
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Cbarnes, D. J. Morrice, D. T. Brunner, and J. J. S,"\~ain

SIMULATION USING GPSSIH

Robert C. Crain

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900

Annandale, Virginia 22003-2603, U.S.A.

ABSTRACT 2 PRODUCT OVERVIEW

GPSS/H is a tried-and-true simulation tool whose user
base, both commercial and academic, continues to grow
despite the presence of many "new" simulation
technology trends. The process-interaction world view
combines with the advanced features available in
GPSS/H to make one of the most powerful and flexible
tools available, capable of hnndling the largest
simulation projects with ease, yet still providing
exceptionally high perfonnance.

The following sections provide an overview of
GPSS/H and its process-interaction world view, a
discussion of model-building interfaces including the
advantages and pitfalls of graphical modeling
environments, and a summary of advanced and
recently-added GPSS/H features. Finally, the special­
purpose simulator is discussed, along with features of
GPSS/H which make it ideal for use as the engine in
such a simulator.

1 INTRODUCTION

The widespread success of GPSS/H stems both from the
superiority of its original design and from years of
improvements and enhancements. GPSS/H requires
some programming-style effort, but does so within a
natural modeling framework that can be readily used
without extensive programming experience. It is
equally well suited for modeling simple systems and for
modeling large, complex systems.

Although many new simulation tools have been
introduced over the past decade, they are often designed
for a limited set of applications. In strong contrast,
GPSS/H continues to be one of the most general,
flexible, and powerful simulation environments
currently available. GPSS/H is presently applied
worldwide in modeling manufacturing, transportation,
distribution, telecommunications, hospitals, computers,
logistics, mining, and many other types of queuing
systems.

453

GPSS/H is a discrete-event simulation language. As is
true with most languages, models are developed in text
files. With GPSS/H, the text files are subsequently
compiled directly into memory and executed. Rapid
prototyping and iterative model development are
encouraged by exceptionally fast compilation and
execution.

GPSS/H uses the intuitive and natural process­
interaction approach to modeling. The modeler
specifies the sequence of events, separated by lapses in
time, which describes the manner in which 44 0 bjects"
flow through a system. A GPSS/H model thus
resembles the structure of a flowchart of the system
being modeled. This intuitive modeling approach
contributes greatly to the ease and speed with which
simulation models can be built.

After the model has been built, the process
representation is executed by GPSS/H, and the
activities of "objects" are automatically controlled and
monitored.

2.1 GPSSIH Process Representation

An '4 0 bject" in a GPSS/H model might be a patient, a
telephone call, or any other type of discrete entity. The
representations of these entities in GPSS/H are called
transactions. As the model executes, many transactions
may be flowing through the model simultaneously-just
as many "objects" would be moving through the real­
world system. In addition, multiple transactions can
execute GPSS/H model statements at the same instant in
time without any special action required of the modeler.
The execution of a process-interaction simulation model
is thus akin to a multi-threaded computer program. This
differs greatly from the single-threaded, sequential
execution of most general-purpose programming
languages.

The focus of many simulation projects is the use of
system resources such as people, machines, conveyors,



454

computers, physical space, and so on. In a GPSS/H
simulation model, transactions C~objects") compete for
the use of these system resources~ as transactions flow
through the process representation, they automatically
queue up when unable to gain control of a necessary
resource. The modeler does not need to specify the
transaction's waiting time or its queuing behavior.
Hence, the passage of time in a GPSS/H model can be
represented inzplicitly, as in the case of a part waiting
for a machine to be free, or explicitly, as in the case of
a part being proce~)~~(j, l by a machine.

As is the case in most real-world systems, a GPSS/H
model may consist of multiple processes operating
simultaneously. Furthennore, each process may in
some way affect the other processes in the system. For
example, two parallel manufacturing processes may
converge to a single inspection point where they are
competing for a single resource-the inspector.
GPSS/H provides the capability for multiple parallel
processes to interact with each other automatically.
Transactions ("objects") may be sent between
processes; they may control or share common
resources; or they may influence the (global) operation
of all processes.

3 GRAPIDCAL MODELING - GOOD AND BAD

Often, the power and ease-of-use of a simulation
environment are confused with the model-building
interface provided by the tool. This may be comprised
of menus and data fonns, or-as in the case of
GPSS/H-it may consist of text entry, or it may be a
combination of the two.

The latest "fashion" in simulation technology is
directed at trying to model systems visually. Icons are
placed on the computer screen to represent system
components, and then the operating characteristics of
each component are specified by moving through a
series of menus and data fonns. One inherent advantage
of this approach is that even novices can build simple
models quickly-although not necessarily accurately.

