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ABSTRACT

For the validation of trace-driven simulation models
this paper recommends a simple statistical test that
uses elementary regression analysis in a novel way.
This test concerns a (joint) null-hypothesis: the out-
puts of the simulated and the real systems have the
same means and the same variances. Technically, the
differences between simulated and real outputs are
regressed on their sums, and the resulting slope and
intercept are tested to be zero. This paper further
proves that it is wrong to use a naive test that re-
gresses the simulation outputs on the real outcomes,
and hypothesizes that the resulting regression line
gives a 45° line through the origin. The new and the
old tests are investigated in Monte Carlo experiments
with inventory systems. The conclusion is that the
new test has the correct type I error probability, whe-
reas the old test (falsely) rejects a valid simulation
model substantially more often than the nominal
alpha level. The power of the new test increases, as
the simulation model deviates more from the real
system.

1 INTRODUCTION

This paper is the companion paper of Kleijnen, Bet-
tonvil, and Van Groenendaal (1996), which has been
accepted (conditionally) by Management Science.
Both papers concern a novel test for the validation of
trace-driven simulations. The Management Science
paper estimates the statistical performance of that test,
using a Monte Carlo study of single-server queueing
simulations (namely, M/G/1), whereas this paper
illustrates that performance through single-item inven-
tory simulations (see §3 for details). Moreover, be-
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cause of page restrictions Kleijnen, et al. (1996)
covers only parts of the original working paper; this
paper includes other parts of that working paper, and
adds recent references.

The remainder of this section answers the follow-
ing questions:
(i) What is meant by validation?
(ii)) What has the literature to say about validation?
(iii)) What is the contribution of this paper?
(iv) How is this paper organized?
Hasty readers may skip the next two subsections
(s1.1 and 1.2).

1.1 Definition of Validation

This paper uses the following definition in the classic
textbook by Law and Kelton (1991, p. 299): 'Valida-
tion is concerned with determining whether the con-
ceptual simulation model (as opposed to the computer
program) is an accurate representation of the system
under study’. To illustrate some validation issues,
consider the following practical problem.

The management of a inventory system wants to
control the total costs of their system, which consists
of stock-carrying costs, ordering costs, and lost-sales
costs (no backordering). To solve this problem, the
Management Science/Operations Research (MS/OR)
specialists build a simulation model that represents
this inventory system. Before using that model to
advise management, the MS/OR experts wish to
validate their model; that is, determine whether the
model is an accurate representation of the real inven-
tory system.

Obviously, validation should not aim at a perfect
model: the perfect model would be the real system
itself.  So, validation is interpreted here as com-
paring data on the real and the simulated systems.
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Those data pertain to inputs and outputs; for example,
customer demand per day and order lead times
(which are stochastic inputs) and total inventory costs
per day (which measures the output).

Comparing the output data of the real and simulat-
ed systems makes more sense if both systems are ob-
served under similar circumstances: the analysts
should not compare total costs during a period that
includes a long lead time in the real system with the
costs during a simulated period with a short lead
time: the former period has more lost sales than the
latter period has.

Hence, for validation purposes the analysts should
feed real-world input data into the model, in histori-
cal order (assuming such data are available indeed).
This is called frace driven simulation in computer
performance modeling; we shall use this term
throughout this paper. Law and Kelton (1991, p. 316)
call this the ’correlated inspection approach’ (after
this validation phase, ’production runs’ will follow).
After running the simulation program, the analysts
obtain simulation output; they compare that output
with the historical output of the existing system.

Note: After this trace-driven validation, the ana-
lysts should use the historical input data to develop a
(sub) model for the input. For example, they may
specify a particular type of distribution (say, the
Gaussian distribution) for the demand variable, possi-
bly incorporating autocorrelations and time trends.
After estimation of the parameters of that distribution,
they may apply goodness-of-fit tests to verify whether
this distribution gives an adequate approximation of
this input. See Kleijnen (1974, pp. 68-69).

