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ABSTRACT

Using the LRE-algorithm (LRE: Limited Relative Er-
ror) for the evaluation of simulated data yields the sta-
tionary distribution function of an investigated ran-
dom sequence and additionally the so-called local cor-
relation coefficient, which represents relevant correla-
tion evidence to be included in the error measure for
controlling the simulation run time. In this paper a
simplified LRE-algorithm is used to evaluate discrete
sequences like the occupancy of finite buffer queueing
systems G/G/1/N. It is shown how this algorithm is
combined with the RESTART-method for an efficient
rare event simulation.

A multi-stage RESTART/LRE-algorithm has been
implemented as part of a stochastic simulation system
and its performance has been verified by extensive
simulations of the reference system M/M/1/N, whose
properties including the local correlation coefficient
can be described by analytical formulas. Approximate
formulas for the optimal number of stages and num-
ber of trials are given. The new algorithm has been
successfully applied to several finite buffer queueing
systems, including the SSMP(2)/D/1/N system with
a correlated input stream, in order to gain by simula-
tion the distribution function of the occupancy includ-
ing very low loss probabilities in the order of 10~ and
even 10721 which are relevant for the performance of
switching nodes in the ATM broadband network.

1 INTRODUCTION

The quantitative investigation of random systems by
stochastic simulation is an important tool for telecom-
munication engineers. How to assure the reliability of
simulated results is a problem of interest and depends
on the statistical evaluation method used to control
the simulation run time. Since run time is always lim-
ited, there are limitations for locating in a simulated
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sequence a rare event with sufficient accuracy.

This problem has become an issue of current in-
terest in the performance investigation of switching
nodes of the ATM broadband network, which can be
modeled by a single server, finite buffer queueing sys-
tem G/D/1/N with a correlated general input process
“G”. System design has to guarantee that the event
“cell loss” 1s a rare event with a probability in the
range of 107%--.1071° (Le Boudec, 1991). How can
this requirement be investigated and verified by sim-
ulation without excessive run time?

The relevant subfield within the various methods
for variance reduction, see (Kleijnen, 1974), is tmpor-
tance sampling which originated as a method for more
efficient Monte Carlo integration (Kahn and Marshall,
1953) and has been applied in a quite different way,
called importance splitting in (Shahabuddin, 1995),
to the statistical investigation of Markovian sequences
by (Bayes, 1970) and has been further developed and
made known under the name RESTART by (Villén-
Altamirano and Villén-Altamirano, 1991) (“REpetit-
ive Simulation Trials After Reaching Threshold”).

As shown in (Schreiber and Gorg, 1994) this meth-
od can be combined with the so-called LRE-method,
see (Schreiber and Goérg, 1996), which has been de-
signed to resolve the often debated problem, see e.g.
(Bratley et al., 1987), how to evaluate correlated se-
quences. This combination of two methods — named
the RESTART/LRE-method - provides rare event
simulation with a reliable error and run length control.

In this paper the RESTART/LRE-method with
multiple stages is investigated and it is shown how
the optimal number of stages provide a dramatic in-
crease of speed-up in comparison to straightforward
and single stage simulations. Examples are given of
simulations that would have taken several years and
even millions of years that could now be reduced to
give good results within one day.



The RESTART/LRE Method for Rare Event Simulation 391

1.0
e(x)I
0.6

0.4
0.2 4

00 1 | | | | | 1
0 5 10 15 20 25 z 35

Figure 1: Queueing System M/M/1/34:
Local C.C. g(z) of Occupancy x (n = 0.8)

2 REFERENCE MODEL M/M/1/N

It is absolutely necessary to verify a new simulation
method using reference queueing models whose rel-
evant properties can be described by analytically de-
rived exact formulas. A basic reference model for
the rare event simulation is the single server queueing
system M/M/1/N -FIFO with a finite buffer size N,
whose local correlation properties have been recently
investigated (Schreiber, 1994). With 7 denoting the
traffic load and the maximum occupancy B = N+1, the
discrete random variable “occupancy £’ is described
by the following equations for the stationary comple-
mentary distribution function (compl. d.f.) G(z) =
1 — F(z), for the loss probability Pr, and the local
correlation coefficient (local c.c.) ¢(z) for the interval
i—1<z<iandi=1, -, B, see (Schreiber, 1994):

B n: _ nB+1
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Analytical investigations and simulations of other,
less elementary single server queueing systems with
finite buffer size have shown that the character of the
flat maximum curve g(z) of system M/M/1/N is rep-
resentative for several finite systems, see Figure 1.

