000 20000 10001 79.703 819.843 162.407 1.067
2 75000 20000 10001 49.680 378.169 91.005 0.089
3 75000 20000 10001 83.855 281.944 200.557 0.410
4 75000 20000 10001 66.773 282.757 213.071 0.027

Table 3: LP2 Execution Profile (TW, Lazy Cancellation)

Numoer Simul. Number Nb.Messages TIme Evt. TIme TIme TIme TIme Term.
Proc. Steps Rollbacks Pos./Neg. Process. Communic. Rollback Blocking Protocol

1 100001 5001 29997 123.722 861. 796 2.385 0.461 1.008
2 85074 9950 20004 68.803 318.494 2.389 110.952 0.049
3 85125 9910 20002 73.184 281.583 2.357 219.943 0.054
4 85048 9970 20004 47.406 255.075 1.577 210.614 0.014

Table 4: Processing Time, CM vs TW
fOCMl
~

4

s
P

~3
d
u
P

2

1 15 rnn 28 s 680 17 Inn 49 s 944
2 07 mn 35 s 695 07 mn 15 s 698
3 06 mn 42 s 482 06 mn 46 s 962
4 06 mn 19 s 871 05mn40s175

I Nb.Proc. ~ Proc.Time (CM) I Proc.Time (TW) I

Figure 7: Speedup (CM vs TW)

ACKNOWLEDGMENTS

K.Djemame is supported by a grant from the Al­
gerian Ministry of Higher Education and Scientific
Research, and the British Council under the Anglo­
Algerian SATELLITE Programme.

The design of a high-level algebraic net concurrent
simulator is under investigation. Distributed Simula­
tion is based on spatial decomposition whereas Concur­
rent Simulation (Jones et al. 1989) is based on tempo­
ral decomposition, which actually could be an alterna­
tive approach to the application of multiple processors
to discrete event simulation. Our objective is a compa­
rable study in order t.o clearly assess the performance
of both approaches (Concurrent versus Distributed).

4
'processors

(Time Warp, lazy cancellation) are shown in Tables 1­
4. We have observed speedup of2.4 and 3.1 using 3 and
4 processors respectively for the Ethernet transmitting
station ECATNet model using our simulator. Speedup
is reported by comparison with the distributed simu­
lation code running on a single processor (Figure 7).

5 CONCLUSION

Compared with other attempts on parallel or dis­
tributed simulation of Petri nets, the methods pre­
sented in this paper differ in at least one of the follow­
ing points: ECATNets are high-level algebraic nets, the
state of the net is distributed, and the simulation tech­
niques have to respect timed transitions. The protocols
we proposed are expected to improve the ability of ef­
ficiently simulate the behaviour of systems modelized
by ECATNets over a period of time. An analysis of
the structure of the ECATNet model had to be taken
into account so that transitions sharing input places
are always assigned to the same LP.

628 DjenlaIne et 81.

REFERENCES

Ammar H. and Deng S. 1991. Parallel Simulation of
Petri Nets using Spatial Decomposition. In Pro­
ceedings of the IEEE International Symposium on
Circuits and Systems, pages 826-829, Singapore,
jun.1991.

Bettaz M., Maouche M., Soualmi M. and Boukebeche
M. 1992. Using ECATNets for Specifying Commu­
nication Software in the OSI Framework. In Pro­
ceedings of ICCI'92, pages 410-413. IEEE.

Bettaz M. 1993. Specification Hautement Compacte
et Modulaire de l'ETHERNET: la Station Emet­
trice. In Proceedings of CFIP'93, Montreal, HER­
MES, Paris. (in french).

Bettaz M. and Maouche M. 1993. How to Specify Non
Determinism and True Concurrency with Algebraic
Term Nets. Lecture Notes in Computer Science,
655: 164-180. Springer-Verlag.

Bettaz M. and Mehemmel A. 1993. Modeling and
Proving of Truly Concurrent Systems with CAT­
Nets. In Proceedings of Euromicro Workshop on
Parallel and Distributed Processing, pages 265-272.