Building models of complicated systems, however,
requires more than simply placing icons on the screen.
To model many processes, a limited programming
environment must be provided. For example, a part
routing based on a time-dependent math equation
cannot be represented visually. As a result, models of
complex (real world) systems created using the visual
approach often require the modeler to create substantial
amounts of programming code in addition to the visual
representation.

Crain

3.1 Developing and Editing Models

Graphical modeling tools can force their users to make
the model fit within a rigid framework bounded by the
available menus and fonns. The advantage of such a
framework is that it tends to steer even a beginning
modeler through the model-building process. The
disadvantage is that currently available frameworks are
rarely versatile enough to accurately model complicated
systems.

Additionally, large visual models can become very
cumbersome to view ~ edit~ and document. Large
models can be comprised of many Hscreens" of icons,
many of them with associated program code reachable
only by going through multiple levels of menus.
Editing-or even just browsing-these models forces
the user to navigate through a labyrinth of icons,
menus, click-buttons, data fields, and code segments.

3.2 What Defines an Easy-to-Use Simulation
Tool?

A tool's ease-of-use cannot be evaluated meaningfully
on the presence or absence of a single characteristic.
Whether a tool is ~4easy-to-use" is determined by the
combination of general characteristics and specific
features that are frequent! y used in model development.
Simulation software should be selected based on how
well it is suited to the detail and complexity of the
specific type of model to be developed.

The ease-of-use associated with a simulation tool can
mean-among other things-easy to learn, easy to use
repetitively, easy to use when modifying models, easy
to use when building simple models, or easy to use
when building large, complex models. Tools that are
claimed to be "easy-to-use" often fall short when
modeling complex, real-world systems.

Graphical model building, often touted as a
breakthrough in ease-of-use ~ springs from attempts to
apply to simulation recent trends in the design of
computer interfaces used primarily for word­
processing, spreadsheets, database access, and the like.
Although a graphical user interface is well suited for
many kinds of tasks, it is not always practical for
developing simulation models-especially in
circumstances where programming is necessary to
define the operations of complex processes.

There is a point at which a graphical environment
can present its user with more barriers than advantages.
For example, proponents of graphical modeling
techniques frequently claim shorter model development
time, but this is primarily because users of graphical
tools tend to build simpler models. As was discussed in
section 3. 1, creating and editing complex models with



Simulation Using C;PSS/H

graphical tools can require more time than creating and
editing such models in a text-based environment.

Wolverine's future product offerings can be expected
to include the use of graphical interface techniques for
model building, but not simply for the sake of
appearance. Careful consideration is being given to
how this technology can be used to bring real
advantages to modelers of diverse and complicated real­
world systems.

4 IMPORTANT FEATURES OF GPSSIH

Several unique characteristics make Wolverine's
GPSS/H an excellent choice for a general simulation
environment. A key feature of GPSS/H is the
conceptulll flexibility to model a wide range of different
types of systems: any system that can be described as a
process flow, with objects and resources acting upon
each other, can be modeled. This may include people
on a mass transit system, tasks in an office
environment, or data flow within a computer network.

Definition flexibility is also provided within the
language: complex math formulas, expressions, and
constants can be used virtually anywhere in the model.
To promote model readability, elements and entities
may be specified by names instead of numbers. Basic
simulation output data, such as queuing and service
statistics, are automatically provided without any
programnnng.

GPSS/H is available for PCs and SUN SPARC
workstations. On the PC, GPSS/H Professional runs as
a true 32-bit application under DOS, Windows 3.x,
Windows 95, OS/2, or Windows NT, providing
tremendous speed as well as model size that is limited
only by the computer's available memory. Running
under Windows, OS/2, Unix, and Windows NT,
GPSS/H uses virtual memory, which allows model size
to exceed the amount of physical memory installed in
the machine.

4.1 GPSSIH File and Screen I/O

The file and screen I/O built into GPSS/H provide a
variety of ways to get data into a model and to produce
custom output. GPSS/H can read directly from the
keyboard or from text files, and it can write directly to
the screen or to text files. The GETLIST statement and
the BGETLIST block read integer, character, and
double-precision floating-point data. Data files are free­
format (values on each line are simply separated by
blanks), and special actions may be specitied for error
and end-of-file conditions.

Customized output is generated using the PUTPIC
statement and the BPUTPIC block. These use a very

intuitive "picture" type of format specification, which
follows the Hwhat you see is what you get" convention.
Special provisions are included to allow easily
formatted tabular output. Character strings can also be
manipulated using built-in capabilities.

