
Proceedings of the 1996 Winter Simulation ConfeTence
ed. J. !vI. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S\vain

A CORBA FACILITY FOR NETWORK SIMULATION

Chien-Chung Shen

Bellcore
331 Newman Springs Road

Red Bank, New Jersey 07701, U.S.A.

ABSTRACT

Contemporary software development environments
for discrete-event simulation have adopted either
a language-based approach or a library-based ap­
proach. Although these approaches have advantages
such as type checking and optimized code generation
provided by the former and familiar programming en­
vironments facilitated by the latter, they suffer from
the inherent limitations of model portability and in­
teroperability, which may result in inflexible models
and higher model development cost. This paper pro­
poses a CORBA discrete-event simulation facility to
facili tate portable and interoperable simulation mod­
els. The proposed facility is defined by a CORBA IDL
interface which defines operations for object defini­
tion, inter-object communication and event schedul­
ing. Based on the given IDL interface definition, dif­
ferent vendors could supply different products (at dif­
ferent costs) by using different simulation algorithms,
different programming language, or on different op­
erating system or hardware platforms. With respect
to the simulation models, they see a consistent in­
terface across all products. The paper presents the
simulation facility IDL interface, describes its proto­
type implementation in C++, and illustrates its usage
by a bounded-buffer producer-consumer example.

1 INTRODUCTION

Contemporary software development environments
for discrete-event simulation have adopted either a
language-based approach or a library-based approach
(Martin and Bagrodia 1995). In either case, pro­
grammers are provided with a set of model definition
primitives together with a set of parallel program­
ming primitives for object definition and inter-object
communication and synchronization. These primi­
tives are provided either as language extensions or as
functions implemented as library routines. Although

these approaches have advantages such as type check­
ing and optimized code generation provided by the
former and familiar progran1n1ing environments facil­
itated by the latter, they suffer from the following two
inherent limitations.

• Portability. Simulation models developed us­
ing one sin1ulation language might not be easily
ported to another sinlulation language. The pro­
grammers will be required to learn new language
constructs and perhaps an entirely new set of
program development tools.

• Interoperability. Components of a simulation
model are required to be programmed in the
sanle host language dictated by the simulation
language or library routines used. It is, so far,
infeasible that a simulation model consists of in­
teroperable components written in different pro­
gramming languages, or running on different op­
erating systenls or hardware platforms.

These limitations may potentially lock simulation ap­
plication development into a particular (vendor) en­
vironment and result in inflexible models and higher
model development cost.

However, these restrictions are not inherent in sim­
ulation application development alone. In fact, one
of the most difficult tasks challenging information in­
dustry today is to enable application interworking
and construction in a distributed, heterogeneous, and
multi-vendor environment.

Confronted with the challenge, the Object Man­
agement Group (OMG) was founded in 1989 to de­
velop a set of standards, using object technology, to
facilitate distributed computing, which guarantee ap­
plication interoperability and portability. Among
them, the Common Object Request Broker Architec­
ture (CORBA) (OMG 1993) has emerged as a de
facto standard for distributed object computing.

At its core, CORBA defines the facilities required
to allows a client object to transparently invoke the

614

services offered by CORBA-compliant objects (or
CORBA objects for short) running on any machine
in a heterogeneous distributed environn1ent. The re­
mote CORBA object are available across different
operating systen1s (UNIX, Windows, OS/2, MVS),
and different progran1ming languages, such as C++,
C, Ada, and Java, with many others to follow.

Each CORBA object has an interface that defines
the services it offers to its clients, and this interface
is defined in an Interface Definition Language (IDL)
specified by the CORBA standard. The CORBA IDL
is not a programming language and it does not replace
the use of programming languages. Instead, the IDL's
only role is to define interfaces which consist of oper­
ations available to the clients of the interfaces.

The advantage of using CORBA IDL is that it al­
lows a CORBA object to define its interface (services)
in a declarative fashion, which is independent of the
programming language used to implement the object
itself, or the progran1ming language used to imple­
ment the clients of the object. In particular, the lan­
guage used to implement CORBA objects need not
be the same as that used by clients, and of course, the
clients that invoke a given CORBA object need not all
be implemented in the san1e programming language.
For example, a client object written in Ada need not
be aware that a CORBA object it is invoking is im­
plemented in C++. In this case, the IDL definition of
the object interface is translated, through an appro­
priate IDL con1piler, automatically into Ada for the
benefit of the client, and into C++ for the benefit of
the implen1enter of the interface.

