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ABSTRACT

For the performability evaluation of complex systems
simulation remains often the only feasible method. Unfor-
tunately, simulation experiments tend to be very time con-
suming if rare events have to be considered. This paper
describes an algorithmic approach for fast simulation of
rare events applied in a Petri net modeling environment.
The technique is based on the RESTART method, which
is applicable for rare events in a wide range of simulation
models, and has the potential to reduce the simulation
overhead extremely. The paper presents selection and
refinement techniques for the most important input
parameters of RESTART. The techniques allow an effi-
cient execution of RESTART simulations especially in a
flexible evaluation tool. The results show run length
reductions up to six orders of magnitude.

1 INTRODUCTION

Model-based performance and dependability evaluation
of real-world systems usually requires large and complex
models to be considered. Most analytical evaluation
methods need the generation of the complete state space
of the model. Despite several approaches to reduce the
complexity of this task are known (Buchholz and Kemper
1995, Ciardo and Trivedi 1993, Ziegler and Szczerbicka
1995), state space explosion remains the most serious
limitation of these techniques. In this situation simulation
methods offer a valuable instrument.

The work presented here considers evaluation methods
for models of so-called soft real-time systems. In those
systems, rare events as failures, missed deadlines, or
frame losses do not lead to a serious failure, but to
degrading performance or limited quality of service,
which can be tolerated in most cases. However, designers
of applications like telephone switches, video transmis-
sion links, or data bases are interested in the probability
of those rare events. For these reasons, the availability of
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simulation methods for rare events is of interest especially
if they support well established modeling paradigms as
Stochastic Petri Nets. Thus, the analyst is able to consider
performability evaluation as a substantial part of system
design. The Petri net framework here allows for both, the
qualitative as well as the quantitative investigation of the
models under study.

Traditional simulation techniques require a huge amount
of computing time to achieve reliable estimates of per-
formance measures if the probabilities of the related
events are very small, say about 10 to 10°'2. The investi-
gation of even small models by crude simulation under
these constraints is simply impossible. To decrease the
overhead of stochastic simulation, fast simulation tech-
niques are applied. They offer the potential to reduce the
simulation run length by some orders of magnitude.

On the other hand, most fast simulation techniques
require individually adapted simulation algorithms repre-
senting special knowledge about the simulation model
under study. This makes its incorporation into flexible,
user-friendly evaluation tools difficult. In addition, for the
most prominent technique, the importance sampling
method, some serious constraints apply for the considered
model. Stationary simulation using importance sampling
is only possible if the model has regeneration points. Iden-
tification of regeneration points may become very costly
in complex models. Moreover, a single model parameter
which corresponds to the rare event of interest must be
identified for the application of the likelihood ratios (Hei-
delberger 1995). Some promising results have been pub-
lished applying importance sampling to the transient simu-
lation of Stochastic Activity Networks in the tool
UltraSAN (Obal and Sanders 1994).

A technique with higher flexibility is the RESTART
method (REpetitive Simulation Trials After Reaching
Thresholds (Villén-Altamirano 1991)). This method does
not require the model to have regeneration points, moreo-
ver it is not necessary to identify a single model parameter
for biasing. The basic idea is to repeat the simulation of
those phases of the model evolution with higher probabil-
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ity which lead to the rare event under study. The starting
points of the repetitions are called thresholds. At these
points, the model state is saved and repetitive trials are
simulated, each of them beginning at the threshold. Using
this approach, the portion of simulation time spent in
model phases which do not contribute to the estimate of
the rare event probability is reduced significantly.

The developers of the method demonstrate for optimal
parameters a speedup up to 108 for probabilities of about
10" in a queueing example (Villén-Altamirano 1994).
However, this run length reduction can be achieved only
if (nearly) optimal thresholds can be applied. Moreover,
the probabilities related to the thresholds must be known
to derive the corresponding number of retrials. The
authors provide probabilities for optimal thresholds and
the optimal number of retrials, but their determination
requires to know the model behavior prior to the simula-
tion study.

Hence, the determination of these input parameters
remains the most difficult part for the application of
RESTART. Only little research has been done concerning
the selection of suitable input parameters and the effec-
tiveness of the practical application of the method in a
flexible simulation environment. In this paper we enhance
a recently proposed selection procedure for thresholds of
the RESTART method using results of a crude pre-simu-
lation study and some information derived automatically
from the considered model (Kelling 1995b). Furthermore,
a new technique is described, which estimates the thresh-
old probability during the simulation run and performs
both, the adaptation of the threshold location according to
the known optimality criterions and the computation of
the optimal number of retrials based on the estimates.

