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ABSTRACT

Using the LRE-algorithm (LRE: Limited Relative Er­
ror) for the evaluation of simulated data yields the sta­
tionary distribution function of an investigated ran­
donl sequence and additionally the so-called local cor­
relation coefficient, which represents relevant correla­
tion evidence to be included in the error measure for
controlling the simulation run til1le. In this paper a
simplified LRE-algorithm is used to evaluate discrete
sequences like the occupancy of finite buffer queueing
systems C; / C; /1/ N. It is shown how this algorithm is
combined with the RESTART-method for an efficient
rare event SiITlulation.

A I11ulti-stage R.ESTART/LR.E-algorithn1 has been
impleI1lented as part of a stochastic sil11ulation systen1
and its perfOrI1lanCe has been verified by extensive
sin1ulations of the reference systen1 ~iI/J\1/1/1\/, \vhose
properties including the local correlation coefficient
can be descri bed by analytical formulas. ~-\pproximate

fornlulas for the optirnal nunlber of stages and nun1­
ber of trials are given. The ne\v algorithn1 has been
successfully applied to several finite buffer queueing
systen1s, including the SS~\IP(2)/D/1/1\" system \vith
a correlated input streanl, in order to gain by sin1ula­
tion the distribution function of the occupancy includ­
ing very low loss probabilities in the order of 10- 9 and
even 10- 21

, which are relevant for the performance of
switching nodes in the ATrvI broadband network.

1 INTRODUCTION

The quantitative investigation of random systems by
stochastic sin1ulation is an inlportant tool for telecom­
munication engineers. How to assure the reliability of
sin1ulated results is a problen1 of interest and depends
on the statistical evaluation n1ethod used to control
the simulation run tinle. Since run tinle is always linl­
ited, there are limi tations for locating in a simulated
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sequence a rare evenl with sufficient accuracy.
This problel11 has becon1e an issue of current in­

terest in the performance investigation of switching
nodes of the ATM broadband net\vork, which can be
1110deled by a single server, finite buffer queueing sys­
tel1l G /D/1/ N with a correlated general input process
~~G". Systen1 design has to guarantee that the event
"cell loss" is a rare event with a probability in the
range of 10- 9 ... 10- 10 (Le Boudec, 1991). How can
this requirement be investigated and verified by sim­
ulation without excessive run time?

The relevant subfield within the various methods
for variance reduction, see (Kleijnen, 1974), is impor­
lance sa·m.pling which originated as a method for more
efficient Monte Carlo integration (Kahn and Marshall,
1953) and has been applied in a quite different way,
called importance splitting in (Shahabuddin, 199.5),
to the statistical investigation of Markovian sequences
by (Bayes, 1970) and has been further developed and
made kno\vn under the nanle RESTART by (Villen­
~.\ltan1irano and Villen-AltaI11irano, 1991) C'REpetit­
ive Sil1lulation Trials After Reaching Threshold").

~.\s shown in (Schreiber and Gorg, 1994) this n1eth­
od can be conlbined with the so-called LRE-method,
see (Schreiber and C;org, 1996), which has been de­
signed to resolve the often debated problem, see e.g.
(Bratley et aI., 1987), how to evaluate correlated se­
quences. This c0l11bination of two methods - named
the RESTART/LR,E-method - provides rare event
simulation with a reliable error and run length control.

In this paper the RESTART/LRE-method with
111ultiple stages is investigated and it is shown how
the optimal number of stages provide a dramatic in­
crease of speed-up in conlparison to straightforward
and single stage simulations. Examples are given of
simulations that would have taken several years and
even millions of years that could now be reduced to
give good results within one day.
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3 THE LRE-ALGORITHM

are fulfilled, the followin~ posterior formulas express
the posterior compi. d.!. G (x) , the posterior mean oc­

cupancy ~ , the posterior local c. c. e( x) with correla-

3.1 The local correlation coefficient e(x)

We now assunle that j3 is generated by the random
state sequence of a recurrent (k + I)-node Markov
chain with k == B == N + 1, whose complementary
d.£. G(x) == 1-F(x) exists as shown by Figure 2. Then
we can split at any point x on the real axis this chain
into two parts and define an "'F(x )-equivalent'~ 2-node
Markov chain (Schreiber, I987a), whose transition
probabilities Po (x) and Pl (x) determine its correlation
coefficient g(x) == 1- [Po(x) +Pl (x)] for 'i - 1:S x <-i.