In this paper, we propose a CORBA discrete-event
simulation facility using the message-based approach
(Bagrodia, Chandy, and Misra 1987). The facility ex­
ports an interface, defined in CORBA IDL, consisting
of operations for object definition, inter-object com­
munication and event scheduling, and implements the
interface using a discrete-event simulation algorithm.
Simulation models utilizing the facility shall first bind
to the facility (as an object) and then invoke the ex­
ported operations to obtain runtime support for exe­
cuting simulation models.

Based on the proposed interface definition, differ­
ent vendors are encouraged to supply different prod­
ucts (at different costs) by using different simula­
tion .algorithms, di.fferent programming language, or
on dIfferent operatIng system or hardware platforms.
However, with respect to the simulation models, they
see a consistent interface across all products.

The remainder of the paper is organized as fol­
lows. We first present an overview of CORBA in the
next section. The concept of message-based discrete­
event simulation is introduced in Section 3. Based

Shell

Figure 1: Object Management Architecture (OMA)

on that, we define a discrete-event simulation fa­
cility and present its CORBA IDL interface defini­
tion in Section 4. Section 5 describes its prototype
implementation. Application of the facility using
a bounded-buffer producer-consumer example is de­
scribed in Section 6, and Section 7 is the conclusion.

2 DISTRIBUTED OBJECT COMPUTING
WITH CORBA

To enable distributed application interworking and
construction, OMG defines the Object Management
Architecture (OMA) Reference Model (OMG 1992)
which identifies and characterizes the components,
interfaces and protocols necessary to guarantee inter­
operability and portability of distributed applications
in heterogeneous environments.

2.1 The OMA Reference Model

T.he .OMA defines a reference model (Figure 1) for
dIstrIbuted object computing. Within the reference
model, the most important component is the Object
Request Broker (ORB). An ORB provides the basic
mechanism for transparently making requests to and
receiving responses from objects located locally or re­
motely without the client needing to be aware of the
mechanisms used to communicate with the objects.
As such, the ORB forms the foundation for build­
ing applications constructed from distributed objects
a~d for interoperability between applications in dis­
trIbuted heterogeneous environments.

Every entity in the reference model is modeled as
an object. These objects comn1unicate with each
ot~er via the ORB. According to their functionality,
objects are categorized into three groups:

• Object Services comprise a collection of ser­
vices (interfaces and objects) that provide ba­
sic functions for using and implementing objects.

A CORBA Facilit.y for Netlvork Simulation 615

Examples are naming and event services.

• Common Facilities provide a collection of
commonly-found services useful in many appli­
cations. In contrast to Object Services which
are general purpose and application-domain in­
dependent, Common Facilities are services which
are often application-domain specific and typi­
cally provide functionality directly to end-users.
The simulation facility is an example.

• Application Objects are objects specific to
particular end-user applications. Examples are
simulation and banking applications.

2.2 The CORBA Architecture

The CORBA specifies a concrete description of the
interfaces and services that must be provided by com­
pliant Object Request Brokers. CORBA is composed
of the following five major components.

• ORB Core. The ORB Core provides the ba­
sic communication capability between objects. It
supports two different ways in which clients can
make requests to objects: static invocation via
interface-specific stubs and skeletons compiled
from IDL interface definitions, and dynamic in­
vocations via the Dynamic Invocation Interface.
No matter which of these methods is used by a
client to make a request, the ORB Core locates
the desired object, activates it if it is not already
executing, and delivers the request to it. The ob­
ject performs the requested service and returns
any result back to the ORB Core which then re­
turns it to the client.

• Interface Definition Language (IDL). In
CORBA, object services are defined as interfaces
in IDL, a language-independent declarative lan­
guage. IDL supports (multiple) inheritance in
which derived interfaces inherit the operations
and types defined in their base interfaces.

• Interface Repository (IR). The IR provides
persistent storage for IDL interface definitions.
Its primary function is to provide the interface
information necessary to issue requests using Dy­
namic Invocation Interface.

• Dynamic Invocation Interface (DII). Sonle
applications, such as browsers, require the ca­
pability of sending requests to objects without
having compile-time knowledge of their interface
definitions. The DII allows run-time discovery
of interfaces fronl an IR, dynamic creation and
invocation of requests to objects.

