
Pr'oceedings of the 1996 W1:nteT Simulation Conference
ed. J. !vI. Charnes, D. J. l\Iorrice, D. T. Brunner, and J. J. ST.vain

FUZZY GRAPH BASED METAMODELING

Klaus-Peter Huber
Michael R. Berthold

IRF (Prof. D. Schmid), University of Karlsruhe
P.O. Box 6980, 76128 Karlsruhe, Germany

ABSTRACT

Analysis of simulation models has gained considerable
interest in the past. However, their complexity still
remains a considerable drawback in practical applica­
tions. One promising concept is the building of auxil­
iary models (metamodels) for different analysis goals.
We present an efficient algorithm that constructs a
metamodel only from simulation data, so no a pri­
ori knowledge has to be included. It will be shown
that the resulting system approximates real valued
functions with an adjustable precision. In addition
the data can contain fuzzy patterns or values with a
corresponding confidence-interval. This is especially
well suited for simulation data due to its stochastic
character. The metamodel is represented in form of a
Fuzzy Graph which allows the analyst to directly ex­
tract easy to interpret if-then-rules. Application of
this method to a real world token bus model is shown
in detail.

1 INTRODUCTION

The use of modeling and simulation techniques has
gained considerable influence for the development or
the optimization of different systems. Unfortunately
the complexity of the resulting simulation systems
increases with the complexity of the real systems.
This leads to several drawbacks: simulation becomes
a highly time consuming task which makes it impossi­
ble to perform interactive simulations and in addition
the analysis of the resulting simulation model is ex­
tremely complicated. Therefore there is a need for
methods that help to analyze the behavior of com­
plex models, e.g., to improve the validation process.
In general two directions exist to solve this problem.

• modelbased: This means that the model can be
analyzed based on knowledge about the con­
crete model structure. For example in petri net
models the construction of a reachability graph

418

Helena Szczerbicka

Dept. of Computer Science, University of Bremen
P.O. Box 330440,28334 Bremen, Germany

helps to find places in the petri net that will
never be reached.

• databased: If the model is executable, it is possi­
ble to perform experiments with the model e.g.,
by stochastic simulation of a queuing network
model. The result is a huge database describing
values of model parameters (factors) and cor­
responding values of the output parameter of
interest. Analysis of dependencies between fac­
tors and the output parameters helps to build a
simpler model or to better understand the be­
havior.

Due to the high complexity of models in real appli­
cations often there does not exist an analytical so­
lution, so databased methods have to be used. One
way is to analyze the data with statistical means like
correlation analysis to find some unknown dependen­
cies. Another way is to construct an auxiliary model,
which is simpler and easier to handle than the orig­
inal model. This auxiliary model is built using the
example data generated by experimenting with the
model and it should have the same behavior as the
model.

In Blanning (1975) computation of partial deriva­
tives was used to obtain the so-called metamodelfrom
the simulation data. Depending on the task of analy­
sis there may exist different kind of metamodels (see
Figure 1), for example to analyze the parameter sensi­
tivity (Blanning 1975; Huber and Szczerbicka 1994),
to find bottlenecks (Kleijnen and Standridge 1988),
or to optimize models (Yerramareddy et al. 1992).
In all cases the extraction of a metamodel helps to
reduce the complexity of the model that is being an­
alyzed. Building a metamodel can be done including
a priori knowledge or without it. If some underly­
ing dependencies of parameters are known a priori,
the metamodeling process can take these into account
and generate a model where this information is incor­
porated. If this is not the case, the metamodel may
be constructed only from the data set.

Fuzz.y Graph Based 1\IetaIll0deling -119

Figure 1: The Metamodeling Process

C§nsitivi~

°0
f(x1,x2) =

a·x1 +b·x2+c

metamodel A

~etamodeling ~spareny

0 0 °
if x and yare low

then f is medium -)

metamodel B

2.1 Statistical Approaches for Metamodeling

Ad hoc methods use handfitted curves or graphical
approaches where the response of the output to a
changing input is represented graphically (Blanning
1975). Other methods use piece\vise linear approxi­
mations (rv1eisel and Collins 1973) or linear regression
models with a least square approach to define the pa­
rameters (Kleijnen 1979). Regression functions are
very popular since the resulting models are easy to
handle and interpret, and statistical methods like t­
tests and F-tests can be used to validate the quality of
the model (Friedman and Pressman 1988). For deal­
ing with nonlinear behavior metamodeling regression
functions are often defined as:

In this paper we present a metamodeling approach
that only uses the data and constructs a so-called
Fuzzy Graph. This allows an easy interpretation of
the input-output behavior since the metamodel can
be represented with fuzzy rules. Analysis of the rules
helps to uncover the underlying dependencies between
factors and one output parameter and the rule base
can also be used as a fast simulator.

