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ABSTRACT

Subjective methods for operational validity are
presented that use graphical displays of histograms,
box plots, and behavior graphs. These methods allow
the data to be correlated, have any statistical distri­
bution, and be limited in the number of observations.
Model data are used for the reference distribution (in­
stead of a theoretical distribution such as the t or F)
and for reference to compare the system data against.
These methods are very general and can be used in
validating different types of models.

1 INTRODUCTION

Determining that a model is valid for its intended pur­
pose is critically important in developing a model and
doing this is called the validation process. (See, e.g.,
Sargent (1996) for a discussion of the validation pro­
cess) . One step of the validation process is perform­
ing operational validity. Operational validity (Sargent
1994) is defined as "determining that a model's output
behavior has sufficient accuracy for the model's inten­
ded purpose over the domain of the model's intended
applicability." Various methods and techniques are
used in conducting operational validity and they are
applied either subjectively or objectively.

The major attribute determining which methods
and techniques to use in performing operational valid­
ity is the observability of the problem entity being
modeled. (A problem entity is some system (real or
proposed), idea, situation, policy or phenomena.) A
problem entity is (i) observable if it is possible to col­
lect a reasonable amount of data on its operational be­
havior, (ii) partially observable if the amount of data
that can be collected on its operational behavior is
limited, and (iii) unobservable if no data can be col­
lected on its operational behavior. The reason that
observability is so important is because it is usually
necessary to compare the model and problem entity
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behaviors (outputs) for different experimental condi­
tions from the model's domain of intended application
in order to establish a high degree of confidence that
a model is valid.

It is preferable to make the comparisons of the be­
havior data between the problem entity and the model
in objective ways, which generally is through the use
of statistical tests. However, it is often not possible to
use statistical tests because (i) the assumptions of the
tests cannot (or only with extreme difficulty) be satis­
fied, (ii) the number of observations from the problem
entity is insufficient, or (iii) the behavior of the prob­
lem entity is changing, e.g, is highly nonstationary. In
these situations, other approaches for comparing the
data are desirable.

We present some subjective approaches for per­
forming operational validity that uses graphical dis­
plays for comparison of system and problem entity be­
havior data. We believe that the use of graphical dis­
plays is the most effective way of presenting the data
for subjective comparison. (Furthermore, we also be­
lieve that the use of tables for comparing data is highly
ineffective.) While the approaches we present are ap­
plicable to different types of models and problem en­
tities, we orient the presentation of our approaches
and the discussions about them towards the validation
of stochastic discrete event simulation models. (This
assumes that the problem entities are also stochastic.)

The remainder of this paper is organized as follows:
Section 2 contains some different ways of displaying
data graphically, Section 3 discusses some approaches
for performing operational validity that use graphical
displays of data, and Section 4 gives the summary.

2 GRAPHICAL DISPLAYS

In this section we present three different ways of dis­
playing data graphically: histograms, box plots, and
behavior graphs. These three types of displays (or
graphs) allow data to be statistically dependent (i.e.,



Figure 2: Box Plot
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Figure 1: Histogram

correlated), which often occurs In behavior data of
systems and simulation models.

2.1 Histograms

Histograms are used to display data for frequency and
relative frequency distributions. To construct a histo­
gram, the data are grouped into nonoverlapping inter­
vals (or classes) of usually equal width. The number
of intervals is usually between seven and fifteen, de­
pending on the total number of observations. The area
of each interval (class) is proportional to the number
of observations in each interval. If the interval widths
are equal, the height of each interval of a histogram
of a frequency distribution is equal to the number of
observations in the interval, and the height of each
interval of a histogranl of a relative frequency distri­
bution is equal to the number of observations in the
interval divided by the total number of observations.
See Figure 1 for an example of a histogram.

The data plotted in a histogram should be identic­
ally distributed. (Note: Prior to putting data in a his­
togram, the data should be plotted in a time-sequence
to ensure that there is no time trend in the data (John­
son 1994), which would cause the data to be not
identically distributed.) The data may be statistic­
ally independent or dependent (i.e., correlated) (Box,
Hunter, and Hunter 1978). The data plotted may be
the observations collected on the system (or from the
simulation model) or may be some function of par­
titioned subsets of the observations such as sample
means.