According to Equation (6a,b) in (Schreiber, 1987a)
the function e( x) represents a well defined (first or­
der) correlation measure for the (k + I)-node chain
and is called the local c.C. e( x) due to its dependence
on the location x (Ding and Schreiber, 1990). After
the chain has performed n state changes (trials) the
posterior 111ean e( x) can be obtained by relating the
number of transitions ai and Ci ~ ai, respectively,
across the separation line at x to the total number of
observed events ri in the left range (3 == 0, 1, .. " i-I
resp. Vi == n - ri in the right range (3 == i,i +1,' .. , B ,
see (3). If the large sanlple conditions (Schreiber,
1987b):

in (Schreiber, 1988) is an extension of the first LRE­
algorithm I, which was defined for the evaluation of in­
dependent sequences. The algorithm requires, among
other things, the finding of the location and size of the
x-intervals and the detection of discrete points. The
procedure for performing automatically this general,
rather complicated evaluation task can be substan­
tially simplified by applying the LRE-algorithm III
(Schreiber and Gorg, 1996), whose evaluation task has
been restricted to the measurement of discrete ran­
dom sequences. When, for instance, the occupancy
and loss probabilities of a queueing system GIG/II N
are to be investigated, the discrete character of the
random variable ""occupancy (3" with buffer size N,
maximum occupancy B == N + 1, and the exact range
{3==O,"', B is known.

For deriving the conlplementary distribution func­
tion G( x) == 1 - F( x) of the arrival occupancy (3 of
a system GIG11/N, the values of {3 are registered
exclusively prior to the end of each interarrival tinle
T a , that is at all instants "inlmediately before a new
item arrives". By applying this rule the random state
behavior of the systenl is associated to an enlbedded
Semi-Markov chain with B+1 nodes.
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Figure 1: Queueing System M/M/1/34:
Local C.C. e(x) of Occupancy x (TJ == 0.8)

2 REFERENCE MODEL M/M/l/N

It is absolutely necessary to verify a new simulation
method using reference queueing models whose rel­
evant properties can be described by analytically de­
rived exact formulas. A basic reference model for
the rare event simulation is the single server queueing
system M/M/11 N -FIFO with a finite buffer size N,
whose local correlation properties have been recently
investigated (Schreiber, 1994). With TJ denoting the
traffic load and the maximum occupancy B == N+I, the
discrete random variable "occupancy {3" is described
by the following equations for the stationary comple­
mentary distribution function (compi. d.£.) G(x) ==
1 - F(x), for the loss probability PL , and the local
correlation coefficient (local c.c.) e(x) for the interval
i -l:Sx<i and i==l,·· ·,B, see (Schreiber, 1994):

_ . _ (1 - 1]) (1 - TJB+l) TJi }
I?( x ) - I?, - 1 - (1 + ry)( 1 _ ryi)( ryi _ ryB+1) . (2)

Analytical investigations and simulations of other,
less elementary single server queueing systems with
finite buffer size have shown that the character of the
flat maximum curve e( x) of system M1M11/N is rep­
resentative for several fini te systems, see Figure 1.

The LRE-algorithm (LRE: Limited Relative Error)
has been designed to establish the distribution func­
tion (d.£.) F (x) and the local correlation coefficient
(local c.c.) g(x) of a stationary x-sequence with a pri­

ori unknown properties. The LRE-algorithm II given
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2-Node Chain
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Figure 2: Discrete (k + I)-Node Markov Chain and the '~G(x)-equivalent" 2-Node Markov Chain

tion factor cf(x), and the relative error dG(x) == d(x)
for i-I :s x < i , i = 1, ... , B 1 see (Schreiber, 1988):

B

O(x) Gi Vi / n; J= it L Vi ;
i=l

§(x) §i 1- Ci/Vi
1 - Vi/n ' (3)

cf(x) Cfi (1 + Qi )/ (1 - gd ;

d(x) di
[1 - v;jn . if] 1/2

Vi C 1

COlllpared to conventional batch llleans and con­
fidence interval lllethods, the relative error d( x) has
the great advantage that it contains correlation evi­
dence 1 nalllely the llleasured values §i 1 and that it can
be continuously reduced by evaluating the evidence of
as many ll10re trials as are needed to meet the error
condition di < dmax 1 with dmax being the prescribed
error lilllit. The total needed nUlllber of trials n is de­
terlllined by dmax and by the slllallest G-value to be
established, namely Gmin = OB in the present case;
with dB = dmax we obtain from (3):