2 METAMODELING AND FUNCTION AP­
PROXIMATION

Here, we concentrate on models where the behavior
can be described by a function

if n factors Xl,"', X n are considered and y is the
output parameter of interest. In practice this func­
tion can not be extracted explicitly from the model
description and is therefore unknown. To build a
suitable metamodel means to perform m experiments
with the model to get m data points (xi,' .. , X.~, yi)
(1 SiS m) and to build a metamodel representing a
function fmeta (Xl, ... ,Xn) == fj with fj being the ap­
proximated value of y. If the data is generated by
a stochastic simulation process y is a stochastic vari­
able. There may exist a few different values of y for
the same input parameters, e.g., by simulation with
different random number streams. This should be
taken into account when metamodeling. To validate
the quality of the metamodel the difference between
the observed y values and the approximated values fj
can be evaluated.

Several approaches to build function approxima­
tors for metamodeling are known. They can be cate­
gorized into statistical approaches that use the data to
adapt a special kind of function with statistical means
and Machine Learning Algorithms that use the data
to train a network or to generate a rule set.

n

fmeta(x) == 130 + L13)' Xj + L13i,l' Xi' Xl + E (2)
j=l i,l

with E representing an error term and 13i,l representing
some user-defined in pair dependencies. To find a
"best fitting" metamodel the regression parameters
/30, /3j and /3i,l can be obtained by minimizing the
mean square error due to the example data. The
resulting function can be used for approximation or
for analysis e.g., to obtain some information about
the sensitivity of each factor.

In practice often the behavior of a simulation model
can not be described with such first-order models.
For example in Friedman and Pressman (1988) it is
shown that the dependence between the factor mean
average numbers of customers and the distribution
parameters in a simple M/M/1-model can not be ad­
equately described with that kind of functions. To
solve this problem deep background knowledge about
the model behaviour must be used. So for analysis of
complex simulation models new approaches are re­
quired that build a metamodel without such a priori
knowledge.

2.2 Machine Learning Approaches for Meta-
modeling

To avoid the need for background knowledge nowa­
days several methodologies have been proposed that
make use of algorithms from the machine learning
area. Prestructured Neural Networks are trained (Hur­
rion 1992; Pierreval 1996) or rule learning algorithms
(Pierreval 1992) are used to build a metamodel using
data from the simulation model. Although approxi­
mation with neural networks is done in a satisfying
way this approach makes it hard to extract knowl­
edge from the metamodel. Other approaches make
use of rule learning algorithms to avoid this prob­
lem. In Pierreval (1992) preprocessed (i.e., cleaned
and digitized) data from the simulation model was

420 Huber, Berthold, and Szczerbicka

used to directly extract decision rules and in Huber
and Szczerbicka (1994) a similar approach was used
for sensitivity analysis. Both concepts are based on
methods that learn a classifier but not a function ap­
proximator. Therefore they are restricted to applica­
tions where the output parameter is not continuous.

Another kind of learning techniques that are es­
pecially well suited to deal with "noisy" or "stochas­
tic" data originate from the Soft Computing or Fuzzy
Systems area (Zadeh 1994). They offer an easy way
to model soft data points, for example values with
a corresponding confidence interval. Unfortunately,
most known methods that learn fuzzy systems from
data have severe limitations in this context. Some
require an a priori defined set of rules that is just fine
tuned during training (Uebele, Abe, and Lan 1995),
others construct the ruleset during training but the
result depends heavily on the order of training exam­
ples (Simpson 1993). In Wang and Mendel (1991) a
simple algorithm has been proposed that divides the
feature space into partitions using a grid and assigns
one rule to each tile. More sophisticated algorithms
(Higgins and Goodman 1993) try to divide individual
attributes step by step using an increasing nUlnber of
membership functions. These methods tend to be
very restrictive because the feature space is split into
too many tiles. Each tile represents one rule but for
most of these rules no evidence was encountered dur­
ing training. For the purpose of metamodeling it is of
much more interest, however, to find only a few rules
that cover a large portion of the feature space.