The presented technique is part of TimeNET (Timed
Net Evaluation Tool (German et al. 1995)), a modeling
environment for Stochastic Petri Nets. SPNs are the most
general class of timed Petri nets and allow for generally
distributed firing times without structural restrictions.
Despite analytical solution techniques are available for a
large subclass of SPNs, discrete event simulation remains
the sole method to handle complex models or nets with
special properties. However, all Petri net properties based
on the net structure can be also derived for simulation
models. These properties are usually part of a qualitative
analysis and are applied to proof an intended model beha-
vior. The analytical components of TimeNET can handle
SPN models with up to 109 states. The simulation compo-
nent of the tool (Kelling 1995a) provides a framework for
sequential as well as parallel and distributed execution of
simulation experiments. The RESTART module enhances
the simulator that includes standard simulation for the
transient as well as the stationary case and a variance
reduction method using control variates. Simulation stud-
ies with SPNs containing several hundred transitions and
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places and thousands of tokens have been performed with
TimeNET.

The paper is organized as follows. In the next section, a
short review of the RESTART method is given. Section 3
provides some background information about the consid-
ered class of Petri nets, introduces an example model, and
derives preconditions for the applicability of RESTART.
The fast simulation with RESTART in TimeNET is
described in section 4 and results in section 5 demonstrate
its performance. Finally we conclude and give directions
for future work.

2 THE “RESTART” METHOD

RESTART has been proposed by M. and J. Villén-Altami-
rano and is based on ideas originally published by Bayes
1972, Hopmans 1979, and Wilson 1984. A complete intro-
duction can be found in (Villén-Altamirano 1991) and
(Villén-Altamirano 1994). The short review given here is
mainly based on these papers.

The technique is developed from the observation that
rare events tend to occur more often in a simulation run if
a model state is chosen as the starting point which is sig-
nificantly different from the average and closer to the rare
event of interest. These biased starting points are called
thresholds. Using the term event, we refer to an event in
the probabilistic sense, i.e. a subset of the sample space or
a state of the model.

Figure 1 shows a RESTART simulation. Suppose a sim-
ulation where s(w) is defined for all w € Q and a rare
event A givenby A = {we Q:s(w)2S,} whose proba-
bility is to be estimated. We assume m events C; with
C, = {we Qs(w) 2 S;}. Thus, an event C; is related to
each of the thresholds S;and C, cC,c...cC, cA.

Figure 1: Simulation Run with RESTART

The RESTART algorithm comprises:

«If a transition from C_‘, to C; occurs, the model state
O, is saved. _

«If a transition from C; to C; occurs, i.e. a state O, is

1
observed, the model state O, is restored and the
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interval [O)C Oz, ) is simulated again using a differ-
ent stream of random numbers.

* This procedure is repeated R; times (R, is the number
of retrials according to threshold i). The starting state
is always @, but in general the trials end up with
different states (oC Op,se iR

*While a retrial is perfonned at lcvél I, a transition
from C;to C; | may occur. In this case, R, | retri-
als are performed at level i+ 1 before the run pro-
ceeds at level i.

*If the trial R; is complete, the simulation proceeds
without retrials.

Given this scenario, the measure of interest can be

computed by

m -1
P(A) = 6A(tﬁrst H Ri]
i=1

where 8, is the model time during A is observed in all
retrials and fg, is the model time spent in the first retrials.

As the authors of RESTART show in (Villén-Altami-
rano 1991), the variance of this estimator can be com-
puted, if the correlation between successive samples is
known. The autocorrelation has to be taken into account,
since the events A are no longer independent due to the
forcing. However, to estimate the covariances requires
much more overhead than the evaluation of the rare event
itself. Our experiences with RESTART demonstrate that,
with well known techniques to reduce the influence of
autocorrelation (i.e. independent replications, batching),
the method provides a very high accuracy, even if a stand-
ard variance estimation is applied. Detailed results are
given in section 5 of this paper.