Note: Regression analysis of trace-driven simula-
tions must be distinguished from the following situa-
tions. Van Groenendaal and Kleijnen (1996, figure 1),
for example, make a scatter plot of predictions versus
realizations. The two coordinates of a point use the
same deterministic input; different points, however,
correspond with different inputs. Hence points have
different expectations and variances! So it is nonsense
to test the hypothesis of equal means and variances
respectively (see equation 1). It seems reasonable to
compute the coefficient of determination R* (notp?
or 3, and (3,; see equation 2), to quantify the percent-
age of variation ’explained’ by the model. There is no
statistical test statistic for R%; it is a mathematical (not
a statistical) measure; see Kleijnen (1987, p. 193).
Also see Mitchell (1996).

1.2 Literature on Validation

General discussions on validation of simulation mod-
els in MS/OR can be found in all textbooks on simu-

lation, for example, Banks and Carson (1984), Law
and Kelton (1991, pp. 298-324), and Pegden, Shan-
non, and Sadowski (1990, pp. 133-162). A well-
known article on validation is Sargent (1991). A new
monograph is Knepell and Arangno (1993). Recent
survey articles are Balci (1994), including 102 refer-
ences, and Kleijnen (1995), including 61 references.
There are also many publications outside MS/OR,
for example, in agriculture (see Mitchell 1996, and
Muchow and Bellamy 1991) and in the earth sciences
including hydrology, geochemistry, meteorology, and
oceanography (Oreskes, Shrader-Frechette, and Belitz
1994). These contemporary publications all agree that
it is essential to further develop the theory on valida-
tion, because of its great importance in the practice of
MS/OR.

Unfortunately, the literature gives neither a stan-
dard theory on validation, nor a standard ’box of
tools’. The literature does give a plethora of philo-
sophical theories, statistical techniques, and software
practices. The emphasis of the present article is on
statistical techniques.

It might be argued that statistical techniques are
not appropriate in validation. Statistical techniques,
however, have the advantage of yielding reproducible,
objective, quantitative data about the quality of a
given simulation model.

Some authors (for example, Law and Kelton 1991,
p. 319) claim that, when using statistical techniques,
hypothesis tests are inappropriate; instead they advo-
cate confidence intervals. Hypothesis tests, however,
are closely related to confidence interval procedures;
see Conover (1980), Kleijnen (1974), and also Law
and Kelton (1991, p. 320). Moreover, the null-hy-
pothesis on the means of (say) X and Y may be for-
mulated as Hy: E(Y) = E(X) + § where § is not neces-
sarily zero (6 depends on the purpose of the model;
also see Mitchell 1996). This paper, however, concen-
trates on tests with 6 = 0. Such tests may easily over-
look ’small’ differences between the real and the
simulated systems (a most powerful test is the t test
for either independent or dependent X and Y, provid-
ed the assumption of normality holds; distribution-
free tests may be surprisingly powerful; see again
Conover 1980 and Kleijnen 1974.) However, some
lack of power is acceptable, if in practice only ’large’
differences are important. Anyhow, testing is only
part of the whole validation process (again see the
references above).

Unfortunately, experience shows that the correct
use of mathematical statistics in MS/OR is less sim-
ple than might be expected. It is easy to apply the
wrong statistical techniques: there is much statistical
software, but that software does not warn against
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abuse, such as violations of statistical assumptions.
On hindsight the correct use of statistics may seem
easy. Indeed, Balci (1995) states: ’False beliefs exist
about testing ... testing is easy ... no training or prior
experience is required’ (also see Mitchell 1996). This
paper will provide a case in point: the wrong regres-
sion test has been used in many simulation publi-
cations (see the references in the next subsection,

§1.3).
1.3 Contribution by This Paper

This paper is meant to contribute to the practice and
the theory of validation (but it gives no panacea). It
discusses how to validate trace-driven simulation
models, emphasizing the familiar statistical technique
of regression analysis, but advocating a novel test (re-
gressing differences of simulated and real responses
on sums).

Validation was interpreted above as comparing
real and simulated outputs. More specifically, the
analysts may compare the total costs (stock-carrying
plus ordering plus lost-sales costs), averaged over all
real and simulated days respectively.