Figure 2: The CORBA Components

• Object Adaptor (OA). An object adaptor
provides the means by which various types of
object implementations can utilize ORB services,
such as object method invocation, activation and
deactivation of objects and inlplementations.

Figure 2 shows how the various CORBA components
working together to facilitate distributed object com­
puting. We assume that a client wants to invoke a
service supported by an object. An IDL definition
file is created to describe the interface (services) the
object provides, which is stored in the IR as well as
compiled into an IDL Stub and an IDL Skeleton. The
client can initiate a request by calling the IDL Stub.
Alternatively, the client looks up the IR and dynam­
ically creates and invokes a request using DII. In ei­
ther case, the request is directed to the ORB Core.
The ORB Core locates the object implementation and
then delivers the request to the OA managing that ob­
ject. The OA feeds the request into the IDL Skeleton
where it is then passed to the object implementation.
Any return values are passed back through the IDL
Skeleton and OA to the ORB Core. Then, depending
on the original call, the ORB Core returns the value
either through the IDL Stub or the DII to the client.

3 MESSAGE-BASED DISCRETE-EVENT
SIMULATION

In this section, we review the basic concept of
message-based discrete-event simulation which pro­
vides a nl0re natural paradigm for simulating dis­
tributed systenls, and therefore better serves as the
foundation for the definition of a simulation facility.

In message-based simulation, each physical entity
is abstracted by an logical object (10), and interactions
among the entities, called events, are represented by
nlessage comnlunications anl0ng the corresponding

616

clock = 0;
Initialize event-list;
while (execution not terminated) do
{ fetch next tuple (mi' Si, d i , ti) from event-list;

if (mi is a tinleout message) then clock = ti;
deliver mi to di for simulation;

}

Figure 3: Message-Based Simulation Algorithm

10. (Symbol 10 represents both singular and plural
forms.) A message-based simulation algorithm uses
two data structures (Misra 1986): a si'mulation clock
and an event-list (Figure 3). The simulation clock
gives the time up to which the physical system has
been simulated. The event-list is a partial order of
tuples; a tuple is represented by (m, s, d, t), where m
represents a message, sand d are the source and des­
tination 10 for 1TI, and t is a timestamp. The partial
order is typically based on the timestanlp and en­
sures that events are simulated in the order of their
dependencies. At every step of the sinlulation, the
algorithm selects the tuple with the smallest times­
tamp, say (mi' Si, di , ti), removes it from the event­
list, and delivers m·i to di . Multiple tuples with the
same timestamp may be handled in an arbitrary or­
der, or be ordered deternlinistically using transparent
sequence numbers to reflect their dependencies. The
simulation of m·i by /0 di 1l1ay generate additional
messages which are added to the event-list.

During the execution of a silllulation progranl,
the simulation clock advances in a m.onotonic non­
decreasing manner through the tinlestanlps associ­
ated with each tuple. Note that the simulation clock
is completely decoupled fronl the physical processor
clock. The physical tinle required to sinlulate a mes­
sage does not have any effect on the simulation clock.
How is the timestamp assigned to a message? When
a message is generated, it is timestamped with the
current value of the sinlulation clock - with one ex­
ception. We define a special message called a timeout
message. The timeout message is scheduled by an 10
for delivery to itself at a fut-ure time and is typically
used to sinlulate the tin1e of a sinlulation step that
would be required by the physical entity to execute
the corresponding operational step. An operational
step refers to the statenlents executed by a physi­
cal entity to process a 111essage received by it, and a
simulation step n10dels the activities that would be
executed by the corresponding operational step. For
exall1ple, consider a file-handler entity. On receiving
a read request for the file, a physical (operational)
file-handler will read the appropriate record from the

file and return it to the requesting entity. If the file­
handler is abstracted by a logical object, on receiving
a read request, the 10 estimates t, the time required
for the corresponding physical entity to read the file
and schedules a timeout message to itself t time units
later. As the timestamp on all messages other than
the timeout message refers to the current value of the
simulation clock, the simulation time advances only
when a timeout message is delivered to an 10.