4.2 Scripting Language for Experiment Control

The results produced by a single run of a simulation
model can only provide single estimates of random
variables that may be subject to wide variations.
Careful experimental design, using multiple runs, is
essential to accurateIy predict the behavior of the model
outputs. GPSS/H provides the tools to build a complete
experimental framework.

A complete scripting language is available to
construct experiments and control model execution.
Experiments can be automated with DO loops and IF­
THEN-ELSE structures. Statistics collection may be
totally or selectively reset, and/or data values assigned,
both during a nlodel run and before or after each run in
a series of nlllS. The experimental specifications and
parameters, like any other Dlodel data, can be read in
from a data file or from the keyboard if desired.

4.3 Statistically Robust Random-Number Streams

The need to provide multiple independent streams of
random numbers for use in different parts of the model
(or in the same parts for di fferent runs) is very
important, particularly after a model is largely complete
and the modeler is concentrating on validation and the
running of experiments. The indexed Lehmer random
number generator provided in GPSS/H was designed
and implemented specifically to provide exceptionally
simple, straightforward control of the random number
streams used in a model. Modelers can easily specify
any number of streams and guarantee that they will be
independent (that they will not be autocorrelated due to
overlap). GPSS/H also automatically detects any
accidental overlap, providing an extra measure of
protection to users.

4.4 Validation and Debugging

The GPSS/H Interactive Debugger conveniently
provides for rapid model development and verification.
Simple debugger commands are used to control a
model's execution and examine its status. Functions are
provided to ~. step" through the model, to set
breakpoints and traps that interrupt model execution
based on multiple criteria, and to return to a previously
saved state of the model. Almost all data values can be



456

5 FEATURES OF GPSS/H RELEASE 3

• GPSS/H now supports built-in random-variate
generators for 23 additional statistical distributions
(26 in all).

Using indirect addressing, such as assigning a
value to the Parameter specified by the number
given in PF(ALEX), is similarly intuitive, yet is
not likely to be written by accident:

GPSS/H is continually improving and evolving.
Numerous enhancements, under development as of this
writing, will be discussed in the tutorial session.
Persons unable to attend may obtain the latest
information by contacting Wolverine Software
Corporation.

Some of the more significant additions to Release 3
of the widely-used GPSS/H Professional version are:

• The operations that can be performed on
Transactions in a User Chain have been extended.
New SCANUCH and ALTERUCH Blocks allow
examining and changing the Parameters of such
Transactions without having to UNLINK and
reLINK them. They operate on User Chains in
exactly the same way as SCAN and ALTER
operate on Groups.

• The SYSCALL statement and the BSYSCALL
Block, which take an operating system command
line as an operand, allow a running GPSS/H model
to shell out to the operating system to perform the
specified command. SYSCALL and BSYSCALL
are especially useful when using existing programs
to perform data analysis during model execution or
between simulation runs. The models can
communicate with the external programs through
data files. The ability to shell out to the host
operating system has also been implemented in the
GPSS/H Interactive Debugger. In order to use this
feature, one merely types a "$" followed by the
operating system command at the debugger
command line prompt.

• CHECKPOINT and RESTORE statements allow a
model to save its state at a predetermined point
during execution, then nlake repeated runs using
that state as the starting point. In many cases,
CHECKPOINT and RESTORE can be much easier
to use than the traditional READ and SAVE
statements.

• Release 3 of GPSS/H Professional supports user­
written external routines in both C and
FORTRAN. Although it is rarely necessary to go
"outside" GPSS/H when developing a model, it
can be helpful in special situations. For example, it
might be desirable to use scheduling software from
the real system as a component of the simulation
model. Similarly, a modeler might want to use pre­
existing computational code, or need to write
extremely complex computational routines that can
become somewhat cumbersome as GPSS/H Blocks.
Other special situations lllight involve the need to
interface with non-ASCII data files, or to develop a
specialized user-interface.

PF(PF(ALEX)) == 1

PF(ALEX) == 1

BLET

BLET

• The BLET Block and the LET Statement can now
be used to assign a value to any GPSS/H data item.
Unless you need the rareIy used range-type
assignments, there is no longer any reason to use
the ASSIGN, SAVEVALUE, and MSAVEVALUE
Blocks. The newly-extended BLET Block provides
a single, straightforward syntax for assigning
values to all GPSS/H data items. For example,
using BLET to assign a value of 1 to the
Transaction parameter named ALEX is quite
intuitive:

examined, including local data, global data, transaction
attributes, entity statistics, and array data values.

