
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

AN OBJECT-ORIENTED PHONE CENTER MODEL USING SIMPLE++

Gerald A. Levasseur

AESOP Corporation
233 South Wacker Drive
Sears Tower, Suite 9604

Chicago, Illinois, 60606, U.S.A.

ABSTRACT 1.1 Problem Description

A demonstration model and Application Object
Template (object library) was created to show how
SIMPLE++ simulation software can be applied to
service industry telephone call handling centers. In
addition, this example was designed to show modeling
techniques that can be used to take advantage of some
key object-orientation concepts to quickly create highly
flexible simulation models. Finally, some features of the
SIMPLE++ simulation package are illustrated.

1 INTRODUCTION

The object-oriented simulation package SIMPLE++ was
fITst commercially introduced in Germany in February of
1992, and AESOP GmbH was tasked to further develop
and market the software and related products and
services. In North America, AESOP Corporation is
responsible for SIMPLE++ licensing and related
services. Since its creation, SIMPLE++ has been
applied in a variety of industries including automotive
manufacturing, rail transportation, electronics assembly
and fabrication, pharmaceuticals, hospitals, chemical
plants, semi-conductor facilities, material handling, and
warehousing. Application functions include scheduling,
production planning and control, design support, and
capital equipment justification. Users include
corporations, governments, universities and research
institutions worldwide.

Geuder presented some of the most important object­
oriented features of SIMPLE++ in two recent papers
(Geuder 1995a, Geuder 1995b). The two most notable
concepts that will be used in this example are inheritance
and hierarchy. Inheritance is the ability of a child (a
specific instance of a class) or a sub-class to maintain the
properties or functionality of a parent (class). Hierarchy
is the structure where multiple layers of inheritance are
possible.

556

The Phone Center Demonstration Model presented here
illustrates how SIMPLE++ can be used to distribute calls
to telephone customer service sites, such as those shown
in Figure 1. Such sites are widely used in fmancial
service, travel, customer support, catalog and mail order
businesses to answer customer calls. In this model,
different types of calls arrive at a central distribution site,
with each type of call following its own arrival
distribution.

Figure 1: Incoming Calls are Distributed to Sites

For each type of call, there is one type of agent able to
answer it. Upon a call's arrival, a decision is made to
distribute the call to a specific phone site where the
agents are located. There can be any number of sites, as
long as there is at least one. One of three primary
criteria may be selected to determine which site a call
should be routed to:

1. Proportion ofAgents at Site. The number of agents
at a given site that can handle an incoming type of call is
divided by the total number of agents at all sites that can

An Object-Oriented Phone C1enter l\Iodel [Ising SIl\;JPLE++ .557

handle the call. This proportion corresponds to the
probability the call will be routed to a given site.

2. Shortest Queue Length. The site with the shortest
queue length for a given type of call is selected. If there
are no queues, then a secondary criterion may be
selected.

3. Number of Free Agents. The site with the greatest
number of free agents that can handle a given type of call
is selected. If there are no free agents, a secondary
criterion may be selected.

Secondary criterion may be selected in the event the
first criterion conditions do not exist. This criterion can
be any of the three primary criteria; however, if the
secondary and primary criteria selected are the same, the
secondary criterion will be ignored. If the primary
criterion was Proportion of Agents at Sites, no secondary
criterion is required. If the primary criterion was
Shortest Queue Length and there are no queues, the
secondary criterion will be used. If the primary criterion
was Number of Free Agents and there are no free agents
at any site, the secondary criterion will be used.

Once a call is distributed to a site, the call is given to
the appropriate agent. If all agents are busy, the call will
be placed in a queue until an agent becomes free. Calls
exit the queue based on the First-In-First-Out (FIFO)
rule. When a call is completed, appropriate statistics are
collected and the caller exits the system.

