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ABSTRACT

Simulation plays a vital role in analyzing many discrete­
event systems. Usually, using simulation to solve such
problems can be both expensive and time consuming.
We present an effective approach to smartly allocate
computing budget for discrete-event simulation. This
approach can smartly determine the best simulation
lengths for all simulation experiments and significantly
reduce the total computation cost for obtaining the same
confidence level. Numerical testing shows that our
approach can obtain the same simulation quality with
one-tenth the simulation effort.

1 INTRODUCTION

In order to efficiently manage and operate large man-made
systems such as communication networks, traffic sys­
tems, and automated manufacturing plants, it is often
necessary to apply extensive simulation to study their
performance since no closed-fonn analytical solutions
exist for such problems. Collectively, these types of
systems are known as Discrete Event Systems (DES)
(Ho 1991). Unfortunately, using simulation to solve
such problems can be both expensive and time consum­
ing due to their massive search space and their evolution
in time according to complex man-made rules and the
influence of random occurrences. In industry, with pres­
sure to meet certain system specifications and only a
limited budget to carry out necessary simulations, the
limitations of traditional simulation technology can
either delay a project or force it to go over budget.

Suppose we want to compare n different discrete-event
systems (designs or alternatives), we do T simulation
replications for all n designs (or alternatives). Totally,
we need n T simulation replications. The simulation
results become more accurate when T increases. If the
accuracy requirement is not low (T is not small), and if
the total number of designs in a decision problem is not
small (n is large), then nT can be very large, which may
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easily make total simulation cost extremely high and
preclude the feasibility of a simulation approach. To
reduce total simulation time, one can either develop more
efficient simulation technology or use faster computers
to reduce the simulation time of each simulation
experiment. In this paper, we present another approach
to improve the overall simulation efficiency.

Our ideas are as follows. Intuitively, some bad re­
signs can be discarded before completing all of the T rep­
lications. We don't have to waste efforts on simulating
bad designs and so reduce overall simulation time. Then
the question is how to systematically do this? When?
And which designs? Ideally, we want to optimally
choose the number of simulation replications for all re­
signs to minimize the total simulation cost, while ob­
taining the desired confidence level. In fact, this question
is equivalent to optimally decide which designs will
receive computing budget for continuing simulation.
Figure 1 illustrates the ideas by comparing a typical
solution to this problem with the conventional approach
using equal simulation lengths. Chen (1995) formulates
this question and obtained promising preliminary results
using very simple heuristics. In this paper, we will
further discuss it and compare two approaches, one of
which utilizes the gradient infonnation.

To optimally allocate computing budget, first of all,
one must have an efficient way to estimate the confi­
dence level based on the results of the completed simula­
tion. Further, one must have easy ways to anticipate
how the confidence level will change if some computing
budget is allocated and additional simulation replications
are completed.

Goldsman and Nelson (1994) provide an excellent
survey on current approaches (e.g., Goldsman, Nelson,
and Schmeiser (1991), Gupta and Panchapakesan (1979),
and Law and Kelton (1991)) to estimating simulation
confidence level. In addition, Bechhofer, Santner, and
Goldsman (1995) give a systematic and more detail
discussion on this issue. Those approaches are mainly
suitable for problems not having large number of designs
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(e.g., Goldsman and Nelson (1994) suggest 2 to 20
designs). For real-life DES problems, the number of
designs can grow up to numerous orders of magnitude
easily. Chen (1996) presents a feasible way to quantify
confidence level for large DES simulation (the "large"
refers to large search space). Further, when the approach
in Chen (1996) is applied the sensitivity information of
the confidence level with respect to simulation
replication numbers can be easily obtained, which will
provide the basis to detennine how to allocate computing
budget among designs in this paper.

Section 2 describes the notation used in this paper and
a brief overview of Chen (1996)'s approach to quantify
confidence level for problems with large search space. In
Section 3, we will define the "optimal computing budget
allocation" problem. Two major difficulties in solving
this problem will be pointed out. Since it is difficult to
find an optimal solution for the computing budget allo­
cation problem, and it is impractical to spend lot of time
in finding the optimal solution, we propose a sequential
approach to overcome these two difficulties in Sections 4
and 5. We call this approximation smart computing
budget allocation scheme. Numerical testing in Section
6 shows that using this approach to smartly allocate
computing budget can reduce the total computation time
by about ten times for a 1000-design example. Section
7 concludes this paper.