The main input parameter of this simulation technique
is the location of the thresholds. Let P, = P(Cl.|Cl._,)
(1 £i<m) be the conditional probability that a threshold
S; is reached given all states in which threshold S; | is
already reached. To maximize the gain, under some sim-
ple assumptions optimal thresholds should be located so
that P, = e ~ and the optimal number_(?f retrials after
crossing one of the thresholds is R, = P, , which ip the
case of optimal locations obviously leads to R; = e . In
discrete models thresholds might be selected only from
some discrete values. In this situation, the optimal
number of retrials is derived f_rlo/nz] the thresholds probabil-
ities by R, = (P;- P, l) . Thus, the threshold
selection crltenon does' not depend on the model under
study. This result makes the incorporation of RESTART
into a flexible simulation tool much more easier.

The remaining problem is the determination of suitable
thresholds and the computation of the corresponding
number of retrials. Before we turn to these new tech-
niques, in the next section the relation between perform-
ance measures in Petri nets and the RESTART method is

described and some requirements for its applicability are
derived.

3 [RELATION TO STOCHASTIC PETRI NETS
AND REQUIREMENTS

This part describes the links between measures derived
from Petri net models and the RESTART method. A
review of the considered class of timed Petri nets we use
for designing and evaluating our simulation models is
omitted. A detailed definition is given e.g. in (Ciardo et al.
1994).

Performance and reliability measures of timed Petri nets
are usually expressed by tokens to be in a particular place.
We distinguish between two typical kinds of estimators,
the mean number of tokens in a place (E-measure, expec-
tation) and the probability for a logical condition to be true
(P-measure), in which this logical condition is also derived
from a number of tokens to be in a place. Consider the
example model of an ATM switch given in figure 2. A typ-
ical application of those ATM systems is the transmission
of video data under real-time constraints. The arrival proc-
ess is described by a Markov-modulated Poisson process.
These processes are used for the modeling of superposed
data and video traffic consisting of small packets (cells) in
ATM systems (Lucantoni 1993). The model can be solved
analytically, thus the simulation results can be validated.
Simulation becomes necessary, if a transmission link with
more than one switch and additional traffic sources is
investigated.

The parameters of the SPN model are similar to
(Blondia 1992). The transitions T1 and T2 model the mod-
ulator which can be in one of two states. A token in place
P1 models a phase with a high cell arrival rate. The length
of this phase is given by the firing delay of transition T1.
The delay of T3 is the interarrival time in this case. When
T1 fires, a phase with a lower cell traffic intensity starts.
The arrivals are now determined by the delay of transition
T4, the length of the period is given by T2. All transition
delays in the modulator are exponentially distributed. The
service in the queue is modelled by the subnet consisting
of place P4 and transition T5. The service time is deter-
ministic. A buffer is provided by place P4. We assume that
the buffer capacity is limited to 50 cells. If the buffer is
full and a new cell arrives, this cell gets lost (t2 fires, since
the inhibitor arc from place PS5 is without effect). This
event corresponds to a frame loss in the video transmis-
sion.

Typical measures are related to the buffer. The mean
number of cells in the buffer is expressed by the E-meas-
ure E{#P4}. A more important measure is the probability
of a frame loss which occurs whenever a new cell arrives
and the buffer is full. The loss probability is one of the
service qualities an ATM provider has to ensure, thus



320

Figure 2: SPN of the MMPP/D/1/50-Queue

video transmission is a typical soft real-time application
in this context. The measure is derived from a certain
number of cells waiting for service and therefore a typical
P-measure. The measure definition P{#P4>=c} describes
that the number of waiting cells in the buffer reaches or
exceeds the value c.

For two special cases of P-measures the RESTART
method can be used. Our implementation deals with the
probability that the number of tokens in the considered
place reaches a certain limit. This type of measure usually
corresponds to rare events in the modeled system, e.g. to
buffer overflows or to losses as in the example above.
From those results, probabilities for deadline violations
due to failures can be derived.

The technique presented here determines suitable
thresholds for one measure of a Petri net model which
needs to be associated to only one place. The measure can
either represent an upper limit of a number of tokens in a
place (as the loss probability in the example) or a lower
limit of that number. Therefore, subject of the evaluation
is the rare event that a predefined number of tokens in the
place can be observed.

Some requirements for the efficient application of
RESTART must be met. First, for the measure monoto-
nous behavior is required, i.e. given the rare event A, no
events which are a subset of A may have a smaller proba-
bility than A. For measures which represent lower limits,
an upper bound of the number of tokens must exist for the
place of interest. This is a Petri net property which can be
derived from so-called P-invariants. These invariants are
one of the structural characteristics that can easily be
determined for the underlying Petri net exploiting its
structure. In addition, the number of tokens that can be
added to or removed from the place of interest at a given
time must be known. This can also be determined easily
from the Petri net. The last precondition ensures that at a
given time only the next threshold can be reached.