1.2 Concepts Demonstrated

In addition to showing the potential application of
SIMPLE++ in the service industry, this model
demonstrates the following SIMPLE++ features and
modeling techniques:

Hierarchy and Inheritance. This model shows how
hierarchy and inheritance can be used to simplify.
modeling and contribute to modeling flexibility.

SimTALK. SimTALK is the built-in SIMPLE++
simulation language. This language is accessed by
means of methods (objects that contain SimTALK
coding).

Anonymous Identifiers. In SIMPLE++, anonymous
identifiers are used to indirectly refer to an object
without having to know in advance what object it is.
This is especially useful because identical methods can
be used in different models or objects (AESOP GmbH
1995). These anonymous identifiers can be used to
greatly enhance the flexibility of a SIMPLE++ model,

especially when used in conjunction with its object­
orientation features.

Modeling Flexibility. This demonstration model will
show how constructors and destructors, when used in
conjunction with anonymous identifiers and other
SIMPLE++ features, give the modeler a powerful tool in
creating flexible models. SIMPLE++ constructors
activate specified methods when a given object is
inserted into a model, while destructors activate
specified methods when a given object is removed from
a model.

Running Multiple Models Simultaneously. Because
all SIMPLE++ models are encapsulated objects, several
models can be run at the same time by placing them
inside another object. This demonstration model will
show an example of how to run two models at once. A
typical use may be to directly compare two dispatching
criteria to see the effects side-by-side.

Other SIMPLE++ Features. This paper will also show
some other SIMPLE++ features: Dialogue Boxes,
Tables, and Plotters. Dialogue boxes are used so
modelers can create a way for the end users to easily
make choices while hiding model complexity.
SIMPLE++ tables can hold different types of data,
including tables within tables and even objects. Finally,
plotters are used to graphically view performance
statistics over time.

2 THE PHONE CENTER MODEL

Objects shown in the top five rows of the Application
Object Template in Figure 2 are basic objects. These
objects come with every SIMPLE++ package. The user
may use these objects directly in a model, or may create
an Application Object Template from them. In this
example, the Application Object Template consists of
the obj ects created for this demonstration model, and is
found in the bottom four rows of the template.

To start the model, the user double-clicks on the
Demo object in the Application Object Template. This
will cause the CriteriaDialog box to open. The dialogue
box feature in SIMPLE++ is used to hide model
complexity when desired, so the ultimate end user does
not need to understand the inner workings of a model to
operate it. In this example, the user may select the
previously described primary and secondary criteria for
dispatching calls to sites.

558

Figure 2: The Application Object Template for the
phone center demonstration model (left), and a dialogue
box used to select decision criteria (right).

After the criteria are selected, the user should select
the Open button to open the Demo frame. A frame is
simply an empty object that is used to hold other objects.
In this example, the Demo frame holds an entire model.
Once Open is selected, the frame shown in Figure 3 will
appear, showing the contents of the frame Demo and
revealing the structure of the model. The default
behavior of double clicking on a frame is to open it
directly; however, in this demonstration example the
modeler added the command to open the dialogue box
before opening the frame.

Figure 3: The Demonstration Model.

Levasseur

2.1 Inside the Demo Object

The EventController, represented by a clock icon in
Figure 3, is an instance of the basic object that is used to
control the model's simulated time. Before running the
model, the user should open the Event Controller and run
the Reset and Init options. This will call all methods in
the model named Reset and Init, respectively, which are
written by the modeler. In this example, they clear all
data inserted into tables by previous runs while leaving
user entered data intact. The Init methods in this
example will calculate the total number of agents and the
proportion of agents at each site, and will write this
information to the SiteData table and other appropriate
tables. Reset and Init are also excellent ways to set the
initial conditions of a simulation run.

The SiteData table shown in Figure 3 is opened in
Figure 4. This table contains the phone sites in the
model, as well as tables-in-a-table that show the overall
numbers of agents at all sites. The objects in the
SiteName column are automatically entered into the table
whenever a new site is inserted into the model. The user
names the embedded table (called Number here) and
enters the total number of agents at this site in the Total
column. The Reset and Init methods fill in the
TotalAllSites and Proportion columns, which contains
the total numbers of agents at all sites and the proportion
of the total at this site, respectively.