2 A FEASIBLE APPROACH TO
QUANTIFY CONFIDENCE LEVEL FOR
PROBLEMS WITH LARGE SEARCH
SPACE

Chen (1996) provides a simple approximation approach
to quantify confidence level for problems with large
search space and also provide some useful sensitivi ty

information of the confidence level with respect to simu­
lation replication numbers, which will provide the basis
to detennine how to allocate computing budget among
designs in this paper. Denote

n: the total number of designs,
T: the length of simulation, the number of

replication, or the total number of samples,

J j (t): the t-th sample of the perfonnance measure of

designj,
Jj(T): the sample mean of design j, namely, Jj(T) =

1 T ,.,

- IJj(t), and
T 1=1

Jj the performance measure, or more specifically,
the mean perfonnance measure of design j, i.e.,

the mean of J j (t).

Assume that

i) lj(f) is i.i.d. for all t,

ii) the simulations f~r designs ,.,i and j, i * j, are inde-

pendent. Thus, Ji(t) and lj(t) are independent.

For steady-state simulation, the sample J j (t) may not

be independent of lj (s) for s -:t:. t. One possible way is

to place the "raw" data in a few large batches, and work
with these few batches as if they were independent
(Banks, Carson, and Nelson 1995). As the strong law of
large numbers, with probability 1,

Without infinitely long simulations or infinite number
of simulations replication, the sample mean lj (T) is an

approximation to lj' We refer to the sample mean
I j (T) from one finite simulation experiment as an

observed perfonnance measure for a particular design's
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simulation. Let OJ be the index of the design having the
j-th largest observed perfonnance measure. With these
notations, we have

The traditional optImIzation approaches are to find the
design with maximum perfonnance measure. (Without
loosing generality, we only consider maximization prob­
lems in this paper.) However, even the simulation cost
for a good estimation of l j could be very high, especially
for complicated systems. Instead of insisting on picking
the best design, Ordinal Optimization (Ho, Sreenivas,
and Vakili 1992) concentrates on finding good enougb
designs and reduces the required simulation time dramati­
cally. Comparing the observed perfonnance measures at
short simulation length T, we can select the observed
best design (oJ) or the observed top-r designs (oJ' 02' , .. ,

0,), and then ask what is the probability that at least one
of the observed top-r designs actually belongs in top-k.
This is crucial to Ordinal Optimization, although estima­
tion of such a probability is very difficult for problems
having large n.

Chen (1996) adopts the Bayesian model to analyze
such confidence probability. Under the Bayesian model.
1· is treated as a random variable and has a prior distribu­
tion which describes the knowledge or the subjective
belief about 1· before any sampling. The posterior dis-

J '"

tribution is updated after we observe the samples {1 j (t ) ,

t= 1,.. ,T} . The posterior distribution p(lj I {1 j (t),

t=I, .. ,T}) summarizes the statistical properties of Jj

given the prior knowledge and sampling infonnation.
When simulation stops, the statistical properties is re­
scribed by the posterior distri butions. We can estimate
the probability that l j is in some specific region, e.g.,

Pr{ Jj >0 I {lj(t), t=I, .. ,T }}, or compare two designs,

e.g., Pr{Ji-lj >O I {li(t), lj(t), t=I, .. ,T}}. For nota­

tional simplicity, we denote J j as the posteriori

l j I { 1j ( t ), t= 1,.. ,T} .

Namely, Pr{ Jj>O} represents Pr{ l j > 0 I {Jj(t), t = 1,

.. , T} }. The posterior distribution p( Jj ) illustrates what

value l j may be, based on samples {lj(t), t=l, .. ,T} and

the prior knowledge. With some normal assumptions,
the posterior

T 2- '" 1 ~ A a jl j =lj l{lj (t),t=1,2, ..,T}-NC-
T

£..lj (t)'T)
1=}

Chen (1996) also shows that the Confidence Probability

CPl =Pr{At least one of designs 01' 02' .. , Or actually
belongs in top-k}

2:: Approximated Confidence Probability

n _ _

ACPl - I1Pr{lo1 > 10j },

j=r+k

and that

CP2 == Pr{The true performance of the observed best
design is not worse than /3 fraction of the
performance of the true best design}