4 THE RESTART/LRE-ALGORITHM

Verifying the loss probability PL = GB = 8.1 x 10- 5

of the reference system M/M/1/34 for TJ = 0.8 by

silllulation would afford n = 3.2 x 106 trials for an
error lillli t of dm.ax = 0.1 and, assuming a production
rate of 104 trials per second, a simulation run time
of T = ,5.3 lllinutes. By raising the buffer size from
N = 34 to N = 85 we achieve for 1] = 0.8 a loss
probability PL = 9.26 X 10- 10 and a simulation with
again dmax = 0.1 would now afford n = 2.8 x 1011
trials and the (prohibitive) run time T = 324 days.
The dellland of a reduced ,5 o/Cl error limit dmax = 0.05
would increase the simulation run time for N =34 to
T=21.4 minutes and for N=85 to T=3.56 years.

This is the typical situation where straightforward
silllulation is no longer possible and lllust be replaced
by a simulation based on the so-called RESTART­
principle (Villen-Altamirano and Villen-Altamirano,
1991). In the following this principle will be conlbined
with the evaluation and error control lllethods of LRE­
algorithm III.

The lllain object of simulation will be the distribu­
tion function of the occupancy (3 of system G/G/1/N
with the "rare event" being given by the loss case
j3 =N + 1 = B and the discrete (B + I)-node Markov
chain Figure 2 representing a model for generating the
random p-sequence to be investigated. The main idea
is to identify intermediate states or stages of the sim­
ulation and to restart the simulation in these states
thus obtaining conditional probabilities that can be
converted to the original distribution function using
results of the previous stage.

The following three subsections describe the RE­
START/LRE-algorithm with one stage, the general-
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ization to m stages or intermediate points is given in
section 5.

4.1 LRE-Evaluation for one stage

In its simplest version the RESTART/LRE-algorithn1
for one stage is performed by two sequential LRE­
runs.

First LRE-Run: The first LRE-run establishes the
left part of G(x) up to a certain "Intermediate Point"
i = I. The level G/ = P ({3 2:: I) of this interval be­
longs to a "less rare event" (3 2:: I compared to the
level GB =P({3 =B) = P({3 > N) = PL of the "rare
event" (3 =B: 1» G/ »GB . To perform the restart­
feature of the second LRE-run correctly information
about the intermediate state has to be collected. For
instance, when a transition I - 1--+ I is registered, the
value of the residual service time TR of the job or mes­
sage in service is stored and used as a TR-generator
for producing a random va~iable TR according to the
distribution expressed by F(TR) in the second LRE­
run.

To execute the first LRE-run an error limit dlmax

has to be prescribed and a level G~ of the interme­
diate point I resp. interval I - 1 :::; x < I has to be
determined in accordance with section 4.3. G~ can
be given as a parameter or it can be approximated by
the program. Alternatively the intermediate point I
can also be given as a parameter.

The first LRE-run needs nl number of trials:

(e.g. G[ 1 == 104 ) con1pared to the unconditional levels
G i of the original function G(x): Gi1p?I = G i ·G[ land
it is this effect, which enables us to measure success­
fully the rare event tail of the compI. d.f. G(x).

The application of the RESTART-mechanisn1 is
quite simple: whenever the "next p-value" IBn repre­
sents a state Pn < I, a reset f3n := I and after that
a restart in state I is enforced. Unavoidably, these
restarts cause deviations from the original random
process involved, but any detrimental effects on the
simulation result can be assumed as negligible due to
the applied Hservice time correction": for each restart
the current service time Tb is replaced by a randomly
chosen value of the residual service TR associated to
transitions I -1 --+ I, whose empirical d.f. F( TR) has
been derived during the first LRE-run.

With the simplified notation eB :== eBII3?I we ob­
tain in correspondence to (.5) staten1ents for the pos­
terior condi tional loss probability for B-1 :::; x < B
and the stopping criterion dBII3~/ :::; d2m,ax:

FLlp?I == GBlp?I == vB/n2; }
- _ 1 _ CB/VB (7)
eB - 1 - vB!n2 .

This sin1plification is justified by the fact that the
posterior value eB of the local c.c. e(x) of interval
B-1 < x < B at the right end is practically the saB1e
for si~ulation \vith or without RESTART. The num­
ber of restarts need no special consideration, because
it represents a random quantity b~ing controlled by
the second LRE-run. Assuming GBII3?I' « 1 the fi­
nal nun1ber of trials n2 for the second LRE-run is,
compare (4):

The intermediate point I is related to the following
posterior quantities for I -1 :S x < I and the stopping
criterion d/:::; dlmax , compare (3):

(8)

(5)
V / In l; (;/ ~ G~; }
1 _ c/ lv/

1 - v/ /nl .