NumberSites and NumberAgentTypes shown in
Figure 3 are NwData objects. NwData objects contain
network data that can be used anywhere in the frame. In
this example, the user does not need to do anything with
these objects -- they are set automatically by Init. When
Init methods are activated via the Event Controller, they
check the dimension of the SiteData table. All variables
in the model that refer to the number of sites are based
on this dimension. Thus, any loops or counters referring
to the number of sites are automatically re-adjusted, even
if a site is added or deleted during a simulation run.

Criteria and Criteria2 are also NwData objects. These
show the primary and secondary criteria selected in the
dialogue box. The user does not need to do anything
with these objects, but may change the criteria directly
from here.

An Object-Oriented Pbone Center Model Using SIMPLE++ 559

U
CalKienerotorill

(1)
CalKienelotorV1

Figure 4: SiteData tables. Note they can contain a
variety of types of data, including objects and nested
tables.

2.2 Call Generation

The GenerateCalls object shown in Figure 3 is opened in
Figure 5. This object contains nine generators, each
which send calls to the RoutingLogic method. A
generator is a basic object that calls a given method
according to a specified distribution. Each of the
generators in this example has its own distribution
function that simulates each of the nine incoming call
types. The user may change these distributions in the
GenerateCalls dialogue box. There are nine built in
distributions, or the user may defme a fonnula, read a
value from a table, or simply set a constant. In addition,
any parameter for a distribution can be a variable. In the
generator shown in Figure 5, the method RoutingLogic is
activated according to a uniform distribution between 5
and 23 seconds. The anonymous identifier location
refers to the frame the generator's current frame is in. If
all generators follow identical distributions, the user may
activate inheritance to use the parent's (located in the
Application Object Template) distribution.
Alternatively, the inheritance can be switched off to set
individual values.

Figure 5: GenerateCalls and a Generator's Dialogue
Box.

Because of SIMPLE++ object-orientation, one could
easily modify this object and not worry about how it
would effect the rest of the model. For example, the
modeler could easily replace the GenerateCalls object
and its nine generators with another object that contained
only a single generator, a method and some tables that
accomplished the same end result. That would be useful
if the modeler wished to generalize the number of agents
at some future date.

2.3 Routing Logic Methods

The RoutingLogic object shown in Figure 3 is a method.
This method sends each in-coming call to other methods
that perfonn Rule 1, Rule2, or Rule3 depending on the
primary criteria selected. Figure 6 shows this method's
coding written in SimTALK. While the scope of this

560 Levasseur

2.4 Inside the Site Object

Ments_Fret_or_Queue

PloUecDes~

[fj]
SileOeslructor

OestTuctor_DetCliption

IT1] B
Re::.el Init

IT1]
NewS4eConstrucIor

Comtructor_Descripliofl

Ifno agents are free, DistributeCalls places this call in
the CallQ table, which contains queues for each type of
waiting call. It also updates the current count of waiting
calls.

The method Tally is called when an agent becomes
free. It adds one agent to the counter in the table Agents

Figure 7: The Site Frame Contains the Objects Located
in Each Site.

Critet1dln{egef-l

Crileri.a2:integer-'

An example of the Site frame is shown in Figure 7.
When a call comes in from the RoutingLogic method in
the Demo frame, it will go to the selected site's
DistributeCalls method. Note that the site is directly
referenced by the object in the table, and not by a string
or integer variable. The method DistributeCalls decides
if the call will go to a free agent immediately, or to a
waiting list if no agents are free. If an agent is free, it
decrements the number of free agents for this type of call
in the Agents table, then it calculates the time the call
will take. It will next calculate statistics and record them
in the appropriate tables. Finally, after the call is
complete, it will call the method Tally.