3 THE LRE-ALGORITHM

The LRE-algorithm (LRE: Limited Relative Error)
has been designed to establish the distribution func-
tion (d.f.) F(z) and the local correlation coefficient
(local c.c.) o(z) of a stationary z-sequence with a pri-
ori unknown properties. The LRE-algorithm II given

in (Schreiber, 1988) is an extension of the first LRE-
algorithm I, which was defined for the evaluation of in-
dependent sequences. The algorithm requires, among
other things, the finding of the location and size of the
z-intervals and the detection of discrete points. The
procedure for performing automatically this general,
rather complicated evaluation task can be substan-
tially simplified by applying the LRE-algorithm III
(Schreiber and Gorg, 1996), whose evaluation task has
been restricted to the measurement of discrete ran-
dom sequences. When, for instance, the occupancy
and loss probabilities of a queueing system G/G/1/N
are to be investigated, the discrete character of the
random variable “occupancy " with buffer size N,
maximum occupancy B=N + 1, and the exact range
£3=0,---, B is known.

For deriving the complementary distribution func-
tion G(z) = 1 — F(z) of the arrival occupancy 8 of
a system G/G/1/N, the values of 3 are registered
exclusively prior to the end of each interarrival time
Ta, that 1s at all instants “1immediately before a new
item arrives . By applying this rule the random state
behavior of the system 1s associated to an embedded
Semi-Markov chain with B+1 nodes.

3.1 The local correlation coefficient g(z)

We now assume that [ is generated by the random
state sequence of a recurrent (k+ 1)-node Markov
chain with k¥ = B = N + 1, whose complementary
d.f. G(z)=1-F(z) exists as shown by Figure 2. Then
we can split at any point z on the real axis this chain
into two parts and define an “F(z)-equivalent” 2-node
Markov chain (Schreiber, 1987a), whose transition
probabilities pg(z) and p;(z) determine its correlation
coefficient g(z)=1—[po(z)+p1(z)] for i —1<r<i.

According to Equation (6a,b) in (Schreiber, 1987a)
the function p(z) represents a well defined (first or-
der) correlation measure for the (k + 1)-node chain
and is called the local c.c. p(z) due to its dependence
on the location z (Ding and Schreiber, 1990). After
the chain has performed n state changes (trials) the
posterior mean g(z) can be obtained by relating the
number of transitions a; and ¢; &~ a;, respectively,
across the separation line at z to the total number of
observed events r; in the left range 3 =0,1,---,1—1
resp.v; = n—7r; 1n the right range 8 =1¢,1+1,---, B,
see (3). If the large sample conditions (Schreiber,
1987b):

n > 10% (ri,vi) > 10% (ai,ci, i — ai, vi — ¢;) > 10

are fulfilled, the following posterior formulas express
the posterior compl. d.f. G(z), the posterior mean oc-
cupancy (3, the posterior local c.c. g(z) with correla-
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Figure 2: Discrete (k + 1)-Node Markov Chain and the “G(z)-equivalent” 2-Node Markov Chain

tion factor ¢f(z), and the relative error dg(z) = d(z)
fori—1<z<i,i=1,---,B, see (Schreiber, 1988):

B
Gz) = Gi = wi/n; f=%> w;

i=1

- s o cifu
Q(l’) - gl - 1 1_ 'Ui/ny (3)
of(z) = ofi = (1+a:)/(1—2ai):

, 1/2
dz) = d = [l;v”—/—"- -cfi] .
Compared to conventional batch means and con-
fidence interval methods, the relative error d(z) has
the great advantage that it contains correlation evi-
dence, namely the measured values g;, and that it can
be continuously reduced by evaluating the evidence of
as many more trials as are needed to meet the error
condition d; < dmqar, With dmar being the prescribed
error limit. The total needed number of trials n is de-
termined by d,,.; and by the_smallest G-value to be
established, namely G,n;, = Gp in the present case;
with dp =dnn.r we obtain from (3):

_(1-Gg)ds ofs _1+4és
n=-—-—-= R =——— ¢fp= — .
Gp dr‘r‘w: G dr;wr l-¢B

4 THE RESTART/LRE-ALGORITHM

Verifying the loss probability P, = Gg = 8.1x107°
of the reference system M/M/1/34 for n = 0.8 by

simulation would afford n = 3.2 x 10° trials for an
error limit of d,,, = 0.1 and, assuming a production
rate of 10* trials per second, a simulation run time
of T'= 5.3 minutes. By raising the buffer size from
N = 34 to N = 85 we achieve for n = 0.8 a loss
probability Py = 9.26 x 10719 and a simulation with
again dp.; = 0.1 would now afford n = 2.8 x 10!
trials and the (prohibitive) run time T = 324 days.
The demand of a reduced 5 % error limit dpqr =0.05
would increase the simulation run time for N = 34 to
T'=21.4 minutes and for N =85 to T'=3.56 years.