In this paper a new approach is proposed that al­
lows the usage of Fuzzy Graphs (Zadeh 1994) to rep­
resent the discovered knowledge. The main advan­
tages are the automatic and fast construction of the
Fuzzy Graph based on data examples and a straight­
forward knowledge extraction. Since the constructed
Fuzzy Graph is represented with if-then-rules the
metamodel is easy to understand. Additionally, the
model behavior can be approximated. This makes it
possible to perform fast simulation experiments with
the metamodel. The following section describes how
these Fuzzy Graphs are generated and how they can
be used for function approximation. An example in
section 4 demonstrates how the proposed algorithm
models an artificial function.

3 FUZZY GRAPHS

The central idea of a Fuzzy Graph is to represent a
function with means of Fuzzy Logic instead of math­
ematical equations. The domains of the input pa­
rameters and the domain of the output parameter
are described with so-called linguistic variables rep­
resented by individual membership functions. The

mapping from input to output is defined by a set of
Fuzzy Points. Well-known techniques like the center­
of-gravity calculation allow one to approximate real
valued functions based on this Fuzzy Graph. In this
paper, a Fuzzy Graph consists of a collection of Fuzzy
Points that can be represented as if-then-rules. Other
ways to represent Fuzzy Graphs are described for ex­
ample in Zadeh (1994). The main advantage of the
Fuzzy Graph concept is the very compact and easy
to understand representation of a function.

The algorithm presented in this section automat­
ically constructs a Fuzzy Graph based on a set of
training examples. The training examples can feature
"soft" values y, which enables the usage of targets
with confidence intervals. Fuzzy Graphs built by this
approach use a fixed granularization on the depen­
dent variable which means that the user defines the
membership functions of the output variable y before
training. This is helpful to focus automatic gener­
ation of the Fuzzy Graph on specific regions of the
output value and to weaken constraints (and there­
fore the evolving number of rules) on regions with a
low focus of attention. The partitioning of the input
variables is determined from the training examples.
The algorithm we use is derived from a constructive
Neural Network training algorithm that builds a spe­
cific type of networks with locally active hidden units
(Berthold and Diamond 1995). In this paper, a modi­
fied version of that algorithm is used to automatically
find a set of Fuzzy Points that describe the training
data (Huber and Berthold 1995).

Output granularization has to be defined before
training starts. Figure 2 shows an example of a one­
dimensional Fuzzy Graph constructed by the pro­
posed algorithm. The output granularization is known

Figure 2: A One-dimensional Fuzzy Graph

a-priori: in this case 6 regions with individual mem­
bership functions are used. The used algorithm then
places fuzzy points in the input space (.~\'") to approx­
imate the training examples. Before training starts,
the output variable Y was already partitioned into
6 regions (or classes) with user defined membership
functions. The Fuzzy Graph consists of fuzzy points
with individual membership functions for the input
variable X which are determined during training.

Fuzzy Grapb Based Metamodeling 421

Figure 3: A Two-dimensional Fuzzy Point

such Fuzzy Point represents exactly one if-then-rule
that can be described as:

3.2 Fuzzy Graph Function Approximation

To use the constructed Fuzzy Graph for function ap­
proximation the output values have to be fuzzified
due to the predefined membership functions for the
output parameter. These output membership func­
tions have to be defined a priori by the user and can
incorporate knowledge about the systems behavior
and/or areas of interest. An example is illustrated
in Figure 4.

leads to training patterns consisting of an input vec­
tor x == (Xl,···, X n) with the corresponding target
p, == (J-tl,···, J-tc) (0 ~ J-ti ~ 1), where c denotes the
number of classes.

The method makes sure that each training pattern
is covered by a rule (Fuzzy Point) of the class with
the highest membership value and that rules of classes
with membership values == 0 do not cover the pattern.
This is useful to tolerate moderately noisy patterns
or small oscillations along class boundaries, as will be
demonstrated later.

The training algorithm we use is based on three
steps that introduce new rules when necessary and
adjust the core- and support-regions of existing rules.
The whole training process usually takes only about
4-5 training cycles until the structure of the Fuzzy
Graph automatically stops to change. Two condi­
tions will hold for all training patterns (x, p,) after
training: There is at least one rule of class k with the
highest membership value J-tk which has x inside its
core. And for all classes k with J-tk == 0, x lies outside
of their support area. This leads to a rule base where
each pattern in the training set is covered by an ap­
propriate rule and not covered by those of conflicting
classes. The complete training algorithm is described
in Huber and Berthold (1995).