2.2 Box Plots

A box plot (Johnson 1994) or box and whisker plot
(Walpole and Myers 1993) depict the three quartiles
and the two extreme values of a set of data. A rect­
angle box encloses the 25th percentile (lower quartile)

and the 75th percentile (upper quartile) and a line sec­
tioning the box displays the 50th percentile (median).
A whisker at each end of the box extends to an ex­
treme value. See Figure 2 for an example.

The data used for box plots should be identically
distributed. The data may be statistically independ­
ent or dependent (i.e., correlated.). The data used
may be the observations themselves or some func­
tion of partitioned subsets of the data such as sample
means.

2.3 Behavior Graphs

A behavior graph shows the relationship between two
entities such as parameters, variables, and functions
of random variables by plotting paired data on the
two entities. The data points plotted may be the ob­
servations themselves, which may be few in number,
or may be functions of partitioned subsets of the ob­
servations, which may be based on a large number
of observations. Some examples of different types of
relationships that may be shown in behavior graphs
are relationships between two deterministic variables,
between two functions of a single random variable
such as its mean and standard deviation, between a
parameter and some function of a random variable,
and between a function of one random variable and a
function of another random variable.

Figures 3 and 4 contain two examples of beha­
vior graphs. They are from Anderson (1974) and
are based on observations collected on an interact­
ive computer system. Figure 3 contains data showing
the relationship between the mean and the standard
deviation of system reaction time. One can readily
see that there is a linear relationship between them.
Each data point is based on thirty independent obser­
vations. Figure 4 shows the relationship between the
average length of a time slice and the total number
of disk accesses based on twenty (correlated) obser­
vations per data point. A linear relationship between
these two entities can be seen in the behavior graph.
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3 VALIDATION APPROACHES
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Figure 3: Mean vs. Standard Deviation

Figure 4: Average Time vs. Disk Accesses

In operational validity, comparisons are made
whenever possible between data from the problem en­
tity and the model to determine if the model has suffi­
cient accuracy for the model's intended purpose over
the model's domain of intended applicability. It is
preferable to do this in some objective way, which
means using some type of statistical test if the sys­
tem (or simulation model) is stochastic. However, this
is often not possible because (i) the assumptions re­
quired of the statistical tests cannot be satisfied (or
only with great difficulty) and/or (ii) there are insuf­
ficient data available from the system. Most (simple)
statistical tests require the data to be independent,
which is often not true of data collected from a sys­
tem or simulation model. In addition, many statist­
ical tests require the data to have a normal distribu­
tion, which is also usually not the case for data collec­
ted from a system or simulation model. Furthermore,
even when the data does satisfy the statistical require­
ments, statistical tests frequently cannot be used for
operational validity because there is insufficient num­
ber of observations from the system to obtain "mean­
ingful" results from the statistical test. For example,
the length of a cOldil Icnce interval developed to com­
pare the means of some model and system behavior
variable can be to long for any practical usefulness.
This can be caused by an insufficient number of sys­
tem observations. Thus, it is often the case that stat­
istical tests cannot be used for operational validity.
We present in this section some approaches that can
be used for operational validity, which eliminates the
requirements of independence in the data, have no dis­
tributional requirements on the data, and can be used
with limited nun1ber of system observations.