2:: Approximated Confidence Probability

n _ _

ACP2 == I1Pr{lo > /310 .}'
) J

j=2

While CPl and CP2 are very difficult to obtain, ACPl
and ACP2 can be computed very easily, and therefore
will be used to approximate CPl and CP2, respectively.
Numerical testing shows that they can provide reasona­
bly good approximation. Furthermore, since ACPl and
ACP2 are lower bounds of CPl and CP2, we are sure
that confidence level is sufficiently high when ACP1 or
ACP2 is high enough. Although the definitions of CPl
and CP2 are different, the fonnulas for ACPI and ACP2
are qujte similar. For easy explanation, without loss of
generality, we will only consider the simple case that

n

ACP == I1Pr{Jo > Jo .}
1 J

j=2

in the latter discussion, i.e., how to smartly allocate
computing budget for obtaining satisfactory ACP.

3 PROBLEM DEFINITION

We follow the problem formulation given by Chen
(1995). Let Tj be the simulation length, or the number
of samples, of design j. If simulations are performed on
a sequential computer and with simulation length T for
all designs, the computation cost can be approximated by
T} + T2 + ... + Tn = nT. However, to ensure that ACP

is larger than some value, we don't need to restrict our­
selves to T} =T2 =... =Tn' and may choose different

simulation lengths for different designs. This means T;
may not be equal to Tj for i ;:/; j. Furthermore, we c~

choose 1) for all j such that the total computation cost IS

minimized, while guaranteeing that ACP is greater than
some satisfactory level. More specifically, we are
considering the following problem.

(P) min (T} + T2 + ... + Tn)'
TI , .. ·• Tn

S.t. ACP 2:: (a satisfactory level).
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There are two major difficulties in solving (P):
Difficulty 1. ACP( T1, T2 , ... , Tn) can be com-

puted only after doing simulations until T1, T2 , ... , Tn'
Before performing simulations until T1, T2 , , Tn' how

can we predict or estimate the ACP at T1, T2 , , Tn ?

Difficulty 2. T1, T2 , ... , Tn are integers. Even if

we have techniques to estimate ACP at T1, T2 , ... , Tn'

an extremely large combinatorial space must be searched
to find a solution to (P), especially when n is large.

Note that the purpose of solving (P) is to further re­
duce computation cost for obtaining a desired confidence
level. We should not exert too much effort solving (P)
during simulation. Otherwise, the additional cost of
solving (P) will cancel the benefits of computing budget
allocation. Hence, we need to solve (P) very efficiently,
even if this means obtaining a sub-optimal solution.
Efficiency is more crucial than optimality in this appli­
cation.

4 A SEQUENTIAL APPROACH

This section presents a sequential procedure to overcome
the difficulties in solving (P). To Optimally allocate
computing resource, it is equivalent to detennine which
designs we should do more simulation. We will
sequentially decide it, although this is usually not an
optimal solution any more.

Before doing simulation there is neither knowledge
about ACP nor a basis for choosing Tj . First, all re-
signs are simulated until length to to obtain statistical
information about sample means and sample variances.
Then we try to determine how to further allocate comput­
ing budget using available statistical information. When
simulation is stopped at to, the posterior distribution of
design} is

- - "
J j == Jj(to) == J j I{Jj(t), t =1,2, ..,to}

1 to ()2

- N(- IJj(t),-)
to 1=1 to

At this moment, we have some ideas about each design
and then can decide which designs are worthy of being
allocated more computing budget. To detennine how to
further allocate computing budget, we have to be able to
know how the ACP will change if some computing
budget is allocated to some designs (Difficulty I). More
specifically, based on statistical information at to, we
want to anticipate the posterior distribution at to + ~,

where ~ is a positive integer. To do this, we assume the
sample mean and variance at to are near those at to + ~ ,
and approximate the posterior distribution at to + ~

using the estimated posterior distribution

Note that the denominator of variance portion is to + ~

rather than to' This approximation will be satisfactory
assuming to is large enough and if ~ is not too large.
On the other hand, we don't want to choose to too large,
or we will defeat the purpose of this approach. Using
the estimated posterior distributions, we can estimate the
ACP at to + ~ using the statistical information at to, and