E [bn, Cn] C (an, dn)
y is of class k

IF Xl

AND
AND X n

THEN
(weight: w)

The constructed Fuzzy Graph consists of a col­
lection of Fuzzy Points where the cor~region repre­
sents the smallest area where patterns of the class
were found, and the larger support-area contains no
patterns of conflict. Therefore patterns in the core­
region are given a membership value of 1 while in
the support-region the membership value declines lin­
early to 0 along its boundaries. This leads to the
membership functions illustrated in Figure 3. Each

The input parameters are restricted through core [b i , Ci]
and support-regions (ai, di) with ai < bi ~ Ci < di

and each rule corresponds to one class k of the out­
put parameter. Additionally, the rule weight shows
the number of training examples that are covered by
the core of the rule and is therefore an indication for
the reliability of the rule.

3.1 Automatic Fuzzy Graph Construction

Construction of the Fuzzy Graph (or training) re­
quires input patterns with a corresponding output.
The output value (or target) can be defined as a soft
value, using an individual membership function J-tr·
For practical applications these soft targets can origi­
nate from stochastic simulation experiments. If there
exist sharp targets a singleton can be used as the
corresponding output membership function. From
this soft target membership function J-tr the values
J-tk for each class k (1 ~ k ~ c) are computed, using
pre-defined membership functions for each class of y.
The membership values for all classes are computed
using a fuzzy and-operator (min) between the target
and the class membership set. Training is then per­
formed using these target membership values. This

1 2 3 4 5 6 7 8 9 10 Y

Figure 4: Fuzzification with 10 Output Classes

Based on this equidistant 10 class output-granula­
rization 2000 randomly generated training points of
an one-dimensional function were used for construc­
tion of a Fuzzy Graph. On the top of Figure 5 the
Fuzzy Graph is shown and on the bottom the result­
ing function approximated by the Fuzzy Graph is de­
picted.

Especially within the context of analysing simu­
lation data with stochastic output variables it is of
interest how well a certain amount of uncertainty can

422 Huber, Berthold, and Szczerbicka

• ~t X'C~~~~~ =-
:Jl..lp~·:rrts· ---

!linlx! '!lO/xl + <>qrt (x) + 0.5 _._­
'recbf.rs!iUlt5'-

4 METAMODELING A TOKEN BUS

To demonstrate how the presented approach can be
used to find rules in a real world simulation model,
a token bus system was chosen. This system be­
longs to the class of field bus systems, i.e., a special
type of communications systems, designed to connect
machines and computers in a manufacturing environ­
ment. Important requirements in this area are "real
time" facility, high flexibility, and low costs. In this
section the analysis will mainly focus on the real time
facility of the model, that is its capability to answer
each request within a limited time. To guarantee this
property for the given simulation model a metamodel
will be built using the presented method and its be­
havior depending on different parameter settings will
be explored.

The modeled token bus system corresponds to the
seven level architecture of the ISO/OSI communica­
tion standard. Figure 6 shows the structure of the
system. Many details like different message priori-

o L..------L.-_J.......---'-_...L.---L-_.....L....-----L._......L...----'_---l

o

Figure 5: The Fuzzy Graph (top) and the Resulting
Approximation (bottom)

be handled by this approach. A series of experiments
was conducted with a specific amount of noise added
to the training data to investigate the behavior of
the Fuzzy Graph, for more details see Berthold and
Huber (1996).

These experiments show that the resulting Fuzzy
Graph approximates the original function well, with
a specific degree of accuracy. In regions containing
"noise" , the Fuzzy Graph ignores the oscillations and
tends to produce plateaus. The degree of noise toler­
ance depends mainly on the width of the membership
functions for the output parameter. So the amount
of smoothing can be controlled by the output fuzzi­
fication. Using more and finer membership functions
results in higher precision but then the system tends
to follow the data points very closely, and generates
a lot of rules to model also the noise.

Good approximation performance helps to improve
the reliability of a metamodel that is built with the
presented Fuzzy Graph approach. In addition the
metamodel can serve as an efficient simulation tool.
Another advantage of the Fuzzy Graph metamodel is
its easy to understand representation. This will be
shown in the next section.