Statistical tests use a theoretical reference distri­
bution such as the t or F distribution (Box, Hunter,
and Hunter 1978; Johnson 1994; Walpole and My­
ers 1993). In the approaches presented for opera­
tional validity in this paper, data generated from the
model are used for the reference distribution (or refer­
ence) instead of a theoretical distribution. (See Box,
Hunter, and Hunter (1978) for a discussion on using
data as a (external) reference distribution instead of
a theoretical reference distribution.) The data gener­
ated from the model for use as a reference distribution
(or reference) is displayed in one of the graphical dis­
plays described in Section 2 along with the data from
the system. These two sets of data are compared sub­
jectively to determine whether the model has sufficient
accuracy for its intended purpose. This comparison
can be make by the model development team and/or
by experts using face validity or Turing tests.
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In making comparisons between the model and sys­
tem data to decide model validity, two types of incor­
rect decisions can be made. One is to reject a valid
model as being invalid and the other is to accept an in­
valid model as being valid. The first type of incorrect
decision is a type I error and is the model builder's
risk, and the second type of incorrect decision is a
type II error and is the model user's risk (Balci and
Sargent 1981). The type II error is extremely import­
ant and should be minimized.

Sargent

3.1 Histograms as Reference Distributions

Histograms of data generated from a model can be
used as reference distributions for making comparis­
ons between model and system data for operational
validity. For each entity of interest (e.g., an output
random variable or sample mean of some output ran­
dom variable), a sufficient number of observations is
generated from the model to have at least fifty data
points to be placed in a histogram. The model data
to be placed in each histogram need only be identic­
ally distributed. Similarly, for each entity of interest,
system observations are used to obtain system data
points. The system data points must also be identic­
ally distributed for each entity of interest. The num­
ber of system data points for each entity of interest
is usually just a few and may be only one. For each
entity of interest, a histogram of the model data, for
use as the reference distribution, and a histogram of
the system data are placed in the same figure to be
compared subjectively to aid in deciding whether the
model's entity of interest has sufficient accuracy for
the model's intended purpose.

As an example, consider a simulation project by
Lowery (1996). A simulation model was developed to
predict the mean (average) number of beds used daily
(census) in specific hospital units. Operational valid­
ity was performed to determine whether the simula­
tion model's mean census (usage) of beds were within
the required accuracy of four beds for large hospital
units (i.e., units having a large number of beds). Since
there was a day a week effect, only Mondays will be
considered here. There were 24 system observations
(weeks) available on Monday census for the unit that
we consider and these observations are correlated.
The data entities of interest to be compared must be
determined. We select two for illustration purposes:
a 24-week average daily (Monday) census and a 4­
week average daily census. Observations were gen­
erated from the simulation model to obtain fifty 24­
week average daily census (for Mondays) data points.
A histogram of the 24-week average daily census is
in Figure 5. This histogram is the reference distri-

Figure 5: 24-weekly Average Daily Census

Figure 6: 4-week Average Daily Census

bution for the one system data point of a 24-week
average daily census. One can readily see that this
system data point lies within the reference distribu­
tion. Figure 6 contains a histogram of fifty 4-week
average daily census (for Mondays) data points de­
veloped from observations from the simulation model
for use as a reference distribution. The system ob­
servations are used to create six 4-week average daily
census and a histogram of them is also placed in Fig­
ure 6. One can readily observe that the system his­
togram lies within the reference distribution. Thus,
based on these two figures the simulation model can
be judged to have sufficient accuracy with respect to
mean daily census for this hospital unit on Mondays.
Note that the only assumptions required for this ap­
proach are (i) the data compared must be on the same
entity of interest, (ii) the data from the model have to
be identically distributed, and (iii) the data from the
system have to be identically distributed.

3.2 Box Plots as References

Box plots of data generated from a model can be used
as references for making comparisons between model
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3.3 Behavior Graphs as References

In performing operational validity, comparisons of dif­
ferent behavior relationships occuring in the system
should be made to those occuring in a model. We
suggest the use of behavior graphs as one approach
to doing this. It is often difficult to use objective val­
idation methods such as statistical tests because the
system/model behavior may be nonstationary, may
operate over a large portion of the application domain)
and data may be correlated. Behavior graphs avoid
the use of statistical tests by using subjective analysis
and model data as references.