Many years ago, Aigner (1972) already pointed
out that it is wrong to expect unit slope and zero
intercept, when regressing the simulated on the real
outputs. He, however, focussed on econometric simu-
lation models; he did not give the statistical test we
shall propose in this paper. Years after Aigner, Harri-
son (1990) rediscovered that many authors still pro-
pose this bad intuitive idea. Harrison, however, dis-
cussed farming systems and synthetic models (includ-
ing autocorrelations), not trace-driven discrete-event
simulations; he does not propose the test we shall
develop in this paper. Mayer, Stuart, and Swain
(1994) challenge Harrison (1990), concluding that the
old test is valid for their type of models (with auto-
correlations).

Note: Aigner (1972) states that the intuitive idea
dates back to Cohen and Cyert (1961). Harrison
(1990, p. 184) refers to some more publications that
apply this idea. Lysyk (1989) also uses this concept.
Recently, the same idea was proposed in Kleijnen
(1995, p. 155). So it seems high time to get rid of
this concept, and to propose a better analysis. This is
exactly the topic of this paper!

The essential assumption of the new test is nor-
mally and independently distributed (n.i.d.) outputs of
the real system and the simulated system respectively.
In practical simulations, however, output data may be
non-stationary and autocorrelated.  Unfortunately,
most practitioners are familiar only with elementary
statistical procedures that assume identically and

independently distributed (i.i.d.) variables. Fortunate-
ly, it might be possible to derive i.i.d variables in
simulation, so that it is correct to apply elementary
statistical theory; for example, Law and Kelton
(1991) give many examples of i.i.d. inputs and out-
puts, in their discussion of validation. Anyhow, in
practice, simulationists often use the n.i.d. assump-
tion, as is illustrated by the many applications (of the
old test) referenced above. In general, terminating
simulations (see Kleijnen and Van Groenendaal 1992,
pp. 187-190) may give i.i.d. outputs, as is illustrated
by the following queueing example.

The real and simulated systems should be obser-
ved under similar circumstances (see above); hence
waiting times on a busy day in the real system should
not be compared with waiting times of a simulated
slow day. Those busy days may occur on (say) Satur-
days. Suppose the simulation study concentrates on
these days, because complaints are then most outspo-
ken. Then there is still variation: some busy Satur-
days are busier than others are. Obviously the busiest
Saturday (of all Saturdays in the sample) should be
compared with the busiest simulated day. These Sat-
urdays may be assumed i.i.d.

Normal distributions may be explained by limit
theorems. For example, trace data are summarized by
one or a few statistics such as the average and select-
ed quantiles. The queueing examples in Kleijnen et
al. (1996) demonstrate that low traffic loads lead to
normal output distributions for the average throughput
time per day in terminating simulations. High traffic
loads, however, give non-normality. This non-normal-
ity can be removed through transformations such as
the Box-Cox transformation (which includes the loga-
rithmic one); see Hoyle (1973). In practice the ana-
lysts can indeed test for non-normality: they can
generate a large sample of simulated days.

This paper gives an academic example of the new
and old tests, namely the validation of inventory
simulation models. These models are derived from
data provided by a Monte Carlo laboratory that uses
academic simulation models (details will follow in
§3). Surprisingly, the creation and use of such a labo-
ratory seems novel in the research on validation.

Based on these experiments, this paper will give
the following conclusions. (i) The old test (falsely)
rejects a valid simulation model substantially more
often than the nominal alpha level, whereas the new
test has the correct type I error probability. (ii) The
power of the new test increases, as the simulation
model deviates more from the real system. (iii)
Whereas in the queueing simulations in Kleijnen et
al. 1996) the output should be transformed logarith-
mically, in the inventory system the original and the
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transformed outputs give statistical performances that
are very close. This holds for both the novel and the
old tests.

1.4 Organization of This Paper

§2 discusses the regression analysis of simulated and
real outputs in trace-driven simulations. It proves that
the old test is wrong. As an alternative this section
proposes to test the hypothesis that means and vari-
ances of real and simulated outputs are equal. That
hypothesis is tested through a novel regression test.
§3 discusses a laboratory for studying various vali-
dation tests; this laboratory uses inventory simulation.
§4 discusses future research. §5 gives conclusions.

