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ABSTRACT

Suppose that we have k different stochastic systems,
where JJi denotes the steady-state mean of system i.
We assume that the system labeled k is a control and
want to compare the performance of the other sys­
tems, labeled 1,2, ... ,k - 1, relative to this control.
This problem is known in the statistical literature as
multiple comparisons with a control (MCC). Inde­
pendent steady-state simulations will be performed
to compare the systems to the control. Two-stage
procedures, based on the method of batch means,
are presented to construct simultaneous lower one­
sided confidence intervals for J-li - J-l k (i = 1, 2, ... , k),
each having prespecified (absolute or relative) half­
width 8. Under the assumption that the stochastic
processes representing the evolution of the systems
satisfy a functional central limit theorem, it can be
shown that asymptotically (as 6 --+ 0 with the size
of the batches proportional to 1/6 2

), the joint prob­
ability that the confidence intervals simultaneously
contain the J-li - JJk (i = 1,2, ... , k - 1) is at least
1 - 0:, where 0: is prespecified by the user.

1 INTRODUCTION

Suppose there are k different systems (i.e., stochas­
tic processes), where system i has (unknown) steady­
state mean J.li and (unknown) asymptotic variance (J[.
We allow for the different systems to have different
probability distributions governing them, and so the
variances may be unequal. We assume that system k
is a control and want to compare the mean perfor­
mance of this system to that of each of the systems
i = 1, 2, ... , k - 1. For example, in a redesign set­
ting, system k may be the existing system, and there
are (k - 1) design alternatives under consideration.
We assume here that larger performances are better
than smaller. (The case when smaller performances
are preferable can similarly be considered.)

Independent simulations of the various systems are
run to construct simultaneous confidence intervals
for J-li - J-lk, i = 1, 2, ... ,k - 1. This is known
as multiple comparisons with a control (MCC). In
this paper, we propose some two-stage procedures
based on the method of batch means for construct­
ing lower one-sided MCC confidence intervals having
prespecified (absolute or relative) half-width 6. It can
be shown (see Damerdji and Nakayama 1996) that
asymptotically (as 8 --+ 0 and the batch sizes are pro­
portional to 1/82) the probability that the Jli - J.l/c,
i = 1, 2, ... , k - 1, simultaneously lie in the respective
MCC confidence intervals is at least 1 - a (which the
user prespecifies).

The problem of MCC has been previously stud­
ied only for the case of i.i.d. normals. For example,
see Tamhane (1977), Dudewicz and Ramberg (1972),
Dudewicz, Ramberg, and Chen (1975), and Dudewicz
and Dalal (1983). For a review of these and other
procedures, the reader is referred to Chapter 7 of
Hochberg and Tamhane (1987) and Goldsman and
Nelson (1994). None of these papers covers relative­
width confidence intervals, as we do here.

The rest of the paper has the following organiza­
tion. In Section 2 we define the notation used and
state an assumption on the processes being simulated.
The procedures are presented in Section 3, while Sec­
tion 4 contains a brief discussion on how to specify
values for the parameters needed to run our proce­
dures.

2 NOTATION AND ASSUMPTIONS

For system i (i = 1,2, ... , k), let Y i = {}i(t) : t ~

O} E D[O, 00) be a real-valued stochastic process rep­
resenting the sample path of system i, where D[O, (0)
is the space of right continuous functions on [0,00)
having left limits (for more details on D[O, (0), see
Ethier and Kurtz 1986 or Glynn 1990). A large
number of stochastic systems encountered in engi-
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neering can be modeled as such. It is assumed here
that Y 1,Y2 , ... ,Yk are mutually independent. (In
a simulation, this means that for all i and j with
i # i, the sample paths of systems i and j are gen­
erated using non-overlapping streams of uniform ran­
dom numbers.) Also, let Y = (Y1 ,Y2, ... ,Yk ) and
Y (t) = (Y1 (t ), Y2 ( t ), ... , Yk (t )).