This is the typical situation where straightforward
simulation is no longer possible and must be replaced
by a simulation based on the so-called RESTART-
principle (Villén-Altamirano and Villén-Altamirano,
1991). In the following this principle will be combined
with the evaluation and error control methods of LRE-
algorithm III.

The main object of simulation will be the distribu-
tion function of the occupancy £ of system G/G/1/N
with the “rare event” being given by the loss case
B=N+1=B and the discrete (B+1)-node Markov
chain Figure 2 representing a model for generating the
random f-sequence to be investigated. The main idea
is to identify intermediate states or stages of the sim-
ulation and to restart the simulation in these states
thus obtaining conditional probabilities that can be
converted to the original distribution function using
results of the previous stage.

The following three subsections describe the RE-
START/LRE-algorithm with one stage, the general-
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ization to m stages or intermediate points is given in
section 5.

4.1 LRE-Evaluation for one stage

In its simplest version the RESTART/LRE-algorithm
for one stage is performed by two sequential LRE-
runs.

First LRE-Run: The first LRE-run establishes the
left part of G(z) up to a certain “Intermediate Point”
i=1. The level Gy = P(8 > I) of this interval be-
longs to a “less rare event” § > I compared to the
level Gg = P(f=B)=P(B>N) = P of the “rare
event” =B: 1> G1>Gp . To perform the restart-
feature of the second LRE-run correctly information
about the intermediate state has to be collected. For
instance, when a transition / —1— [ is registered, the
value of the residual service time Tg of the job or mes-
sage in service is stored and used as a Tg-generator
for producing a random variable 7g according to the
distribution expressed by F(7g) in the second LRE-
run.

To execute the first LRE-run an error limit dimqz
has to be prescribed and a level G of the interme-
diate point [ resp.interval I — 1 < z < [ has to be
determined in accordance with section 4.3. G’ can
be given as a parameter or it can be approximated by
the program. Alternatively the intermediate point 1
can also be given as a parameter.

The first LRE-run needs n; number of trials:

(1-Gnefi i

) 149
Y ~ A 2 ) 1_ 5,
GI dlmar GI dlma.r

=15

cfr

ny = (4)
The intermediate point [ is related to the following

posterior quantities for I —1 < z < I and the stopping
criterion dy <dimar , compare (3):

Gr = vi/ni; Gr~Gy;
T g
er = 1—vr/ny-”

Second LRE-Run: The second LRE-run establishes
the right part of G(z) for ¢ > I “under condition
B>1" to be enforced by the RESTART-mechanism.
This means that we now have to deal with the cond:-
tional compl. d.f. G(z|3 > I), which is related to the
unconditional compl. d.f. G(z) for i - 1< e < 1;¢=
I+1,- .-, B as follows:

G(z)=Gr-G(z|B>1)=Gi =G Gyg>r- (6)

The advantage of this expression is that the con-
ditional levels Gjjg>s are raised by the factor GI_1

(e.g. G}'l = 10*) compared to the unconditional levels
G, of the original function G(z): Gyj3>1 =G;-G7! and
it 1s this effect, which enables us to measure success-
fully the rare event tail of the compl. d.f. G(z).

The application of the RESTART-mechanism is
quite simple: whenever the “next 3-value” 3, repre-
sents a state 3, < I, a reset (3, := I and after that
a restart in state I is enforced. Unavoidably, these
restarts cause deviations from the original random
process involved, but any detrimental effects on the
simulation result can be assumed as negligible due to
the applied “service time correction”: for each restart
the current service time 7, is replaced by a randomly
chosen value of the residual service Tp associated to
transitions / —1 — I, whose empirical d.f. F(TR) has
been derived during the first LRE-run.