Figure 6: The Tvlodel Structure

ties and the token handling had to be taken into ac­
count when modeling the system with a queuing net­
work model. The model was then implemented with
a commercially available simulation environment. To
illustrate the complexity of the underlying queuing
network the internal structure of the UART module
(Universal Asynchronous Receiver Transmitter) with
its interfaces is illustrated in Figure 7. Since each sta­
tion is modeled by four different modules the whole
model consists of more than two hundred different
queues and several hundreds connections. Due to this
complexity of the internal structure a conventional
analysis of this model is extremely time consuming
and complicated.

Fuzz.Y Graph Based lvletaJllodeling

Figure 7: The Internal Structure of an UART

4.1 Metamodel Construction

Due to the large number of parameters (20 input and
10 output parameters) of the complete model the ex­
ample analysis presented in this section will focus on
the response time between two master stations in de­
pendence of a selection of parameters of interest. It is
desired that this response time always stays below an
upper bound to guarantee that reaction of the system
is always in time. Four input parameters were chosen
while the other parameters remained fixed:

• average time for execution (cpul): describes the
performance of the CPU module of station 1,
i.e., the average time required to execute one
command. This value is varied within 0.1 (fast)
- 3.4 (slow).

• workload rate (workload): describes the average
idle time between two requests, this value is var­
ied within 0.02 (low idle time, high workload)
- 1.0 (low workload).

• maximum target-rotation-time (trt): maximum
allowed time to process the token. This para­
meter controls the time each station has to send
messages, values were set within (0.01,0.4)

• number of additional stations (stations) repre­
sents the background workload on the network.
Many additional stations communicating over
the network will increase the traffic on the net­
work: (1,15)

Since the construction of the metamodel only depends
on the training data the set of examples has to be rep­
resentative. For this the planning of simulation exper­
iments must be done carefully. In regression analysis
there exist some efficient techniques for experimental

design because the assumption that the model be­
haves linear (or in a linear way) allows to make only
few experiments to determine the regression parame­
ters (Kleijnen and Standridge 1988). With Fuzzy
Graph based metamodeling no assumption about the
underlying model function is made, so the selection
of representative data points is not straight forward.
One way is to use a randomized setting of input para­
meters, a more sophisticated way is to use the infor­
mation of the generated fuzzy graph for iterative se­
lection of new simulation experiments. First ideas of
this new approach are described in Frank and Huber
(1996). In our application a full factorial design is not
possible, therefore we used randomized settings for
the input parameters. In the token bus experiment
we performed some simulation experiments to vali­
date the model and to see if the model behaves stable.
352 simulation experiments were performed where the
input parameter values were varied randomly within
the given intervals. The averaged response time (rt)
was measured within (0.088,9.75). Each simulation
experiment was repeated five times with a different
random number stream of the simulation tool. From
these five values the minimum, the maximum, and the
average were taken and a triangular target member­
ship function was generated (see Figure 8). With the

rt

Figure 8: Generation of a Soft Target

Fuzzy Graph approach these four-dimensional data­
vectors with their corresponding target membership
function were used for training. Since the main focus
of attention were fast responses (i.e., low values of
rt) the membership functions for low values are de­
fined finer than those for bigger values (see Figure 9).
Three series of experiments were performed with two,
five and ten membership functions.

Figure 9: Two Used Types of Membership Functions

424 Huber, Berthold, and Szczerbicka

Fuzzy Graph construction required about 10 sec­
onds on a SUN Sparcl0 workstation. No training
parameters besides the a priori definition of the out­
put membership functions had to be considered or
tuned. While a simulation run takes about 200 sec­
onds the propagation of a new parameter set through
the Fuzzy Graph is completed within fractions of a
second, resulting in an increase in speed of two or­
ders of magnitude. As expected the metamodel can
be used for much faster simulation.

4.2 Metamodeling Results

To judge the reliability of the complete rulebase the
quality of the whole metamodel can be analyzed by
computing the mean relative error of the approxima­
tion of the metamodel. For this analysis an inde­
pendent dataset that was not used for training, the
so called cross-validation set, has to be used. The
dataset of 352 training vectors was split into one tenth
for testing and nine tenth for training and using each
tenth once for testing ten cross-validation runs were
performed. The average error on the corresponding
testdata was 4.4% ± 1.0% (32 rules in average) with
two, 4.1% ± 1.2% (59 rules in average) with five, and
3.3% ± 0.9% (68 rules in average) with ten member­
ships for the output. This approximation quality is
sufficient because the primary goal of the presented
approach is the extraction of few understandable rules
instead of achieving minimal approximation errors.