2 REGRESSION ANALYSIS

This section summarizes Kleijnen et al. (1996). Let Y,
and X; denote simulated and real outputs respectively
in observation i/, with i = 1, ..., n; capital letters de-
note random variables. Trace-driven simulation means
that X; and Y, are dependent; it is realistic to suppose
that the linear correlation coefficient is positive: 0 <
p, < 1. Assume the » pairs (X, Y;) are i.i.d. Finally,
assume these pairs have a bivariate normal distribu-
tion. Denote the means by u, and p . and the vari-
ances by o’ and c

We propose the following stringent validation
requirement (assuming positive correlation between
real and simulated responses): a simulation model is
valid if the real and the simulated systems have iden-
tical means (say) p, and identical variances (say) o*:

=pand o, = o, = o . )]

Hyp, =n,

Because of the well-known relationships

B] = prycy/cx; Bo = “), - B]l‘lx (2)

Equation (1) is equivalent to 3, =
u(l - p,) <u.

An ideal, utopian simulation model has X; = Y, or
perfect fit: p_ = 1. Hence, the old test hypothesizes
that fitting the regression model y = 8, + 8,x gives (3,
= 0 and B, = 1. However, if and only if o, = 1,
Equations (1) and (2) together give 8,= 0 and 8, = 1.
So in practice the old test is erroneous; the empirical
data in §3 show that this error is serious indeed.

Note: In the previous century Galton discovered
that p_ < 1 causes what he called ‘regression to
mediocrity’ in his study on parents’ and children’s
heights; see Larsen and Marx (1986, p. 447).

Suppose the real and the simulated means are

p, (> 0)and B, =

positive; in practice this condition holds for inventory
costs and waiting times. This gives 0 < 3, <1 and 0
<Gy < u.

Note: An application of the old test is provided by
Lysyk (1989). He indeed finds an estimated slope
significantly smaller than unity, and a significantly
positive intercept. Since he expects a unit slope and a
zero intercept, he tries to explain this phenomenon
away. Another recent example is Kozempel, Toma-
sula, and Craig (1995, p. 231).

The novel test of the joint hypothesis in Equation
(1) accounts for dependence between X" and Y, as
follows. Compute the »n i.i.d. differences (say) D, = .,
- Y, and sums Q, = X, + Y. Regress D on Q:

ED| Q=9 =¥, *+ V9 €)

It is easy to prove that a common variance of the
correlated normal variables X and Y implies zero
correlation between their differences and sums, D and
QO (this result is due to Pitman and Morgan back in
1939; the standard F test for equality of two varianc-
es does not apply; see Kleijnen 1987, p. 99). This
zero correlation implies that in Equation (3) v, = 0;
common means of X and Y imply E(D)= 0 or in
Equation (3) vy, = 0 (see equation 2). Hence the hy-
pothesis in Equation (1) gives

Hyy,=0andy, =0. )

The analysts should simultaneously test the joint
hypothesis in Equation (4), with an experimentwise
error rate o not exceeding the prespecified value o.
This joint test can use an F statistic; for the general
formula see any textbook on regression analysis or
standard regression software; for the specific formula
see Kleijnen et al. (1996). (A conservative alternative
to this F test is provided by the t test for vy, = 0 and
y, = 0 respectively, combined with Bonferroni’s in-
equality.) There is an analogous F statistic for the hy-
pothesis 8, =0 and 8, = 1 in the old test.

Note: The joint hypothesis in Equation (1) may be
rejected because the first sub- hypothe51s (u, =p)or
the second sub-hypothesis (o o) is rejected
Hence, a less stringent validation requirement is that
the real and simulated means are equal, but their
variances may differ (the variances are then treated as
nuisance parameters; the Taguchi approach, however,
does consider the variance to be an important perfor-
mance measure). The hypothesis of equal means can
be tested by the well-known paired t test or a distri-
bution-free test; see Conover (1980), Kleijnen (1987)
and Mayer et al. (1994). This variance heterogeneity
may give a slope b, that is lower or higher than one,
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even if 0 < p < I; see Equation (2). Yet 0 <3, <1
still holds if (but not if and only if) o, > o (this
condition means that the simulation reduces the vari-
ability, possibly because it does not account for idio-
syncrasies in the real system). Common means u
implies for the interceptp, = p - Bu = u(l - B)

(see equation 2). So a simulation model with p, = p,

and o, 2 o, gives simulated responses that -when
regressed on real responses- result in a slope less than
unity and in a positive intercept (smaller than the
average simulation response).