call it the "Estimated ACP" or EACP.
Similarly, when simulation proceeds until

T1,T2,"',Ti-I,Ti,Ti+I,"',Tn' we can also use the

available information to estimate how ACP will change
if design i is given additional budget ~, i.e.,
EACP( T1, T2 ,···, Ti- 1, Ti +~, Ti+l ,···, Tn)' This is ac-

complished by using the estimated posterior distribution

for design i.
Now it is feasible to predict the ACP when the change

of T;'s are not large. A possible sequential approxima­
tion approach to solving (P) is as follows. Since ACP
will become larger as simulation proceeds, we sequen­
tially add computing budget by b each time until ACP
reached some satisfactory level (say Psat)' In order to
minimize to the total computation cost, at each step,
this budget b is allocated among some designs such that
the EACP is maximized. Thus, at step k, k= 1,2,3, .. ,

(P-k)

More specifically, the sequential algorithm is

A Sequential Aleorithm for Smart Computine
Bud2et Allocation (SCBA)

Step O. PERFORM SIMULAnON until length to
for all designs,
k~ 0,
Tk rk r k] = 2 =... = n = to'

Step 1. If ACP( r]k, Tf, .. ·, T~) ~ Psat , stop,

otherwise, go to Step 2.
Step 2. Solve (P-k),

rk+1 Tk k ~ . 1
i = i + 'i ' lor I = , .. , n,

k ~ k+l,
Step 3. PERFORM SIMULAnON until

(T]k, r;, .. ·, T~); go to Step I.
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n n

ACP= IIpr{J
01

>J
Oj

} = II(I-Pr{J01 -JOj <OJ)
j=2 j=2

Remarks:

1. Obviously, the computing budget allocated by this
sequential approach is not the optimal way. As we dis­
cussed before, efficiency is more important than optimal­
ity. Otherwise, the additional cost of detennining com­
puting budget allocation may cancel its benefits.

2. b is the one-time increment of simulation budget.
Small b means small step size and therefore will increase
the total number of solving (P-k). On the other hand,
large b may waste computing budget and result in a
larger ACP.

5 SOLVING PROBLEM (P-k)

ti2
Pr{X<O} ~ exp( ---2 ).

20'

With this lemma,

~ fI[l-eXp(- Ll~~ )) = ACP*,
j=2 20'1j

Q.E.D.

if i"* s,

For notation simplicity, let S=OI. The gradient of ACP*
with respect to T; are as follows:

The next question is how to efficiently solve (P-k).
While solving (P-k) is easier than solving (P). again,
efficiency is much more important than optimality here.
In this paper, we test two quick and dirty approaches to
allocate the given computing budget b for obtaining
large increment of ACP.

In the first approach, m designs are chosen and then
the computing budget is equally distributed to them (each
design has blm). For each design, we calculate the an­
ticipated increment of ACP if computing budget blm is
allocated to it. Then those designs are chosen if their
anticipated ACP increments are among top-In.

~ACP*=aTi

Approach 1. Choose a positive integer m, and let ~ =
b I nz (assume ~ is an integer)

Step 1. For i =1, .. , n, calculate D; ==

C Tk Tk k Tk k kEA P( l' 2'·'·' Ti- l , ; +~, Ti+ l , ... , Tn )

C Tk Tk k k k T k- A P( I' 2.···. Ti- l , T; , Ti+ l , ... , n)·
Step 2. Find the set S(nz) == { i : Di is within the

top-highest-1n}

Step 3. r; = ~, for all i E SCm).

n

• II 1- exp(
j=1
j~5.j~;

ifi=s, ~ACP* =aTs

Approach 2. In the second approach, instead of equally
allocating computing budget among some m designs, we
apply steepest-descent method (Luenberger 1984) to
solve (P-k). We do the following approximation to
estimate the gradient of ACP with respect to Tj •

n

L
i=2

Lemma 1. Suppose the random variable X - N(~, cr),
~2

where ~ > o. Then Pr{X<O} ~ exp( ---2 ).
2a

<pf> Using Chernoff bounds (Ross 1994), we have

n

• II
j=2.j~oj

a2t 2

Pr{X<O} ~ infM(t) = inf exp(-- + f1t).
1<0 1<0 2

Choose t = -.1;., we have the minimum, i.e.,
a~

To avoid spending much time in iteratively finding the
solution of (P-k), we only do a very limited numbers of
iterations when applying steepest-descent method. Dif­
ferent numbers of iterations are tested in Section 6.
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Figure 2: 10-Node Network with Priority, Interruption, and Shared Server
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6 NUMERICAL TESTING