Behavior graphs can be used to show different types
of relationships as discussed in Subsection 2.3. Dif­
ferent types of relationships require different amounts
of system data. If operational validity is being per­
formed on a deterministic model of a deterministic
system, deterministic relationships are used and these
generally require only a few observations. In perform­
ing operational validity on a stochastic model of a
stochastic system, a large number of system observa­
tions are often needed. For example, stochastic sim­
ulation models of computer and communication sys­
tems generally have model and system relationships
developed from a large number of observations from
the model and from the system.

To illustrate behavior graphs, we consider a sim­
ulation model of an interactive computer system in
Anderson and Sargent (1974) where behavior graphs
were used to validate the model. Three behavior
graphs they used are presented in Figures 8, 9 and
10. The relationship between the mean and standard
deviation of reaction time is shown in Figure 8. One
can readily observed that the same linear relationship
occurs in both the model and the system. Figure 9
contain relationships for both the maximum observed
value and the average value of reaction time versus
the total number of disk accesses. Each data point

Figure 7: Box Plots of Sunday Census
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An example of a box plot used in performing op­
erational validity is given in Figure 7. The box plots
are Sunday census observations for the same hospital
unit discussed above. The model box plot, which
is the reference, is developed from fifty observations
(Sunday census) generated by the simulation model.
The system box plot is developed from the 24 observa­
tions (Sunday census) collected on the hospital unit.
In comparing the two box plots, it appears that the
model has more variability in its Sunday census than
the hospital unit. Regarding the mean census, it is
this author's opinion that this pair of box plots shows
insufficient evidence to judge that the model's mean
census is not within four beds of the hospital's mean
census; i.e., there is insufficient evidence to reject the
model as being invalid. (In performing operational
validity on this model, several different comparisons
were made. This is an example of one of them.)

We note that box plots only require identically dis­
tributed data. Box plots are extremely effective in
communication and are thus effective for conveying
information on model validation and for helping with
model acceptability (Sargent 1996). For example, a
pair of box plots for each day of the week for the hos­
pital unit discussed above could be put into a single
graph to be used for communication to users regard­
ing the validity of this simulation model. The use of
box plots for operational validity may require more
system data than the use of histograms, which were
discussed above.

and system data for operational validity. For each en­
tity of interest (e.g., an output random variable or
sample mean of some output random variable), a suf­
ficient number of observations is generated from the
model to have at least fifty data points to develop
a box plot. The model data points used to develop
the box plot need only to be identically distributed.
Similarly, for each entity of interest, system observa­
tions are used to develop system data points, which
must be identically distributed. The number of sys­
tem data points should be at least ten (hopefully) and
preferably thirty or more. For each entity of interest,
a box plot of the model data to be used as a refer­
ence, and a box plot of the system data are placed in
the same figure to be compared subjectively. (To as­
sist in making comparisons of means using box plots,
a rule of thumb given in Walpole and Myers (1993)
may be helpful: "a rough guideline is that if the 25th
percentile line for one sample exceeds the median line
for the other sample, there is strong evidence of a dif­
ference between the means." Note that a comparison
can show that a model is invalid but cannot prove that
a model is valid.)
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Figure 8: Mean vs. Standard Deviation
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Figure 9: Reaction Time vs. Disk Accesses
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is from (or represents) five minutes of computer sys­
tem time. We observe that these model and system
relationships are similar with the exception that the
system has more variability than the model. Figure
10 contains the relationship of average response time
versus average background queue length. One can
readily observe that these model and system relation­
ships are similar except for two system data points,
which is important to ask why«. (For details on these
graphs and the validation of this simulation model, see
Anderson (1974) and Anderson and Sargent (1974).)

4 SUMMARY

5------------------------,Three different types of graphical displays \vere
presented that have minimal assumptions required of
the data. Methods for operational validity that use
these graphical displays were described. An import­
ant feature of these methods is that model data is used
for the reference distribution (or reference) instead of
a theoretical (statistical) distrihution for the system
data to be compared against. The graphical methods
presented should provide significant help in perform­
ing operational validity since the use of graphs is the
most used approach in performing operational valid­
ity (Sargent 1996).
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Figure 10: Response Time vs. Queue Length
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