To establish the results, we need to assume that
the process Y satisfies a functional central limit the­
orem (FCLT). More specifically, let "=>" denote weak
convergence (see Billingsley 1968), and then assume
the following:

compute the total number of batches needed for each
system, and so, additional simulation may need to
be run in the second stage. (For each system, the
total number of batches times the length of a batch
will of course be the total simulation time that must
be allocated to that system.) Statistics are then up­
dated and the simultaneous MCC confidence intervals
constructed. The two-stage batch means algorithm
for constructing lower one-sided, absolute-half-width
MCC confidence intervals is as follows:

Procedure 1

Al There exist a nonsingular k x k matrix ~ = ((7i,i :
i,i = 1, .. . ,k) with 0 < (7i,i < 00, i = 1,2, .. . ,k, and
a constant J.l =(J.ll, J.l2, ... , J.lk) E ~k such that

X6 => ~B

as 8 ---+ 0, where B is a k-dimensional standard Brow­
nian motion, X6 = (X1,6, X 2.6, . .. , Xk,6), and

1. Specify the desired absolute half-width 8 of each
MCC confidence interval (where 8 is small); the
desired confidence level 1- Q'; and the number of
initial batches m ~ 2. Let, == ,(m, k, Q') solve
Rinott's (1978) integral. (Wilcox 1984 presents
tables for /. Note that our notation differs from
that used in Wilcox's tables. In particular, our m
and, correspond to his no and h, respectively.)

(

t/6~ )1 fo Yi(s)ds
Xi,6(t) = "6 1/82 - J.l.i t

fori=1,2, ... ,k.

t ~ 0,
2. First stage: Independently simulate systems i =

1,2, ... , k, with run lengths Ii =n(8), each pro­
portional to 1/62 . For each system i, group the
output into m (non-overlapping) batches, each
of size Ti/m, and compute

which is the sample mean of the jth batch.

4. For each system i = 1,2, ... , k, compute the to­
tal number of batches to collect as

( )

2
1 m 1 m

S~ = - '" Z·· - - '" Z· k •I m _ 1~ I,j m L...J I,

j=l k=l

Na ,i(6) = max { m, r(r:i)21 },

j ~ 1,
1 liTl/m

Z · . - -- y:. (s) ds
I,j - / I'Ii m (j-l)Ti/ m

3. For each system i = 1,2, ... , k, compute the
sample variance of the m batch means from the
first stage as

Here, ~ is a diagonal matrix with ith diagonal entry
(71 == (7i,i' For each i = 1,2, ... , k, the constant J.li
appearing in Al is precisely the steady-state mean of
the process Yi. Also, 0'1 is the asymptotic variance
of Yi.

A large number of stochastic systems that admit
a steady state will also satisfy Assumption AI. For
example, this assumption holds if the process Y sat­
isfies any of the following: Y is regenerative and
satisfies suitable moment conditions (see Glynn and
Whitt 1987); Y is a martingale process (see Chap­
ter 7 of Ethier and Kurtz 1986); Y satisfies appropri­
ate mixing conditions (see Chapter 7 of Ethier and
Kurtz 1986); or the yet) are associated (see Newman
and Wright 1981). All these processes are weakly de­
pendent, in the sense that events far apart in time
are almost independent. Processes with long-range
dependency may not satisfy the assumption.

3 THE MCC PROCEDURES

The basic idea of our two-stage MCC procedures is as
follows. In the first stage we run independent simula­
tions of the different systems. The method of batch
means with m 2: 2 batches is applied to the output
of each system, thus yielding an estimate of the vari­
ance of the first-stage sample mean. This is used to

where rx1represents the smallest integer greater
or equal to x.

5. Second stage: For each system i, if Na,i(8) ~

m + 1, simulate independently that system to
collect the additional (non-overlapping) batches
m + 1, ... , Na ,i(8), each of size Ti/m. Compute
then the batch means Zi,m+l, ... , Zi,N o ,.(6)·
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6. For each system i = 1,2, ... , k, compute the
overall sample mean as

7. Simultaneously construct the absolute-precision,
lower one-sided MCC confidence intervals

Ia,i (8) = [fta,i - Pa,k - 8, +00)

for Jli - Jl k, i = 1, 2, ... , k - 1.