4 SIMULATION FACILITY

In light of the above description, we define the
DESFacility interface (Figure 4), in CORBA IDL,
for 1l1essage-based discrete-event simulation, which
conists of operations for object definition, inter-object
communication and event scheduling.

typedef string ObjName;
typedef string MsgType;
typedef any MsgContents;
typedef long Time;
typedef boolean BGuard;

struct WCltem {
MsgType msg_type;
BGuard bguard;
Time duration;

} ;

typedef sequence<WCltem> WaitCondition;

struct Message {
ObjName source;
ObjName sink;
MsgType msg_type;
MsgContents contents;

} ;

interface DESFacility {
void role(in ObjName myself);
void enroll(in ObjName myself);
void resign(in ObjName myself);
void send(in Message msg);
void receive(out Message msg,

in ObjName myself);
void ~aituntil(out Message msg,

in ObjName myself,
in WaitCondition ~C);

void hold(in Time trn, in ObjName myself);
Time no~();

};

Figure 4: Interface Definition (DESFacility.idl)

A CORBA Facility for Netlvork SiInulation 617

Object Definition. Operations role, enroll,
and resign are used to define participating simula­
tion objects, and to demarcate their beginning and
ending of execution.

Inter-Object Communication. Objects com­
municate with each other using buffered message­
passing (asynchronous communication), where every
object has a unique message-buffer. An object sends
a message to another by invoking a send operation.
Each message, with structure defined by Message,
contains sender, receiver, message type, and message
contents information. A message is deposited in the
message-buffer of its destination object on the invo­
cation of a send operation, and carries a timestamp
which corresponds to the simulation time at which
the corresponding send operation is invoked. An ob­
ject accepts messages from its message buffer by in­
voking a waituntil operation. The waituntil op­
eration takes a sequence of wait-condition items as
an input argument to determine which message will
be accepted by the object. Each wait-condition itenl
specifies a message-type, say mi and a boolean value,
say bi , which is said to be enabled if the message buffer
contains a message of type mi and bi is true, and mi
is called an enabling message. The enabling message
with the earliest timestamp is removed and delivered
to the object. If all wait-condition items are disabled,
the object is suspended for a maximum duration of
sim'ulation time equal to durat ion of a wait-condition
item with msg_type equal to timeout. If omitted, a
default wait-condition item with msg_type equal to
timeout is set with an arbitrarily large duration
value. If no enabling message is received in the
duration interval, the object is sent a timeout mes­
sage. An object must accept a timeout message that
is sent to it. A separate receive operation is also pro­
vided to accept the message with the earliest times­
tamp from the message-buffer, regardless of its mes­
sage type. It will block the invoking object until a
message is available.

Event Scheduling. The hold operation enables
the invoking object to schedule a timeout message for
delivery to itself tm time units from now. It is used
to specify the simulation time used by a simulation
step. The now operation lets the invoking object to
read the current value of the simulation clock.

5 PROTOTYPE IMPLEMENTATION

In this section, we describe a C++ implementation of
the simulation facility in a multi-threaded version of
the commercial ORB Orbix (IONA 1995). (Orbix is
a Registered Trademark of IONA Technologies Ltd.)

We adopt the wait-until simulation algorithm

clock = 0;
Initialize event-list;
while (execution not terminated) do
{ fetch next tuple (l1li' Si, di , ti) from event-list;

if (mi is not accepted by di) then
store mi in tem.p_queue;

else
{ if (mi is a tinleout message) then clock = ti;

deliver 1ni to di for sinlulation;
merge tem.p_queue with event-list;

}
}

Figure 5: Wait-lTntil Sinlulation Algorithm

(Franta 1977), as shown in Figure 5, to inlplement
the simulation engine, in which an object lnay delay
acceptance of a message based on its state such that
messages are not necessarily delivered in the partial
order specified by the event-list. Each 10 may specify
a wait-condition which restricts the types of nlessage
that it is willing to receive; a nlessage is delivered to
the destination 10 only if it satisfies its wait-condition.
The sinlulation clock is advanced through the times­
tamps associated with the tilneout messages in the
event-list.

In the C++ inlplementation, the DESFacility in­
terface is implemented as the DESFacility -.i C++
object (Figure 6) exporting the defined operations.
Upon receiving an invocation for operation send, the
DESFacility -.i object inserts the message into the
event list according to increasing timestamp order.
On receiving an invocation for operations waituntil
and receive, a thread is created implicitly to check
if there is any enabling message. It will block the
invoking object in case there is no enabling message.
Finally, upon receiving an invocation for operation
hold, a thread is created implicitly to first deposit a
timeout message in the event list. It then block until
the scheduled tinleout message becomes deliverable.