Second LRE-Run: The second LRE-run establishes
the right part of G (x) for i 2:: I "under condi tion
(32:: I" to be enforced by the RESTART-mechanisn1.
This means that we now have to deal with the condi­
tional compI. d.f. G(xlJ3 2:: I), which is related to the
unconditional compI. d.f. G(x) for i -- 1 :S x < i; i =
1+1"", B as follows:

G(x) = G/ . G(xl{3 2:: I) = Gi = G/ . Gil(3~/ . (6)

The advantage of this expression is that the con­
ditional levels Gil(3~/ are raised by the factor Gi 1

4.2 Error Considerations

After both LRE-runs have been performed the levels
Gi of the unconditional con1pl.d.f. G(x), see (6), for
'i =I +1, ... , Bare:

Gi=G/GiI132/; PL=GB=GIGBI132!' (9)

A careful investigation of the co~rect error expres­
sion for the posterior statelnents G i must take into
account that all levels Gi of the first LRE-run and
(;il(3>/ of the second LRE-run represent mean values
of th~ posterior random variables Gi and Gil(3~I, re­
spectively, which - under the present large sample
conditions (Schreiber, 1987b) - are normally distrib­
uted. A straightforward analysis proves ~hat the re­
lative error di of the unconditional level G i , see (9),



394 Gorg and Schreiber

is given by:

') ') ') ') d')
di = dI + di1f3?I = dtmax + ijf3?I·

Due to the stopping criterion (5) we have set here
with good approximation dI = d1max . In the same
way we can set dBIf3?I = d2max due to the stopping
criterion (7) and find for i = B the relative error dB
of the unconditional loss probability PL = GB, which
must b~ equal to a prescribed error lill1it dmax for the
result GB :

2_ 2 2 2 _ '2 2
dB - dmax = dI + dB1f3?I - d1max + d2max .

The error limits d1max and d'2max of the first and
second LRE-run must be chosen in accordance with
this equation. The error control in both LRE-runs
safeguards that the condition di 5:. dn1ar is fulfilled for
all levels Oi, i = 1, ... , B including the unconditional
levels G·i , see (9). This means that the prescribed
value dmax is the effective error lil11it for the whole
RESTARTILRE-algorithm.

4.3 Minimal Simulation Run Time

We replace in (4) and (8) the 111easured posterior
quantities GI, eI and GBIf3?I, eB by the correspond­
ing variables GI, eI and GBIP?I, eB. Applying the
relation G BIf3?I = GBIGf, GB« GI \vhich follo\vs
from (6) for i = B, we may therefore express the total
number of trials n = n1 + n2 of both LR,E-runs as
a function of level G I associated to the interlnediate
point f.

Using identical error lill1its for the first and second
LRE-run d1max = d2max = dSnlax we obtain the nUll1­
ber of trials froll1 dB =dmax =..J2 dsmax :

constant ell = 17.2. For dmax = 0.1 we compute
from (10) and (1): Gj = 2.56 VGB = 7.78 X 10-5 ,

nmin =8.7 x 107 trials, and the optimal intermediate
point I opt = In[G1 + 1]B+1 (1 - Gj)]1 In(1]) ~42.

Assuming a production rate of 104 trials per second
the minimal simulation run time would be Tmin ~

2.4 hours. By comparing these values of nmin and
Tmin to n = 2.8 x 1011 trials and T = 324 days,
which have been computed for a straightforward sim­
ulation of the same problem at the beginning of this
section, we recognize the enormous potential of simu­
lation speed-up by the RESTART/LRE-method.

The level G~ of the intermediate point I to be
prescribed in advance of the first LRE-run should
be chosen as close as possible to the value of Gj.
But, under the conditions of normal simulation tasks,
the optimal value G1 in (10) is a priori usually un­
known because it depends on the values of the cor­
relation factors ell, elB and of the loss probability
PL = GB itself, which become available only a pos­
teriori as results of the statistical evaluation. For a
series of R,ESTARTILRE-runs concerning the sanle
sil11ulation object the value of G] for each subsequent
run can often be chosen closer to the optimum, be­
cause the values of ell and elB become known with
increasing accuracy by the evaluation results of the
previous runs. Therefore level G~ must be chosen as
a more or less good estimation of Gj and the needed
nUll1ber of trials will usually be n > nmin. In case
that nothing is a priori known, it is recommended to
use in (10) the values ell = (l+emax)/(1-emax) and
CIB == (l+eB)/(I-eB) of queueing system M/M/l/N ,
which can be computed for a given traffic load 1] from
(2). Nevertheless, even in case of a relatively unfavor­
able choice of G] the essential simulation speed-up
advantage of the RESTART-ll1ethod is maintained;
see also section 5.2 in (Villen-Altamirano and Villen­
Altamirano, 1991).