Bettaz M., Maouche M., Soualmi M. and Boukebeche
M. 1993a. Compact Modeling and Rapid Prototyp­
ing of Communication Software with ECATNets: a
Case Study. Simulation Series, 25(1), 149-154. SCS
and IEEE.

Bettaz M., Maouche M., Soualmi M. and Boukebeche
M. 1993b. Protocol Specification using ECATNets.
Networking and Distributed Computing, 3(1):7-35.
Hermes, Paris.

Bettaz M., Maouche M., Soualmi M. and Boukebeche
M. 1994. On Reusing ATNet Modules in Protocol
Specification. JSS, 27(2):119-128, nov 1994.

Chiola G. and Ferscha A. 1993. Distributed Simulation
of Timed Petri nets: Exploiting the Net Structure
to Obtain Efficiency. Lecture Notes in Computer
Science, 691:146-165. Springer-Verlag.

Chiola G. and Ferscha A. 1995. Performance Com­
parable Design of Efficient Synchronization Proto­
cols for Distributed Simulation. In Proceedings of
MASCOTS'95, pages 59-65, Durham, North Car­
olina, jan 1995. IEEE.

Djemame K. and Bettaz M. 1995. On the Parallel Sim­
ulation of ECATNets. Technical Report, Comput­
ing Science Institute, University of Constantine, Al­
geria, jun 1995.

Ehrig H. and Mahr B. 1985. Fundamentals of Algebraic
Specifications. EATCS Monographs on Theoretical
Computer Science, Springer-Verlag.

Fujimoto R. 1990. Parallel Discrete Event Simula­
tion. Communications of the ACM, 33(10):31-53,
oct 1990.

Jefferson D.R. 1985. Virtual Time. ACM Transactions
on Programming Languages and Systems, 7(3):404­
425, jul 1985.

Jensen K. and Rozenberg G.(Ed.). 1991. High-Level
Petri Nets. Springer-Verlag, Berlin.

Jones D.W., Chou C.C., Renk D. and Bruell S.C.
1989. Experience with Concurrent Simulation. In
Proceedings of the 1989 Winter Simulation Con­
ference, pages 756-764, MacNair E.A., Musselman
K.J., P.Heidelberger (Ed.).

Meseguer J. 1992. Conditional Rewriting Logic as a
Unified Model of Concurrency. Theoretical Com­
puter Science, 96, pages 73-155.

Misra J. 1986. Distributed Discrete Event Simulation.
ACM Computing Surveys, 18(1):39-65, mar 1986.

Message Passing Interface Forum. 1995. MPI: A
Message-Passing Interface Standard. Technical Re­
port CS-93-214, University of Tennessee, jun 1995.

Murata T. 1989. Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE, 77(4):541­
580, apr 1989.

Nicol D. and Roy S. 1991. Parallel Simulation of
Timed Petri Nets. In Proceedings of the 1991 Win­
ter Simulation Conference, pages 574-583, B.Nelson,
D.Kelton, G.Clark (Ed.).

Schof S., Sonnenschein M. and Wieting R. 1995. Ef­
ficient Simulation of THOR Nets. Lecture Notes in
Computer Science, 935:412-431. Springer-Verlag.

Thomas G.S. and Zahorjan J. 1991. Parallel Simula­
tion of Performance Petri Nets: Extending the Do­
main of Parallel Simulation. In Proceedings of the
1991 Winter Simulation Conference, pages 564-573,
B.Nelson, D.Kelton, G.Clark (Ed.).

AUTHOR BIOGRAPHIES

KARIM DJEMAME completed an M.S. in com­
puter science at the University of Constantine, Algeria,
in 1991. He is currently a Ph.D. student on leave at
the University of Glasgow.

MOHAMED BETTAZ is a professor in the institute
of computing science at the university of Constantine,
Algeria. His research interests include introducing for­
mal specifications in the life cycle of software engineer­
ing. He is a member of IFIP.

DENNIS C.GILLES is an emeritus professor of com­
puting science at the University of Glasgow.

LEWIS M.MACKENZIE is a lecturer in the de­
partment of computing science at the University of
Glasgow. His research interests emphasize high per­
formance networks and scalable parallel architectures.