3 AN INVENTORY LABORATORY

To illustrate the validation issues discussed in the
preceding sections, it might seem illuminating to
apply the old and the new tests to (say) an inventory
system in practice. Suppose historical data on inputs
(demands or lead times) were collected, and used to
drive the simulation model, followed by the statistical
tests of the preceding section. Suppose further that
the simulation model were not rejected. What lesson
would have been learned from such a case study?
Maybe this result would only mean that the tests have
not enough power. In other words, more might be
learned initially from applying the statistical valida-
tion tests to a number of examples with known prop-
erties, so that it is possible to conclude whether re-
jecting a simulation model is correct or not! So in-
stead of studying a real system, we construct a Monte
Carlo laboratory that represents the following single-
item inventory systems.

Demand per day is n.i.d. with mean 500 and stan-
dard deviation 50. Initially, lead time is a shifted
Poisson with mean 5, that is, to a constant lead time
of one we add a Poisson variable with mean four
(this mean, however, will be changed below). There
are lost sales (no backorders). If physical stock plus
receivable orders drop below the reorder point (say)
ROP, then an order is placed. ROP is selected such
that a prespecified service level is realized. The order
size is selected such that the total inventory costs are
minimized; the formulas for ROP and EOQ (econom-
ic order quantity) are rather complicated; the exact
specification, however, is unimportant for this study
so we refer to Kleijnen and Van Groenendaal (1992,
pp. 95-96). ROP and EOQ are fixed by the cost pa-
rameters (stock- carrying costs $1 per day per unit,
lost-sales costs $100 per unit, and ordering costs
$10,000 per order).

Trace-driven simulation means that the simulation
and the real system share some input; we decided to
use the same demand history. If we used a trace with
data on both demand and lead times, then the simula-

tion model would be perfect (see §2). So we suppose
that the analysts do not know the historical lead
times; instead they use a distribution function for
these times.

We assume fterminating simulation: a simulation
run ends after 365 days have been simulated. Each
run starts with the same initial stock; no orders are on
their way. (On hindsight, it would have been more
realistic to take the stock at the end of one year as
the initial stock for next year; but this example is
only a laboratory anyhow.)

The real and simulated outputs are the real and
simulated total inventory costs per year (denoted by X
and Y). We suppose that the analysts have n = 10
years of data available (we also experimented with 25
years of data, but this situation gave the same qualita-
tive conclusions). A higher sample size » increases
the power of the validation tests. We use three classic
values for the type I error rate of the validation tests:
o is 0.01, 0.05, and 0.10. Obviously, a higher « in-
creases the power of the validation tests. To reduce
information overload and to save space, we shall
present results for a single « value, namely 0.10.

Note: To decrease both the type I and the type II
error probabilities, the analysts might increase the
sample size n (also see Balci 1994). In practice, how-
ever, the number of observations on the real system is
usually fixed (and small).

We take 500 macro-replications to estimate the
performance of the tests; by definition, each macro-
replication either rejects or accepts a specific simula-
tion model (resulting in a binomial variable).

Some of our experiments give estimates of the
type I error of the validation tests: in these experi-
ments we have the analysts use the correct lead time
distribution with the correct parameter (so the mean is
5). Yet their simulation is not perfect, since they use
pseudorandom number streams that differ from the
steams used by the 'real’ system when sampling lead
times (not demands). Both streams use Turbo Pascal’s
standard generator (multiplier 134775813, additive
constant 1, multiplier 2°%). Hence the real and simu-
lated output variables X and Y have the same distribu-
tion so the hypothesis in Equation (1) holds. Yet the
realized outputs x and y differ, so the realized correla-
tion r,, is smaller than one. The probability of a vali-
dation test rejecting this (valid) simulation model
should be a.

Our computer programming ensures that lead
times and demands use non-overlapping pseudoran-
dom number streams (the demand history, once sam-
pled, is saved). We select the seed through the com-
puter clock.