5 THE MULTI-STAGE APPROACH

This function assumes its minill1um nmin at the
"optimal value" G1 of the variable G I

For systelll M/M/I/N with N = 85 and 1] = 0.8
we have GB = 9.26 X 10- 10

, eB = 0.44, and elB =
2.6. Due to the flat maximum of the function e(x) in
Figure 1 the local c.c. is nearly constant gI ~ emax =
0.89 and therefore also the correlation factor is nearly

G*I
(10)

The extension of the RESTART/LRE-algorithm to
m intermediate points 10, II,···, f m - l with G-Ievels:
1 » Glo » GIl » .. ·Glm _ l » GB is a natural ex­
tension of the above described algorithm with a single
stage. The m intermediate points are also called stages
leading to m + 1 LRE-runs. This type of extension
has also been envisaged in (Villen-Altamirano et aI.,
1994) and (Villen-Altamirano and Villen-Altamirano,
1994). The decisive advantage of the combination
with the LRE-algorithm is that analytical formulas
can be derived.

This leads under very general assumptions to the
following optimal G-levels Gjl (i = 0,·· ., m- 1) and
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To derive an approximation for the optimal num­
ber of stages mopt, the correlation factor efl

j
in (11)

for j = 0, ... , m -1 is approximated by a fixed cor­
relation factor named elM. The function ef (x) =
(1+e(x)) I (1-e(x)) is also a flat maxinlunl curve with
the maximum elmax, if this is true for e(x) as shown
in Figure 1, so that choosing the maximum for elM
(elM := c/max ) is a good approximation and upper
limit at the Sal11e time. Similar considerations as given
in section 4.2 lead to an approximation of the error
limit dsmax in each run as a function of the overall
error limit dmax :

d2

d2 = (d2 + l)l/{m+l) - 1 ~~ .
Smax max m + 1

Using these approximations the optinlal number
of stages mopt follows from the necessary condition
(onjom = 0) for an optimuln of nm'ln of which the
nearest integer is taken for simulation runs:

of about 18 is achieved. For this exan1ple it was pos­
sible to calculate the absolute 111inin1Uln by exhaustive
search, which is also given in Figure 3. For systems
with very low loss probabilities the speed-up is ITIuch
higher, so that now systems with, e.g. a loss probab­
ility of 10- 20 can be simulated in affordable time, see
section 6.

mopt ~ ~ln (Cf~~B) -1. (12) 6 SIMULATION RESULTS

Figure 3 shows the approximation of the optin1al
number of trials n(m) on a logari thmic scale as a func­
tion of the number of stages m for the reference systen1
MjM/lj N. The approximation is also an upper limit.
Additionally a lower limit is shown.

It should be noted from (12) that the optimal r. 1Jm­
ber of stages does not depend on the 111aximum error
level dmax . For smaller values of dmax the number of
trials increases, but the optimum remains fixed.

A significant gain in terms of the total number of
trials needed is already achieved for one intermedi­
ate point (m = 1), which can be seen from the com­
parison of values with a straightforward simulation
(m=O). Further improvements can be achieved wh~n
using the optimal number of stages. In the example In
Figure 3 the relative speed-up n(0)ln(1) is about 11
when comparing the straightforward simulation to the
simulation with one intermediate point. In compar­
ison with the optimal number of intermediate points
(mopt =3 in Figure 3) a relative speed-up n(0)jn(3)

The LRE III and the RESTARTILRE-algorithm were
implen1ented as part of a simulation syste111 (G6rg
et al., 1991). Con1prehensive RESTART/LRE simu­
lation runs were performed and checked against theor­
etical and straightforward simulation results. Single
server queueing systems of the type MIG 11IN -FIFO
and G/Djl1N-FIFO were investigated.