Damerdji and Nakayama (1996) establish the fol­
lowing result.

Theorem 1 Assume that Assumption Al holds. If
Procedure 1 is used, then

lim P {Jli - Jl k E Iai, i = 1, 2, . . . , k - I} > 1 - a.
6-+0 I

Theorem 1 establishes that our MCC confidence in­
tervals are asymptotically valid (in the sense that the
simultaneous coverage probability is at least 1 - Q').

Procedure 1 above is for the case when we want
MCC confidence intervals having a pre-specified ab­
solute half-width. However, in certain settings, we
may desire the interval for J-li - J.lk, i = 1,2, ... , k - 1,
to have half-width that is, say 5%, of J.li - J.lk. Thus,
we now develop a two-stage procedure for relative­
width, lower one-sided, MCC confidence intervals.

Procedure 2

1. Specify the desired relative half-width of each
MCC confidence interval 8 (where 8 is small);
the desired confidence level 1 - Q'; and the num­
ber of initial batches m ~ 2. Let, =,(m, k, Q')
solve Rinott's (1978) integral.

2. In the first stage independently simulate sys­
tems i = 1,2, ... , k, with run lengths Ti =
1i(8), each proportional to 1/82 . For each sys­
tem i, group the output into m (non-overlapping)
batches, each of size Ti/m, and compute the first
m batch means Zi,l, Zi,2, , Zi,m.

3. For each system i = 1,2, , k, compute the
sample mean and the sample variance of the m
batch means from the first stage as

1 m

iii =m L:Zi,k
j=l

and

sl = m ~ 1 f (Zi,j - iii)2 1

j=l

resp ectively.

4. For each system i = 1,2, ... , k, compute the to­
tal number of batches to collect as

assuming jik =/; O.

5. For the second stage, independently simulate
systems i = 1, 2, ... , k, if needed, to collect ad­
ditional (non-overlapping) batches m + 1, m +
2, ... , Nr ,i(8), each of size Ii/m. Compute the
batch means Zi,m+l, ... , Zi,Nrt i(6)'

6. For each system i = 1, 2, ... , k, compute the
overall sample mean as

1 N r ,i(6)

itr,i = N .(8) L: Zi,j.
r,' j=l

7. Simultaneously construct the relative-precision,
lower one-sided MCC confidence intervals

Ir ,i(8) = [Pr,i - {1r,k - 81{1r,kl, +00)

for J.li - Jlk, i = 1,2, ... , k - 1.

The relative half-widths of the above intervals are
relative not with respect to litr,i - itr1k I but rather
litr,k I· Damerdji and Nakayama (1996) establish the
validity of the following theorem:

Theorem 2 Assume that Assumption A1 holds and
that J.lk # O. If Procedure 2 is used, then

l~P{J.li - J.lk E Ir ,i(8), i = 1,2, .. . ,k -1} > I-a.

4 SPECIFYING VALUES FOR PARAME­
TERS

To use Procedures 1 and 2 in practice, the prac­
titioner must specify values for several parameters.
These include the desired (absolute or relative) half­
width 8, the run length of the first stage Ii (which
must be proportional to 1/82 ) for each system, and
the number of initial batches m.

Because of the similarity of Procedures 1 and 2
and the two-stage stopping procedures developed by
Nakayama (1994) for the single-system setting, it
is reasonable to assume that appropriate values for
the parameters of Nakayama's (1994) algorithm are
also valid for our new procedures. Nakayama (1994)
suggests that one should choose 5 < m < 15 and
8 < 0.025. However, as Nakayama (1994) ;otes, se­
lecting a reasonable value for Ii given 8 is a delicate
matter. In the case when simulating queueing sys­
tems, though, Nakayama (1994) proposes using some
of the results of Whitt (1989a,1989b); for more de­
tails, see Sections 5 and 6 of Nakayama (1994).
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