Two examples are tested. Example I is a steady-state
simulation, and Example 2 is a terminating simulation.

Example 1. We consider a 10-node network (Please
see Figure 2). Such a network could be the model for a
large number of real-world systems, such as a
manufacturing system, and a communication or a traffic
network. For details about this example, please refer to
Chen and Ho (1995). We consider the problem of
optimally allocating 22 buffer units among the 10
different nodes for maximizing the throughput. Priority,
interruption, blocking and multi-classes are included in
this network. We denote the buffer size of node i by B j.

We set some constraints for symmetry reasons: Bo =B 1 =
B2 =B3, B4 =B6 , and B s =B7 . In addition, Bg & B9 ~ 1.
These constraints limi t our search space to 11= 1000
different configurations.

The Standard Clock method (Chen and Ho 1995 and
Vakili 1991), which is an efficient technique for DES
simulation, is used to simulate this system. The
computation cost for one design is roughly proportional
to the number of clock ticks (for Standard Clock method,
one event is generated at each clock tick). We define the
computation cost as

1 1000-- L [the number of clock ticks when the
1000 j=1

simulation of design j is stopped),

The _1_ is used to rescale the cost. The computation
1000

cost for determining the smart computing budget alloca­
tion is so small as compared with the simulation cost
that we ignore this portion. In this testing, we consider
CPl = Pr{At least one of the observed top-3 designs
actually belongs in top-3} and CP2 = Pr{The true per­
formance of the observed best design is not worse than
99.6% of the performance of the true best design}. We
test Approach 1 and set to =5, m =25, and b =125. We

repeat this testing 50 times. Each run has a different
random seed. We consider the computation costs for
different satisfactory confidence levels. Tables 1 and 2
contain the testing results for CP 1 and cn respectively.
The computation costs in these two tables are the
average costs in the 50 testing runs.

Table 1: Speedup with the SCBA Method for ACPl

Psat without with Speedup
SCBA SCBA

500/0 24200 3952.5 6.12

600/0 29100 4378.7 6.64

700/0 45700 4670.0 9.78

80% 65600 5775.0 11.35

Table 2: Speedup with the SCBA Method for ACP2

Psat without with Speedup
SCRA SCRA

50% 23000 3737.5 6.15

600/0 29400 4105.0 7.16

70% 37300 4480.0 8.32

80% 54400 5446.2 9.98

Example 2. To further compare these two approaches,
we test a simple single-node queue. The interarrival time
is - Unifonn[O.I, 1.9]. We consider 10 designs with
different service times, which are Uniform[O.I, 1.85­
;*0.05] for design ;, i= 1, .. ,10. Suppose we are interested
in the average system time of the customers served
between time 0 and time 10. Although the derivations
in Sections 2 -5 focus on maximization, we only need
to reverse their inequality signs in order to apply to this
minimization problem. We set b = 12. and to = 10.
10,000 independent experiments are done to estimate the
average cost for using different approaches. We consider
CP = Pr{The observed best design is actually the true
best design}. Table 3 shows the average total numbers
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of simulation replications for obtaining the confidence
level PSal when setting to = 10, and Table 4 is for to = 5.

Table 3: Average Total Number of Simulation
Replications for Different SCBA Approaches (To=IO)

Psat 60% 70% 800/0 90%

App. 1 (m = 4) 172.4 230.3 350.0 608.4

App. 1 (m = 3) 170.5 225.9 322.5 542.7

App. I (m = 2) 170.0 226.5 322.5 511.9

App. I (m = 1) 176.6 228.9 324.6 509.6

App. 2 (1 itrn) 167.2 221.1 324.1 525.9

App. 2 (2 itms) 162.2 212.0 307.7 498.6

App. 2 (4 itms) 163.3 213.4 313.4 511.6

Without SCBA 327.1 488.2 796.4 1458.