The question mark used in the coding is an
anonymous identifier that refers to the object that called
this method, in this case a generator. Thus, this method
can be called from anywhere in the model without even
knowing what object called it. Also note the last line of
coding before the end statement directly calls the site
method DistributeCalls based on the object found in the
SiteData table. By using tables to hold the object, any
object with a method called DistributeCalls can be
referenced, even if the object was inserted into the model
after the simulation was started.

The rule methods select the sites according to the
criteria previously described. If a secondary criterion is
required, they will call the appropriate rule method.
After the site has been selected, they will return an
integer to RoutingLogic indicating which site has been
selected. RoutingLogic then calls the DistributeCalls
method that is located within the selected site's frame
giving it the type of call and the time it entered th~
system.

paper does not allow a detailed discussion of SimTALK,
the reader can see how it may be activated. A full
description of SimTALK is contained in the SIMPLE++
reference manual (AESOP GmbH, 1995).

Figure 6: A Sample Method and SimTALK

An Object-Oriented Phone Center Model Using SIMPLE++ 561

for this type of call. If there is a queue for this type of
agent, it will take the next waiting call out of the queue
and then call the method DistributeCalls. This time
DistributeCalls will be able to send the call to an agent
because an agent is free.

Figure 7 also shows an excellent example of
hierarchy. Each site in the Demo object is a child of the
site object in the Application Object Template. When
the modeler wishes to make a change to the sites, only
the object in the template needs to be modified -- all of
the children in the model will automatically inherit those
changes. In addition, issues such as repeated names are
not a problem. For example, all sites have tables in them
called SiteData, but each is unique because each is in a
different child of the site object. The CallTimes table in
SiteA is distinguished from the CallTimes table in SiteB
by virtue of its location. Likewise, a modeler adding a
new site does not need to remember to add the table
because each site will inherit the table from the parent.
Thus, the behavior of each child can be easily modified
and tested.

The time a call will take once it is answered by an
agent is assumed to follow a type of truncated nonnal
distribution. The parameters this distribution will use is
set by the user in the CallTimes table shown in Figure 8.
The mean and standard deviation is set by the user, and
the method DistributeCalls will set any generated values
below zero equal to zero. For this demonstration model,
the nonnal distribution was selected because most people
are familiar with it, even though it is unlikely to be the
distribution selected in an actual application. To make
all distributions the same for each site, the user may set
them in the Application Object Template CallTimes
table and tum on the Inherit Contents option in each
site's table in the Demo model. To set the distributions
individually for each site, the user may change them in
the Demo model with the Inherit Contents option off.
This allows the greatest flexibility and ease of data input.

2.4.1 Plotters in the Site Object

This model contains three plotters in each site. They are:

Agents_Free_or_Queue: The number of free agents, or
if there are no free agents, the queue length (represented
as negative numbers).

AvgCaIILength_secs: The average length of a call. This
is defmed as the time the call arrives until the call has
been completed, including any time in spent queues.

PercentOverLimit: The percent of calls that take over a'
user-defmed time limit. A sample plot is shown in
Figure 9.

Here, the hierarchical structure assures that each plotter
will plot the variables associated with the site it is in,
even if this site did not exist when the run was started.
No changes to the model are required for the plotters
when adding a new site.

Figure 8: The CallQ Table Keeps Track of Waiting
Calls

Figure 9: A Sample Plotter Output

562

2.4.2 Tables in the Site Object

In addition to the CallTimes table previously described,
there are three other tables used in each site object. The
user does not need to interact with the tables in the sites,
but may open them to view data.

The WaitingStats table shown in Figure 10 is used by
the model to collect data for the plotters. The columns
NumberOfCalls, TotTime, Avg, OverLimit, and
PercentOverLimit are filled in as the model runs. The
Limit column is filled in before the model is run. If the
user does not wish to use the values set in the
Application Object Template's parent model, they can
switch off the inheritance and set their own values at
individual sites. Alternatively, they can change the
parent's values to suit their needs.