With the simplified notation gp := gp|s>1 We ob-
tain in correspondence to (5) statements for the pos-
terior conditional loss probability for B— 1<z < B
and the stopping criterion dpjs>1 < damaz:

}51,“321 Gsmzf = vp/na;

7
- _ _ CB ‘UB (
op =1 1—-vp/ngy’

This simplification is justified by the fact that the
posterior value gg of the local c.c. g(z) of interval
B — 1<z < B at the right eud 1s practically the same
for simulation with or without RESTART. The num-
ber of restarts need no special consideration, because
it represents a random quantity being controlled by
the second LRE-run. Assuming Gszr < 1 the fi-
nal number of trials no for the second LRE-run is,
compare (4):

ofB 1408
;o= —— .
1-08

No N =
GBWZI d':"ma.r

(8)

4.2 Error Considerations

After both LRE-runs have been performed the levels
G; of the unconditional compl.d.f. G(z), see (6), for
i=I+1,--- B are:

Gi=GiGipzr; PL=Gp=GiGppzr  (9)

A careful investigation of the correct error expres-
sion for the posterior statements G; must take into
account that all levels G',- of the first LRE-run and
Gilﬁzl of the second LRE-run represent mean values
of the posterior random variables G; and G;|g>, Te-
spectively, which — under the present large sample
conditions (Schreiber, 1987b) — are normally distrib-
uted. A straightforward analysis proves that the re-
lative error d; of the unconditional level G;, see (9),
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is given by:
2 _ 2, g2 2 2
di =dj+djjg>; = dimar + dijp>; -

Due to the stopping criterion (5) we have set here
with good approximation dy = dypmqr. In the same
way we can set dpjg>; = damar due to the stopping
criterion (7) and find for i = B the relative error dp
of the unconditional loss probability P, = Gg, which
must be equal to a prescribed error limit dq- for the
result Gp:

d% = d,;q.m, = d12 + df23|/321 = dlgmar + dzzmar :

The error limits dimaez and domes of the first and
second LRE-run must be chosen in accordance with
this equation. The error control in both LRE-runs
safeguards that the condition d; <dp,, is fulfilled for
all levels G;, i = 1, - - -, B including the unconditional
levels Gy, see (9). This means that the prescribed
value dqar 1s the effective error limit for the whole
RESTART/LRE-algorithm.

4.3 Minimal Simulation Run Time

We replace in (4) and (8) the measured posterior
quantities Gy, ¢r and GB|ﬂ21, ¢p by the correspond-
ing variables G, o7 and Gp|s>s, 0. Applying the
relation Gpig>; = Gp/Gr, Gp < G which follows
from (6) for i= B, we may therefore express the total
number of trials n = n; +ns of both LRE-runs as
a function of level G associated to the intermediate
point I.

Using identical error limits for the first and second
LRE-run dimar = domaz = dsmar We obtain the num-
ber of trials from dg =dmar = V2 dsmar :

_ _ 2 |dr1 fB A
n(Gr) =ni+ns = d_r‘??za_r [G-Fm],

1 1
ofr = T2 ofp = T2E.

This function assumes its minimum n,,;, at the
“optimal value” G7 of the variable G

*x C .
¢ C_fé o (10)
n(G”}) _ 4\/cfrcfB

VGpdi,,

For system M/M/1/N with N = 85 and n = 0.8
we have Gp = 9.26 x 1071°, op = 0.44, and ¢fg =
2.6. Due to the flat maximum of the function ¢(z) in
Figure 1 the local c.c. is nearly constant o & 0mar =
0.89 and therefore also the correlation factor is nearly

Nmin

constant ¢fy = 17.2. For dmer = 0.1 we compute
from (10) and (1): G = 2.56/Gp = 7.78 x 1075,
Nmin = 8.7 x 107 trials, and the optimal intermediate
point Iop: = In[G§ + 7P+ (1 — G})]/ In(n) ~42.

Assuming a production rate of 10* trials per second
the minimal simulation run time would be Tj,;, ~
2.4 hours. By comparing these values of n.,;, and
Timin to n = 2.8 x 10! trials and T = 324 days,
which have been computed for a straightforward sim-
ulation of the same problem at the beginning of this
section, we recognize the enormous potential of simu-
lation speed-up by the RESTART/LRE-method.

The level G} of the intermediate point I to be
prescribed in advance of the first LRE-run should
be chosen as close as possible to the value of G3.
But, under the conditions of normal simulation tasks,
the optimal value G7 in (10) is a prior: usually un-
known because it depends on the values of the cor-
relation factors cfr, ¢fp and of the loss probability
P; = Gp itself, which become available only a pos-
teriori as results of the statistical evaluation. For a
series of RESTART/LRE-runs concerning the same
simulation object the value of G for each subsequent
run can often be chosen closer to the optimum, be-
cause the values of ¢ff and ¢fp become known with
increasing accuracy by the evaluation results of the
previous runs. Therefore level G} must be chosen as
a more or less good estimation of G} and the needed
number of trials will usually be n > n,,;,. In case
that nothing is a priori known, it is recommended to
use in (10) the values ¢f; = (14 0maz)/(1—0maz) and
cfp = (1408)/(1—0B) of queueing system M/M/1/N,
which can be computed for a given traffic load 7 from
(2). Nevertheless, even in case of a relatively unfavor-
able choice of G the essential simulation speed-up
advantage of the RESTART-method is maintained;
see also section 5.2 in (Villén-Altamirano and Villén-
Altamirano, 1991).