In ATM simulations the service time is determinis­
tic, so that systems of type G/D/ll N are of interest.
Figure 4 shows the systems M/D/ll Nand M/M/11 N
compared to a system SSMP(2)/D/11 N with a correl­
ated special S.emi-Markov input E,rocess SSMP(2) de­
scribed in (Ding and Schreiber, 1990), (Ding, 1991),
(Herrmann, 1993), and (Herrmann, 1994). The in­
put process SSMP(2) distinguishes t"vo states, in each
of these states geon1etrically distributed interarrival
times are generated with parameter ql and Q2. The
transition probabilities between the states are indir­
ectly given by the correlation coefficient K, and the
stationary state probability Pl. In the example sys-
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Table 1: Comparison of Simulated and Theoretical Values for TJ == 0.4 and dmax = 0.03

M/i\1/1/21 M/M/1/50

sim.: m· == 1 sim.: mopt == 9 theoretical sim.: m = 5 sim.: mopt = 22 theoretical

GB resp. GB 1.091 10-9 1.031 10-9 1.056 10-9 2.98 10-21 3.02 10-21 3.04 10-21

QB resp. f2B 0.291 0.280 0.286 0.292 0.256 0.286

n (n straightforward) 3.42 108 2.70 106 (18.94 1011) 5.14 108 1.39 107
(6.571023 )

Speed-Up n/n 5.5 103 701 103 - 1.3 1015 473 1015 -

Figure 4: REsrrARTILRE Sinlulation:
CompI. Distribution Function G(.r) of Occupancy x
(m = 1, TJ == 0.4, G B == PL ~ 10-9

, dmax == 0.03)

G(x) r

,5 10 1.5 20 2,5 30 ~ 40

comparison with the straightforward and single stage
simulation are given. The simulation results are com­
pared to the theoretical values. The main result con­
cerning the loss probability PL = GB resp. PL = GB
shows the confornlity of sin1ulation and theory.

If the quotient of B /rTI is small (e.g. B /m < 3) the
resulting values for gI

t
are lower than in the original

process which reduces the number of trials ii in the
actual simulation. n gives the theoretically needed
nun1ber of trials for a straightforward simulation. The
speed-up factor is nin. As mentioned in section 4 a
straightforward simulation of these cases is practically
impossible. Assuming 104 trials/sec results in 6 and
2 x 1012 years for the examples in Table 1. With
the RESTART/LRE speed-up the simulations were
all performed 'within one day.

telll SSl\tIP(2) the following paranleters \vere used:
q1 = 0.9, q2 = 0.3, f\, = 0.6, D = 3, and PI was ad­
apted according to the traffic load 7] .

The influence of the arrival and service tin1e dis­
tributions on the conlpl. dJ. G(x) of the occupancy x
and the loss probability PL = GB for a fixed traffic
load of 7] = 0.4 is shovv'n in Figure 4. The buffer size
N for each systenl "vas chosen in such a way that the
loss probability is approxin1ately 10- 9 . The M/D/I
systen1 only needs a buffer size of IV = 12 to fulfil
the requirenlent of PL ~ 10- 9

, the !\IIT\I/l system
needs N = 21, \\'hereas the SSJ\IP(2)/D/I s:ystem
needs i\T = :36 due to the strong effect of correlated
arrivals. The sinlulated con1pl. d.f. G( x) of systenl
l\tI/Nl/l/ N is in full agreenlent with the theoretical
function G (.f), see (1). The SSl\1P (2) ID 11 I}V results
were also checked successfully against the theoretical
results given by (Herrn1ann, 1993). The differences
are too snlall to be sho\vn in the diagran1.

Table 1 compares two reference systenls with a
loss probability of about 10- 9 and 10- 21 . The num­
ber of trials needed for the n1ulti-stage simulations in

7 FINAL REMARKS

In this paper the multi-stage RESTARTILRE-algo­
rithn1 \vas described and the speed-up in con1parison
to straightforward and single stage sin1ulations was
discussed for representative examples.

The RESTART/LRE-algorithn1 as described here
can be extended and adapted to other application
fields, e.g. m.ulti-server systems G/G /slN. Another
extension is the investigation of rare event details of
n10re general stationary x-sequences having a pure
continuous or a 111ixed continuous and discrete char­
acter. For this purpose the (more complicated) LRE­
algorithn1 II (Schreiber, 1988) must be combined with
the RESTART-n1ethod. Considering more complex
systen1s, such as queueing networks, several open is­
sues need to be resolved. The RESTART/LRE-meth­
od needs well defined intermediate states, an algorithm
to generate these states, and the statistics for evalu­
ating the original distribution function.

The results using the RESTART/LRE-algorithm
are well established and will be further investigated
to make them available in practical simulation tools.
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