The debugger provides a Hwindowing" mode that
displays source code, model status, and interactive user
input as the model runs.

A modeler can interrupt a long-running model at any
time and use the debugging features to make sure that
everything is running correctly before resuming
execution.

The GPSS/H debugger has almost no effect on
execution speed. Because of this, many modelers use
the debugger as their everyday run-time environment
for GPSS/H.

• GPSS/H Professional now comes bundled with
ExpertFiC'\ the higWy-regarded distribution-fitting
software from Averill M. Law and Associates.

• Floating-point Parameters can be examined and/or
modified during operations on both User Chains
and Groups.



Simulation fJsing GPSS/H 4S7

6 BUILDING A SIl\fULATOR USING GPSSIH

Earlier in this paper, we contrasted the capabilities of
visual-based modeling tools with those of languages.
Regardless of which approach is used, the modeler
must still build from scratch a model that represents the
physical system of interest. Modeling complex systems
correctly requires intimate knowledge of both the
simulation software and the system under study.
However, not everyone who can benefit from using
simulation has the time or the training necessary to
build simulation models.

As a result, a third type of modeling-tool, the
special-purpose simulator~ has emerged as a way of
providing simulation capabilities to users with little or
no modeling experience. Special-purpose simulators are
most commonly developed under circumstances where:

• a single model development effort can benefit
multiple users

• modeling expertise can only be obtained from
indirect sources such as external consultants

In these cases, an experienced modeler develops the
model, freeing the end-user from learning modeling and
simulation-software skills.

The special-purpose simulator is a custom-built
analysis tool designed by an experienced simulation­
model builder. At its heart is a data-driven model of a
specific system or set of similar systems. The simulator
provides its user with a method to easily modify model
parameters, define experiments, run tests, and get
results. A simulator is usually comprised of a data­
entry front end, a simulation engine, and an output
browser. The simulation engine runs a parameterized
model which accepts user-specified data at execution
time. Combining these tools brings the power of
simulation analysis into the hands of the non­
simulationist.

6.1 Data-Entry Front End

The front end is the means by which the user of a
special-purpose simulator modities the run parameters
without changing the underlying model. This may take
several forms, the most basic and rarely used of which
involves manually editing a text file. In another
approach, the model itself prompts the user for input
from the keyboard as the model executes. Still other
designs require modifying data by using an external
spreadsheet or database program. No matter which
approach is used, the purpose of the front end is to

convenient!y produce a data file which can be used by
the simulation model as it executes.

A more advanced approach integrates a customized
front-end data-entry progranl, a sinlulation engine, and
an output browser under a single outer shell (Figure 1).
Typically created using a general-purpose programming
language or a tool such as Visual Basic, the shell may
be menu-driven. Data-entry ~4windows" and dialog
boxes guide the user through the process of specifying
parameters, running the model, and viewing the output.
The shell may also provide built-in help facilities and
data "range-checking" (e.g. verifying that all operation
times are non-negative before executing).

6.2 Simulation Model

The most important component of the special-purpose
simulator is the underlying model. Since the end user is
generally prevented from nl0difying the model, this
component detennines the maxinlUID flexibility offered
by the simulator. It must be generic enough to accept a
broad range of inputs, and it must be updated
periodically to insure that the model remains valid.

A static simulation model can be produced and its
design frozen when the simulator is initially created, or
model code can be generated 44 on-the-fl y'~ every time
that the nlodel parameters are modi tied by a user. In
either case, user input is not limited to operating­
parameter values - it can also alter logic embedded
deeply within the model. For example, based on a user­
specified value, the nlodel could select one of three
different order-picking algorithms that have been pre­
coded into the model.

6.3 Simulation Engine

The simulation engine runs the model and generates
output. There are several features to look for when
selecting the engine.

Most importantly, the language used for the engine
must be flexible enough to handle the demands that a
generalized model places on the software. Flexibility is
crucial in the areas of file input, file output, and control
logic within the model. Execution speed is also a
primary concern. The faster a model executes, the
better-time executing a model is often down-time for
the user. GPSS/H's speed and built-in flexibility make
it the ideal sinlulation engine for a special-purpose
simulator.

An excellent example of the use of GPSS/H as a
simulation engine is given in CougWan and Nolan(95).



458 ('rain

6.4 Output Browser

The output browser displays the data generated by the
model in an easy, understandable form. If the
simulator's user has limited experience in simulation­
modeling, the standard-styIe statistical reports provided
by the engine may be difficult to decipher. Custom­
formatted output, including summary statistics, should
always be used to present simulator results.