Levasseur

Finally, the Agents table shown in Figure 12 gives the
total number of agents and the number available. The
total is set by the Init function when the model is started,
and the number available is updated continuously as the
model runs.

Figure 10: The WaitingStats Table

The CallQ table in Figure 11 keeps track of the
queues for each type of call. In this example, the third
type of agent has a queue of five calls waiting, each with
its arrival time recorded in a queue file. The fIrst type of
agent has no queue, so the queue file is empty.

Table 11: The CallQ Table

Figure 12: The Agents Table

3 MODIFYING THE PHONE CENTER MODEL

The Demo model in the Application Object Template
can be easily modified or incorporated into other models.
For example, sites can be easily added or deleted, or two
instances of this model can be placed into a larger model
to run both at once.

3.1 Adding and Deleting Sites.

The number of sites is controlled by the user, and the
model is changed using the methods NewSiteConstructor
or SiteDestructor shown in Figure 7. To add a site, the
user just needs to add a child of the parent in the
Application Object Template. This is done simply by
clicking on the parent, then clicking in the Demo frame
to add the child. In this demonstration model, whenever
new site is added to a model as in Figure 13, a
constructor modifies the model to automatically adjust
for this new site. It does this by adding the new site to
the SiteData table. The only action the user needs to
take is to add the number of agents at the new site into
the nested AgentsAtSites table. The operating system's
output window will prompt the user of the required
changes. Other than that, the entire process is fully
automatic and no model modifications are required.

An Object-Oriented Phone Center Model Using SIMPLE++ 563

New Site Added

Figure 13: Constructors Used to Add a Site

If a site is removed from the model, a destructor
automatically adjusts the model so that the model is fully
operational without any user changes. Because each site
is an object, no change to the model coding is required.
The user simply needs to delete the site object from the
model, and the computer will automatically re-calculate
all of the data in the tables. If, however, deleting a site
results in no agents of a given type being left in the
model, the computer will prompt the user to add more
agents of that type.

3.2 Running Multiple Models Simultaneously

The Application object Double Demo contains two
Demo models, as shown in Figure 14. These can be run
at the same time, each with its own number of sites, site
selection criteria, number of agents, or other changes.
This allows direct comparison of two strategies or
options. In this example, hierarchy was used to treat two
complete models as objects within a larger model.

Figure 14: Two Models Can be Run Simultaneously

4 CONCLUSIONS

Object orientation, especially when combined with other
SIMPLE++ features, can be used to create highly
flexible models. In this paper, a service industry
example was presented, but the concepts may be applied
to any discrete-event simulation model.

REFERENCES

AESOP GmbH. 1995. SIMPLE++ reference manual
version 3.1. Stuttgart, Germany.

Geuder, D. 1995a. Modular application objects:
closing the gap between flexibility and ease of use. In
Proceedings of the 1995 European Simulation
Conference, ed. F. Breitenecker, I. Husinsky, 37-40.
Eurosim Congress '95, Vienna, Austria.

Geuder, D. 1995b. Object Oriented Modeling with
SIMPLE++. In Proceedings of the 1995 Winter
Simulation Conference, ed. C. Alexopoulos, K. Kang,
W. Lilegdon, D. Goldsman, 534-540. Arlington,
Virginia

AUTHOR BIOGRAPHY

GERALD A. LEVASSEUR recently joined AESOP
Corporation as their Chief Consultant. He received a
BIE degree from Cleveland State University in 1985, an
MSE from the University of Washington in 1990, and a
Ph.D. degree in Industrial Engineering from the
University of Washington in 1994. Jerry taught at the
University of Tennessee at Chattanooga for two years,
and has industrial engineering experience as a civilian
employee of the Navy. He is a member of SCS, lIE,
ASQC, and APICS.