5 THE MULTI-STAGE APPROACH

The extension of the RESTART/LRE-algorithm to
m intermediate points Iy, Iy, - - -, I,,_1 with G-levels:
1> Gr,» Gr, > ---Gr,,_, > Gp is a natural ex-
tension of the above described algorithm with a single
stage. The m intermediate points are also called stages
leading to m+1 LRE-runs. This type of extension
has also been envisaged in (Villén-Altamirano et al.,
1994) and (Villén-Altamirano and Villén-Altamirano,
1994). The decisive advantage of the combination
with the LRE-algorithm is that analytical formulas
can be derived.

This leads under very general assumptions to the
following optimal G-levels G (i = 0,---,m— 1) and
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minimal number of trials ny,;p :

i 1/(m+1)

H cf]jm—i

G;(Gp) = | G

m

I e

=i+l

m+ 1 1 m 1/(m+1)
nmz’n(GB)z Z_(G_Hcfl,) . (11)

dSma:c B o

To derive an approximation for the optimal num-
ber of stages m,p:, the correlation factor cfr; in (11)
for j = 0,---,m—1 is approximated by a fixed cor-
relation factor named cfas. The function cf(z) =
(1+o(z))/(1—g(z)) is also a flat maximum curve with
the maximum cfpaz, if this is true for g(z) as shown
in Figure 1, so that choosing the maximum for cfys
(efm = cfmaz) 1s a good approximation and upper
limit at the same time. Similar considerations as given
in section 4.2 lead to an approximation of the error
limit dsmaz 1n each run as a function of the overall
error limit d,ar:

+ 1)1/(m+1) — 1= d;nax

2 _ 2
d5maz = (d m+1

Smacx maz

Using these approximations the optimal number

of stages m,,; follows from the necessary condition

(On/8m = 0) for an optimum of n,,,, of which the
nearest integer is taken for simulation runs:

1 cfB

Figure 3 shows the approximation of the optimal
number of trials n(m) on a logarithmic scale as a func-
tion of the number of stages m for the reference system
M/M/1/N. The approximation is also an upper limit.
Additionally a lower limit is shown.

It should be noted from (12) that the optimal rum-
ber of stages does not depend on the maximum error
level d,,4-. For smaller values of d,,,; the number of
trials increases, but the optimum remains fixed.

A significant gain in terms of the total number of
trials needed is already achieved for one intermedi-
ate point (m = 1), which can be seen from the com-
parison of values with a straightforward simulation
(m=0). Further improvements can be achieved when
using the optimal number of stages. In the example in
Figure 3 the relative speed-up n(0)/n(1) is about 11
when comparing the straightforward simulation to the
simulation with one intermediate point. In compar-
ison with the optimal number of intermediate points
(mopt = 3 in Figure 3) a relative speed-up n(0)/n(3)

T T T T T T
approximation

and upper limit

™~

lower limit

Loyl

abs. min.

(10711712) = (8, 16,25)
107

0 5 10 15 20 25 m 35

Figure 3: Queueing System M/M/1/34:
Total Number of Trials n(m)

versus Number of Intermediate Points m
(traffic load n = 0.8 ; max. error dnqr = 0.01)

of about 18 is achieved. For this example it was pos-
sible to calculate the absolute minimum by exhaustive
search, which is also given in Figure 3. For systems
with very low loss probabilities the speed-up is much
higher, so that now systems with, e.g. a loss probab-
ility of 10~2% can be simulated in affordable time, see
section 6.

6 SIMULATION RESULTS

The LRE III and the RESTART /LRE-algorithm were
implemented as part of a simulation system (Gorg
et al., 1991). Comprehensive RESTART/LRE simu-
lation runs were performed and checked against theor-
etical and straightforward simulation results. Single
server queueing systems of the type M/G/1/N-FIFO
and G/D/1/N-FIFO were investigated.