Batch File

S
H
E
L
L

Executable
Programs

Menu-Driven
Front End

(Enter model parameters
and \\f1te data fil e)

Simulation Engine
(Run parameterized model

and read data file)

Output Browser

(Format and view results)

Text Files

Data File

Simulation Model

Output File

people. However, each user must have a copy of the
simulation software in order to execute the model. For
a simulator used by dozens or even hundreds of users,
the cost of the simulation software may render a project
too expensive. Wolverine's Run-time GPSS/H offers a
solution to this problem.

Run-time GPSS/H is identical to Wolverine's 32-bit
GPSS/H Professional, except that it can only run
models which previously have been specially compiled
with the regular Professional version. The run-time
version allows economical distribution of high­
performance GPSS/H-based simulators.

Security is another important feature provided by the
run-time version. Since only pre-compiled models can
be run, the end user cannot view or edit the model
~'source" code. The user has access only to the data
files used by the front-end and the output browser;
hence, confidential models can be safely distributed.
Even further security can be obtained by producing
special "project-specific" pre-compiled models that can
only be run by a specially designated group of users.

SUMMARY

Control returns to "shell" after each component finishes executing

Figure 1: Components of a Special Purpose Simulator

Statistical analysis of the output can be performed
directly by the shell program, or by a specialized
statistical software product. For special-purpose
simulators running under Microsoft Windows,
SIMSTAT, from MC2 AlUllysis Systems, reads and
analyzes standard output data generated by GPSS/H.

Animation is yet another form of simulation output.
Animating a generalized model can sometimes present
obstacles. Accounting for variations in resource
numbers and capacities, flow and routing-patterns, and
physical layout dimensions makes animating a generic
model more difficult than animating a specific model.
However, a basic animation helps confirm model
validity to the non-simulationist. High quality
animations can be generated by coupling a GPSS/H
model with Proof Animation™, a general-purpose
animation tool.

6.5 Run-Time Versions Provide an Economical
Simulation Engine

A simulator is generally developed for a single
application, where it is intended to be used by many

GPSS/H has a strong history of success in both
commercial and academic environments. The product
continues to evolve in functionality and to grow in use.
Although GPSS/H uses a more traditional text-based
model definition, it continues to break new ground in
ease-of-use and modeling flexibility.

REFERENCES

Banks, J. 1991. Selecting simulation software. In
Proceedings of the 1991 Winter Si111JJ,lation
Conference, ed. B.L. Nelson, W.D. Kelton, and
G.M. Clark, 15-20. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Banks, J, J.S. Carson II, and J.N. Sy. 1996. Getting
started with GPSS/H. 2d ed. Annandale, Virginia:
Wolverine Software Corporation.

CougWan, K.L., and Paul J. Nolan. 1995. Developing
special purpose simulators under Microsoft
Windows. In Proceedings of the 1995 Winter
Simulation Conference, ed. C. Alexopoulos, K.
Kang, W.R. Lilegdon, and D. Goldsman, 969-976.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Henriksen, J.O., and R.C. Crain. 1989. GPSSIH
reference manual. 3d ed. Annandale, Virginia:
Wolverine Software Corporation.

Law, A.M., and W.D. Kelton. 1982. Simulation
modeling and analysis. New York: McGraw-Hill
Book Company.



Simulation Using GPSS/H

Schriber, T.l. 1991. An introduction to simulation
using GPSS/H. New York: John Wiley & Sons.

Smith, D.S., D.T. Brunner, and R.C. Crain. 1992.
Building a simulator with GPSS/H. In Proceedings of
the 1992 Winter Simulation Conference, ed. J.J.
Swain, D. Goldsman, R.C. Crain, and J.R. Wilson.
357-360. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Wolverine Software Corporation. 1996. Using Proof
Animation. 2d ed.. Annandale, Virginia: Wolverine
Software Corporation.

AUTHOR BIOGRAPHY

ROBERT C. CRAIN joined Wolverine Software
Corporation in 1981. He received a B.S. in Political
Science from Arizona State University in 1971, and an
M.A. in Political Science from The Ohio State
University in 1975. Among his Wolverine responsi­
bilities is that of chief developer for PC and
workstation implementations of GPSS/H. Mr. Crain is
a Member of IEEE/CS and ACM. He served as
Business Chair of the 1986 Winter Simulation
Conference and General Chair of the 1992 Winter
Simulation Conference.

4.59