To study the #ype Il error of the validation tests,
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we create a gap between on one hand the ’reality’ of

the laboratory and on the other hand the simulation
model of the analysts. This gap implies that the
means and/or variances of the real and simulated
outputs X and Y are different. There are infinitely

many ways to create such gaps;, we select a few
ways, as follows.
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increases, the power of the test increases too. This
(good) behavior is found for all type I error rates «

and sample sizes n studied (but not displayed in the
figure).

We have the analysts use the wrong mean lead
time. Rather arbitrarily, we have them use a mean
lead time ranging between three and seven. We in-

crease means with steps of size 0.2.

Both the old and the new validation tests operate
on the same data (X;, Y); this improves the compari-

son of the two tests.

This design turns out to make the laboratory give
clear results: see Figure 1. This figure shows that the
old test (falsely) rejects a valid simulation model sub-

stantially more often than the nominal

probability.
1.00 ==

a value,
whereas the new test has the correct type I error
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Figure 1: Estimated Probability of Rejecting the Sim-
ulated System, as a Function of the Deviation be-
tween the Means of Simulated and Real Lead Times,
for the New and Old Validation Tests with « = 0.10

Note: The power of any statistical test can be
maximized over the whole domain of the parameters
being tested, by simply always rejecting the null-hy-
pothesis (that is, the simulation model is always
rejected). Obviously, such a procedure is inferior.
Therefore the first condition for any test is that its
type I error probability is acceptable.

The figure further shows that as the analysts’ error

The figure is asymmetric: a mean simulated lead
time (say) one unit too high has a very different
effect on the total inventory costs than has a mean
lead time one unit too low (lost sales against stock
carrying). We also studied mean simulated lead times
that are wrong on a logarithmic scale; they gave a
more symmetric figure (not shown).

Notice that the analysts make no specification er-
rors, when specifying the distribution type of the de-
mands. Kleijnen et al. (1996) do study specification
errors in their queueing simulations.

The analysts might apply a normalizing trans-
Sformation to the outputs, such as the Box-Cox trans-
formation. Such a transformation may make the new
test better realize the prespecified type I error proba-
bility. In this inventory laboratory, however, the loga-
rithmic transformation hardly affects the estimated
performance of the two tests: the output is a sum, so
apparently some limit theorem applies.

Note: The old validation test showed a certain

‘perverse’ behavior in the queueing simulations re-

ported in Kleijnen et al. (1996); also see Harrison

(1990, p. 187). In the inventory simulations, however,
this behavior is not found.

4 FUTURE RESEARCH

Topics that require more research are:
(i) The novel test assumes n.i.d. observations on the
real and simulated outputs (and so does the old test).
How can this assumption be satisfied in simulations
with autocorrelations and time trends? Autocorrela-
tions might be removed through batching and similar
approaches, which are popular in simulation (see
Kleijnen and Van Groenendaal 1992, and also Mayer
et al. 1994, pp. 99-100). Time trends might be re-
moved through techniques used in econometrics; also
see Barlas (1989, p. 68), who gives a system dynam-
ics example that seems to allow subjective graphical
analysis only, since the time series (simulated and
real) show ’highly transient, non-stationary behavior’.
Also see the use of ’differencing’ in Box and Jenkins
(1976, pp. 378-379). In other words, the academic
examples in this paper and its companion paper
(Kleijnen et al. 1996) need to be supplemented with
practical applications.
(ii) A specific type of non-normality, namely binary
output variables may be important in practice. An
example is the probability of buffer overflow.
(iii) The proposed statistical test of trace-driven simu-
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lations is only part of the total validation and verifi-
cation (V & V) process. This test needs to be incor-
porated in this total process.

5. CONCLUSIONS

This article focussed on statistical hypothesis tests for
the validation of trace-driven simulations. It proved
that it is wrong to expect unit slope and zero intercept
when regressing simulated on real outputs. Therefore
this paper applied a novel test: regress the differences
of simulated and real responses on their sums.

Both tests were evaluated and illustrated by apply-
ing them in a Monte Carlo laboratory with academic
inventory systems.

These experiments gave the following conclusions.
The old test rejects a valid simulation model substan-
tially more often than the o value indicates. The
novel test does not reject a valid simulation model
too often (its type I error probability equals the nomi-
nal value «). The power of the new test increases, as
the simulation model deviates more from the real
system.
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