One of the resulting rule bases from an experiment
with two output classes was used for further analysis
about the model behavior. In this case the classes are
labeled lO'UJ and high. Since the main focus of analysis
are parameter settings which result in a low response
time, rules of class L = low were investigated. From
29 rules 16 belong to this class and according to the
rule weight two of the most important rules were:

IF cpul E [0.11,1.69] C (-00,1.70)
and workload E [0.03,0.99] C (-00, +(0)
and tTt E [0.01,0.39] C (-00, +(0)
and stations E [5,15] C (4, +(0)
THEN class low (rt E [0.0,0.5] C (-00,1.0))
(weight: 116)

IF cpul E [0.18,2.16] C (-00,2.17)
and workload E [0.03,0.98] C (-00, +(0)
and tTt E [0.26,0.39] C (0.25, +(0)
and stations E[l,15] C(-oo,+oo)
THEN class low (rt E [0.0,0.5] C (-00,1.0))
(weight: 24)

Both rules demonstrate how the core always covers a
confident subset of the support-region. The core of
the first rule covers the whole range of two parame­
ters, namely workload rate and target-rotation-time.

It is only limited into one direction on the other two
parameters, indicated by a support region having fi­
nite boundaries. The performing time of CPUl has
to be below 1.70 and the number of additional sta­
tions above 4. This indicates that a certain amount
of computation power together with some background
stations guarantees fast responses no matter what
settings are chosen for workload rate and perform­
ing time. In addition the weight of this rule can be
used to judge its reliability. The weight indicates the
number of patterns that were covered by this rule
during training. In the case of the first rule shown
above 116 training patterns fall inside its core region.
This means that about 36% of all training patterns
are covered by this rule, indicating a high reliability.
Rules with low weight on the other hand might be
indicators for outliers, irregularities in the dataset or
regions of high sensitivity, i.e., regions where small
changes of the attributes result in large variations of
the output.

Another question of interest is the influence of
some parameters considering the output class. In
this model the parameter target-rotation-time is of
importance. The first rule indicates that the target­
rotation-time has no influence on the response time if
the CPU is fast (below 1.7) and at least 5 background
stations exist. The second rule above is an indication
that if the CPU is not very slow (below 2.2) a target­
rotation-time above 0.25 also leads to low response
times. In this case this parameter influences the re­
sponse time.

It can also be of interest to find "bad" exam­
ples, i.e., regions where the response time is very
high. These indicate for parameter settings that are
to be avoided. For example, the rule with the highest
weight for the class response time == high was:

IF cpul E [2.71,3.39] C (2.70, +00)
and workload E [0.09,0.98] C (-00, +00)
and tTt E [0.14,0.39] C (0.13, +00)
and stations E [1,15] C (-00, +00)
THEN class high (rt E [0.5,1.0] C (1.0, +00))
(weight: 38)

This rule indicates that if the CPU is very slow and
the target-rotation-time is above a certain value the
response time is high no matter what workload is con­
sidered (represented by background stations and the
time between requests). Therefore if the system in­
cludes a slow CPU module the target-rotation-time
should be set carefully if high response times are to
be avoided. Since only 85 training patterns are of
class high the weight of 38 is an indication for a high
reliability also of this rule.

These results illustrate the applicability of the
Fuzzy Graph approach for metamodeling tasks. Since

Fuzzy Graph Based .J.~IetamodeliI1g

the approximation error is acceptable the metamodel
seems to be reliable and it can be used for new simula­
tion experiments. The example rules delivered helpful
information about dependencies between factors and
the output of interest.

5 CONCLUSIONS

In this paper a new metamodeling approach based
on Fuzzy Graphs has been proposed. With this ap­
proach it is possible to use not only real valued but
also soft targets for training. This is especially well
suited for the analysis of simulation models due to the
stochastic character of the simulation data. It was
demonstrated that the Fuzzy Graph approach is able
to build suitable metamodels that can be used as a
fast simulator. In addition the extracted rules deliver
meaningful information about the relation between
input parameters and the output, a very helpful in­
formation when analyzing simulation data of complex
simulation models like the used token bus. Since the
presented method is easy to handle and no parame­
ters are needed the application of Fuzzy Graph meta­
models allows to analyze complex simulation models
straightforward.