As simulation facility is defined in CORBA IDL, it
does not dictate its implementation. The simulation
facility could very well be implemented using a paral­
lel simulation algorithm to take advantage of parallel
processing environment. With respect to its clients,
the implementation is totally transparent, except for
potential performance improvement.

6 AN EXAMPLE

As an example, we consider the sin1ulation of a
bounded-buffer producer-consum.er system (Bagrodia
and Shen 1991). The consumer object repeatedly re-

618

#include "DESFacility.hh"

Shen

main (int argc, char **argv)
{

};

class DESFacility_i :
public virtual DESFacilityBOAImpl

{

private:
void enqueue(const struct Message& msg,

Time tstamp);
public:

Time sim_clock; II sim clock
struct Event eventList; II event list
DESFacility_i(char *marker); II constructor
virtual -DESFacility_i(); II destructor
virtual void role(const ObjName myself);
virtual void enroll(const ObjName myself);
virtual void resign(const ObjName myself);
virtual void send(const Message& msg);
virtual void reeeive(Message& msg,

eonst ObjName myself);
virtual void waituntil(Message& msg,

eonst ObjNarne myself,
eonst WaitCondition& we)

virtual void hold(Time tm,
const ObjNarne myself);

virtual Time now();

struct Event {
Message
Time
struct Event
struct Event

};

msg;
tstamp;
*lst;
*nxt;

DESFacility *p;
Message msg_s, msg_r;
int i, n, now, t_wait;
p = DESFacility: :_bind("sim:simSrv", "");
p->enroll("producer");
now = t_wait = 0; n = Q_LENGTH;
msg_s.source = new char[20];
strepy(msg_s.source, "producer");
msg_s.sink = new char[20];
strcpy(msg_s.sink, "buffer");
msg_s.msg_type = new char[20];
strepy(msg_s .msg_type, "data");
for (i = 0; i < MAX_ITEM; i++) {

if (n == 0) {
now = p->now();
p->receive(msg_r, "producer");
n++; t_wait += p->now() - now;

}

p->hold(rand()%MAXPRODUCE, "producer");
n--; p->send(msg_s);

}

now = p->now();
printf("Producer utilization == %f\n",

«float)(now - t_wait)/(float) now));
p->resign("producer"); p->_release();

}

Figure 7: The Producer Code

7 CONCLUSION

Figure 6: DESFacility C++ Inlplenlentation Class

quests a data item from the buffer using a request
message, waits to receive a data nlessage, and invokes
a hold operation to simulate data consumption. The
producer object waits to receive a free message from
the buffer which indicates that the buffer has a free
slot, invokes a hold operation to simulate the gener­
ation of a data item, and sends the itenl to the buffer
via a data message. The buffer object repeatedly in­
vokes a waitunt il operation that accepts a request
n1essage only when it is not enlpty and a data if it is
not full.

Figures 7, 8, and 9 list the C++ source code for
the producer, consumer, and buffer object, respec­
tively, and Figure 10 depicts their interaction with
the DESFacility object to obtain the discrete-event
sinlulation service.

At the time when the computing industry is de­
manding portable and interoperable distributed ap­
plications, of which simulation is a notable example,
CORBA has emerged as a de facto standard for dis­
tributed object computing. A CORBA-compliant ob­
ject request broker serves as a software bus to facili­
tate communication among distributed objects, inde­
pendently of their languages, operating systems, or
hardware platforms. In addition, the OMA has de­
picted a reference model where application-specific
services are provided as Common Facilities.

The paper describes a CORBA discrete-event sim­
ulation facility. The facility exports an interface,
defined in CORBA IDL, consisting of model defini­
tion operations, and implements the interface using a
discrete-event simulation algorithm.

The main thrust of the paper is not to propose
a new simulation language or a more efficient par­
allel simulation algorithm, but to introduce a new
paradigm for facilitating discrete-event simulation us-

A CORBA Facili(y for Net,,,ork Simulation 619

main (int argc, char **argv)
{

DESFacility *c;
Message msg_s, msg_r;
int i, t, t_used, now;
c = DESFacility: : _bind(" sim: simSrv" ,,~,);

c->enroll("consumer"); ,
now = t_used = 0;
msg_s.source = new char[20];
strcpy(msg_s.source, "consumer");
msg_s.sink = new char[20];
strcpy(msg_s.source, "buffer");
msg_s.msg_type = new char [20] ;
strcpy(msg_s.source, "request");
for (i = 0; i < MAX_ITEM; i++) {

c->send(msg_s);
c->receive(msg_r, "consumer");
t_used += (t = randC) % MAXCONSUME);
c->hold(t, "consumer");

}

now = c->now();
printf("Consumer utilization == %f\n",

C(float)(t_used) / (float)now»;
c->resignC"consumer"); c->_release();

}

Figure 8: The Consumer Code

ing the newly emerged CORBA technology and to
motivate more research activities and product devel­
opment in this direction.