Table 4: Average Total Number of Simulation
Replications for Different SCBA Approaches (To=5)

Psat 600/0 70% 800/0 90%

App.l(m=4) 127.6 186.3 305.6 576.9
App. 1 (m = 3) 127.6 183.6 287.0 507.1
App. 1 (nz =2) 129.9 182.4 275.4 470.0
App. 1 (m = 1) 139.9 192.3 283.6 470.1

App. 2 (1 itrn) 130.1 185.9 290.4 496.2
App. 2 (2 itrns) 122.3 175.3 273.1 467.3
App. 2 (4 itms) 125.9 185.3 285.5 492.1

Without SCBA 305.2 475.5 790.0 1462.

From Tables 3 and 4, we have the following
observations:

• to may affect the performance quite significantly,
particularly when Psat is small. How to choose an
appropriate to is problem-specific. This remains to
be investigated.

• Different choices of nz's obtain different perfonn­
ances. It is interesting to note that large nl works
better for low Psap while small m perfonns well for
high Psat ' We conjecture that there exist some better
ways which dynamically change nz through
simulation.

• For the steepest descent method, two iterations in
each sequential optimization step works better than
others. We need more testing to justify this. Ide­
ally, we may gradually change the number of itera­
tions through simulation to optimize the
performance.

• The time savings factor of using SCBA increases as
Psat increases. This makes sense since we have more
space to manipulate the allocation of computing

budget when Psal' the confidence level requirement,
is higher.

• When to = 5, Approach 2 with two iterations can
reduce computation effort by 68% for PSal = 90%.
We believe that this time savings factor will be even
larger if higher confidence level is required.

Since ACP is a lower bound of the confidence level
CP and we use ACP to detennine computing budget
allocation, people may be concerned with the ending CP
(actual confidence). In this testing, CP = Pr{ The ob­
served best design is actually the true best design} can be
obtained numerically by calculating (total number of
simulation experiments in which the observed best re­
sign is actually the true best design) / 10,000. Table 5
shows the numerical results of CP's for to = 5.

Table 5: CP for Different SCBA Approaches (to=5)

Psat 60% 70% 80% 90%

App. 1 (nz = 4) .629 .714 .815 .920
App. 1 (nz = 3) .630 .724 .817 .920
App. 1 (m = 2) .634 .720 .813 .912
App. 1 (nz = 1) .632 .717 .804 .902

App. 2 (1 itrn) .627 .724 .818 .918
App. 2 (2 itrns) .627 .714 .816 .917
App. 2 (4 itrns) .632 .713 .811 .919

Without SCBA .696 .780 .879 .951

Our approaches stop simulation when ACP is no less
than Psal ' We anticipate that the ending CP will be
higher than PSal since ACP is a lower bound of CPo
Table 5 shows that CP's are not much higher than
ACP's except the case in which SCBA is not used. The
reason is that without using SCBA, all designs receive
computing budget so that the simulation quality im­
provement is higher at each step. Consequently the
ending CP's can be much higher than required level.

7 CONCLUDING REMARKS

In this paper we present two approaches to smartly al1o­
cate computing budget for DES simulation. Preliminary
numerical testing shows that we can significantly reduce
total computation cost. For real-time application
problems, we have only a limited computing budget to
carry out simulation. The SCBA can be applied to these
problems to maximize the utilization of limited budget
and obtain higher confidence level. In particular, from
Table 1, the computation cost is 65,600 units for
ensuring ACPl > 80% without SCBA. On the other
hand, with SCBA the computation cost is only 5,775
units. This implies that 5,775 SCBA computation units
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can obtain the same simulation quality as 65,600
computation units without SCBA. Application of the
SCBA algorithm can obtain the same simulation quality
with one-tenth the simulation effort.

In this paper, we compare two simple approaches us­
ing an example. The gradient approach perfonns slightly
better than the other. While which approach is surprier
needs more testing to justify, we fiinnly believe that
there exists some more sopfisticaed way to accomplish
better perfonnance. We will test more examples in the
future. The approaches using second order information is
also one of the ongoing research topics.
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