REFERENCES

Berthold, M. R. and J. Diamond. 1995. Boosting the per­
formance of RBF networks with Dynamic Decay Ad­
justment. In G. Tesauro, D. S. Touretzky, and T. K.
Leen (Eds.), Advances in Neural Information Process­
ing Systems, 7, Cambridge, pp. 521-528. MIT Press.

Berthold, M. R. and K.-P. Huber. 1996. Automatic con­
struction of fuzzy graphs for function approximation.
In Proceedings of the NAFIPS, 319-323.

Blanning, R. W. 1975. The construction and implemen­
tation of metamodels. Simulation 24, 177-184.

Frank, E. and K.-P. Huber. 1996, September. Active
learning of soft rules for system modelling. In Proceed­
ings of the Fourth European Congress on Intelligent
Techniques and Soft Computing.

Friedman, L. W. and 1. Pressman. 1988. The metamodel
in simulation analysis: Can it be trusted? Journal of
the Operational Research Society 39(10), 939-948.

Higgins, C. M. and R. M. Goodman. 1993. Learning fuzzy
rule-based neural networks for control. In Advances in
Neural Information Processing Systems, 5, California,
pp. 350-357. Morgan Kaufmann.

Huber, K.-P. and M. R. Berthold. 1995. Building pre­
cise classifiers with automatic rule extraction. In IEEE
International Conference on Neural Networks, 3, pp.
1263-1268.

Huber, K.-P. and H. Szczerbicka. 1994. Sensitivityanaly­
sis of simulation models with decision tree algorithms.
In Proceedings of the European Simulation Symposium
ESS'94, Volume 1, pp. 43-47.

Hurrion, R. D. 1992. Using a neural network to enhance
the decision making quality' of a visual interacti'"e sim­
ulation model. Journal of the Operational Research
Society 43(4), 333-34l.

Kleijnen, J. 1979. Regression metamodels for generaliz­
ing simulation results. IEEE Transactions on Systems,
Man and Cybernetics 9(2), 93-96.

Kleijnen, J. P. and C. R. Standridge. 1988. Experimen­
tal design and regression analysis in simulation: An
FMS case study. European Journal of Operational Re­
search 33, 257-26l.

Meisel, W. S. and D. C. Collins. 1973, July. Repro­
modeling: An approach to efficient model utilization
and interpretation. IEEE Transactions on Systems,
Man, and Cybernetics SMC-3(4), 349-358.

Pierreval, H. 1992. Rule-based simulation metamodels.
European Journal of Operational Research 61, 6-17.

Pierreval, H. 1996. A metamodeling approach based on
neural networks. International Journal of Computer
Simulation 6(2).

Simpson, P. K. 1993, January. Fuzzy min-max neural net­
works - part 2: Clustering. IEEE Transactions on
Fuzzy Systems 1 (1), 32-45.

Uebele, V., S. Abe, and M.-S. Lan. 1995, February. A
neural-network-based fuzzy classifier. IEEE Transac­
tions on Systems, Man, and Cybernetics 25(2).

Wang, L.-X. and J. Iv!. Mendel. 1991. Generating rules by
learning from examples. In International Symposium
on Intelligent Control, pp. 263-268. IEEE.

Yerramareddy, S., D. K. Tcheng, S. C.-Y. Lu, and D. N.
Assanis. 1992, June. Creating and using models for en­
gineering design a machine-learning approach. IEEE
Expert, 52-59.

Zadeh, L. A. 1994, November. Soft computing and fuzzy
logic. IEEE Software, 48-56.

AUTHOR BIOGRAPHIES

KLAUS-PETER HUBER received his M.S. de­
gree in Computer Science in 1988. Until 1992 he has
been at Daimler-Benz AG, Stuttgart, working on ex­
pert systems, and is now a research assistant at the
University of Karlsruhe.

MICHAEL R. BERTHOLD received his M.S. de­
gree in Computer Science in 1992. In 1992 he has
been a visiting researcher at Carnegie Mellon Univer­
sity, Pittsburgh, and joined Intel's Neural Network
group in 1993. He is now a research assistant at the
University of Karlsruhe.

HELENA SZCZERBICKA, Ph.D. 1982 in Com­
puter Science from University of Warsaw, Poland.
Since 1985 with the University of Karlsruhe and since
1994 professor of Computer Science at the Univer­
sity of Bremen, Germany. Associate member at the
McLeods Institute of Simulation Sciences, co-editor
of "Frontiers in Simulation" of the SCS.