In ATM simulations the service time is determinis-
tic, so that systems of type G/D/1/N are of interest.
Figure 4 shows the systems M/D/1/N and M/M/1/N
compared to a system SSMP(2)/D/1/N with a correl-
ated Special Semi-Markov input Process SSMP(2) de-
scribed in (Ding and Schreiber, 1990), (Ding, 1991),
(Herrmann, 1993), and (Herrmann, 1994). The in-
put process SSMP(2) distinguishes two states, in each
of these states geometrically distributed interarrival
times are generated with parameter ¢; and g». The
transition probabilities between the states are indir-
ectly given by the correlation coefficient x and the
stationary state probability P;. In the example sys-
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Table 1: Comparison of Simulated and Theoretical Values for n = 0.4 and dma; = 0.03

M/M/1/21 M/M/1/50
sim.: m =1 | sim.: Mopt =9 theoretical sim.: m =5 | sim.: Mop; = 22 | theoretical
Gp resp. Gp 1.091 107° 1.031 107° 1.056 107° | 2.98 10~*! 3.02 1072 3.04 1072 |
0B resp. 0B 0.291 0.280 0.286 0.292 0.256 0.286
7t (n straightforward) | 3.42 10° 2.70 10° (1894 10'") | 5.14 10° 1.39 107 (6.57 10%)
Speed-Up n/n 5.5 10° 701 10° - 1.3 10"° 473 10** -

10° | T T T | T T
G(.’r) = |
10* : SSMP(2)/D/1/36 :
1075 : :
1078 - M/D/1/12 _— M/M/1/21 —
10-10 i ! | | 1,1' | | ]

0 5 10 15 20 25 30 "z 40

Figure 4: RESTART/LRE Simulation:

Compl. Distribution Function G'(‘r) of Occupancy =
(m=1,7=04,Gp =P~ 107°, dma; = 0.03)

tem SSMP(2) the following parameters were used:
71=09,¢=03, =06, D=3, and P, was ad-
apted according to the traffic load 7.

The influence of the arrival and service time djs-
tributions on the compl. d f. G(z) of the occupancy r
and the loss probability P, = G for a fixed traffic
load of n = 0.4 is shown in Figure 4. The buffer size
N for each system was chosen in such a way that the
loss probability is approximately 10=¢. The M/D/1
system only needs a buffer size of N = 12 to fulfil
the requirement of P; =~ 107°, the M/M/1 system
needs N = 21, whereas the SSMP(2)/D/1 system
needs .V = 36 due to the strong effect of correlated
arrivals. The simulated compl. d.f. G(J:) of system
M/M/1/N is in full agreement with the theoretical
function G(r), see (1). The SSMP(2)/D/1/N results
were also checked successfully against the theoretical
results given by (Herrmann, 1993). The differences
are too small to be shown in the diagram.

Table 1 compares two reference systems with a
loss probability of about 10~° and 10=2'. The num-
ber of trials needed for the multi-stage simulations in

comparison with the straightforward and single stage
simulation are given. The simulation results are com-
pared to the theoretical values. The main result con-
cerning the loss probability Pp = Gg resp. P, = Gp
shows the conformity of simulation and theory.

If the quotient of B/m is small (e.g. B/m<3) the
resulting values for g7, are lower than in the original
process which reduces the number of trials 7 in the
actual simulation. n gives the theoretically needed
number of trials for a straightforward simulation. The
speed-up factor is n/i. As mentioned in section 4 a
straightforward simulation of these cases is practically
impossible. Assuming 10* trials/sec results in 6 and
2 x 10'? years for the examples in Table 1. With
the RESTART/LRE speed-up the simulations were
all performed within one day.

7 FINAL REMARKS

In this paper the multi-stage RESTART/LRE-algo-
rithm was described and the speed-up in comparison
to straightforward and single stage simulations was
discussed for representative examples.

The RESTART/LRE-algorithm as described here
can be extended and adapted to other application
fields, e.g. multi-server systems G/G/s/N. Another
extension is the investigation of rare event details of
more general stationary z-sequences having a pure
continuous or a mixed continuous and discrete char-
acter. For this purpose the (more complicated) LRE-
algorithm II (Schreiber, 1988) must be combined with
the RESTART-method. Considering more complex
systems, such as queueing networks, several open is-
sues need to be resolved. The RESTART/LRE-meth-
od needs well defined intermediate states, an algorithm
to generate these states, and the statistics for evalu-
ating the original distribution function.

The results using the RESTART/LRE-algorithm
are well established and will be further investigated
to make them available in practical simulation tools.
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