ACKNOWLEDGMENTS

This research was funded by the Arn1Y Research Lab­
oratory under Cooperative Agreement No. DAALOl­
96-2-0002."

REFERENCES

Bagrodia, R. L., K. M. Chandy, and J. Misra. 1987.
A message-based approach to discrete-event simu­
lation. IEEE Transactions on Software Engineer­
ing 13(6):654-665.

Bagrodia, R. L. and C.-C. Shen. 1991. MIDAS: In­
tegrated design and simulation of distributed sys­
tems. IEEE Transactions on Software Engineering
17(10): 1042-1058.

Franta, W. R. 1977. The process view of simulation.
New York: Elsevier North-Holland Inc.

IONA. 1995. Orbix: Programmer's Guide. laNA
Technologies Ltd.

Martin, J. 1\11. and R. L. Bagrodia. 1995. COl\tl­
POSE: An object-oriented environn1ent for par­
allel discrete-event simulation. In Proceedings of
the 1995 Winter Sim'u/ation Conference. 163-166,
Washington, DC.

Misra, J. 1986. Distributed discrete-event simulation.
Computing Survey 18(1):39-65.

OMG. 1992. Object Managem.ent Architecture Guide.
Object Management Group and X/Open.

OMG. 1993. The Common Object Request Broker:
Architecture and Specification. Object Manage­
ment Group and X/Open.

AUTHOR BIOGRAPHY

CHIEN·CHUNG SHEN is a Member of Techni­
cal Staff in Bellcore Applied Research. He received
B.S. and M.S. degrees in computer science from Na­
tional Chiao Tung University, Taiwan, in 1982 and
1984, respectively, and a Ph.D. degree in con1puter
science from UCLA in 1992. His research interests
include distributed network control and o1anagement
for SONET, ATM, WDrvl and wireless networks, dis­
tributed object computing, and network simulation.

620 Shen

main (int argc, char **argv)
{

Figure 10: Prototype Implementation

data

request

DESFacility
,.",.----,

~ ~simulation',,/ "V Clock \

, Event List ,

\~latiOn~1
, Engine) ~
~,........ *,tI'

free

data

DESFacility *b;
Message msg_s_p, msg_s_c, msg_r;
WaitCondition wc;
int q, i, v, tstart, tend;
b = DESFacility: :_bind("sim:simSrv", "");
b->enroll("buffer"); tstart = b->now();
msg_s_p.souree = new char[20];
strcpy(msg_s_p.source, "buffer");
msg_s_p.sink = new char[20];
strcpy(msg_s_p.sink, "producer");
msg_s_p.msg_type = new char[20];
strcpy(msg_s_p.msg_type, "free");
msg_s_c.souree = new char[20];
strcpy(msg_s_c. source, "buffer");
msg_s_c.sink = new char[20];
strcpy(msg_s_c. sink, "consumer·');
msg_s_c.msg_type = new char[20];
strepy(msg_s_c.msg_type, ·'data");
we._length = 2; wc._maximum = 2;
wc._buffer = new WCltem[2];
wc._buffer[O].msg_type = new char[20];
strepy(wc._buffer[O].msg_type, "data");
we._buffer[1] .msg_type = new char[20];
strcpy(we._buffer[1] .msg_type, "request");
for (i = q = v = 0;;) {

wc._buffer[O] .bguard = (q < Q_LENGTH);
wc._buffer[1] .bguard = (q > 0);
b->waituntil(msg_r, "buffer", we);
if (strcmp(msg_r.msg_type, "data") == 0) {

tend = b->now(); v += q*(tend-tstart);
tstart = tend; q++; break;

} else { II "request"
b->send(msg_s_e); tend = b->now();
v += q*(tend-tstart); tstart=tend; q--;
if «++i) < MAX_ITEM)

b->send(msg_s_p);
else

break;
}

}

printf("The avg # of items in buf: %f\n" ,
(float) v I (float) b->now(»;

b->resign("buffer"); b->_release();
}

Figure 9: The Buffer Code