4 FAST SIMULATION WITH RESTART IN THE
TOOL TimeNET

This section introduces the application of the RESTART
technique. Despite fast simulation methods in general
offer a huge potential for the acceleration of experiments,
their applicability is often limited due to a lack of an user-
friendly modeling framework or absent tool support or
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both. Often for each model an individually adapted simu-
lation software is required.

The approach presented here allows each model to be
evaluated automatically in a Petri net modeling tool using
the RESTART technique as long as the rare event of inter-
est can be expressed in a certain form (cf. section 3).
Therefore the simulation technique is available for the
users of the tool without programming overhead or model
modification. The modeling framework of SPNs supports
an automatic parameter selection. Finally, RESTART is
the only fast simulation method, which is applicable to the
transient and stationary simulation of non-regenerative
mod ls.

As shown above, the main problem with the application
of RESTART is the selection of appropriate thresholds as
starting points for the retrials and the determination of the
number of these retrials. According to (Villén-Altamirarzlo
1994) thresholds should be selected so that P, = e .
Obviously, the optimal selection of the thresholds is only
possible if some results of the model under study are
known. Therefore, as a first step a pre-selection of thresh-
olds prior to the simulation run is required. The next sec-
tion reviews a new technique for the determination of
suitable thresholds originally proposed in (Kelling 1995b).

4.1 Determination of Thresholds

The algorithm for the threshold selection is shown in
figure 3. Suppose, for a considered place a rare event is
defined exceeding a number of tokens ¢. Then, a maxi-
mum number of M (M < ¢ ) P-measures

p, = P{#PXZL%;J}JG {(1...(M=1)}

1s defined. A pre-simulation with predefined length is
started estimating the probability of the measures p;. This
pilot run yields reliable estimates for the measures of high
probability (small ). From those measures (nearly) opti-
mal thresholds can be selected according to the optimality
criterion (cf. section 2). Assume that M' <M thresholds
could be determined, then we have to derive the missing
thresholds in the interval (| .c/M' ]...c) . This interval is
divided in equal sections defining approximate locations
for those remaining thresholds.

Note, that this algorithm for upper limits can also be
applied to lower limits, but in this case the marking of the
considered place needs to be bounded by ¢, what can be
derived from the corresponding P-invariant.

Applying this heuristic, at least some optimal thresholds
can be found in the pilot run. Depending on the computing
time the experimenter is willing to spent with the pre-sim-
ulation, the number of optimally selected thresholds can
be increased easily. In any case, some approximately cho-
sen thresholds are added to the optimal ones. As stated in
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(Villén-Altamirano  1994), RESTART is sufficiently
robust to deal with non-optimal thresholds. However, the
efficiency can be increased significantly with optimally
located thresholds. But, we found in experiments that the
gain drops dramatically if a non-optimal number of retri-
als is used. This leads to a second step, that refines both,
the initially selected thresholds and the number of retrials
during the simulation run according to the optimality cri-
terion. This algorithm is described in the next section.

check measure,
lower limits: compute P-invariants

P

| derive max. M auxiliary measures ]

start pilot run,
estimate prob. of auxiliary measures

predefined
run-length
reached

prob. of x auxiliary prob. of y auxiliary
measures estimated measures not estimated

[select x’ suitable thresholds |

compute ﬁ remaining thresholds
from the rest of the interval

!

| begin RESTART simulation

Figure 3: Threshold Determination for RESTART
4.2 Refinement of Threshold Location

As stated in section 2, the simulation proceeds without
retrials whenever R; retrials are complete. In the special
case that R retrials are done, the simulation behaves like
a standard simulation, since no biased starting point was
considered. That enables us to divide the whole
RESTART run into K phases, in which the probability of
the rare event can be estimated for each of the phases. The
refinement method applies two main observations:

First, for each of the phases 1 <k < K different thresh-
olds S¥ and different numbers of retrials R can be
applied. Each parameter set leads to one sample of the
estimated rare event probability, which can be computed

by

(k) -1
m
o (k) (k) (k) (k)
P =8, [zﬁm [T R, J .

i=1

Note, that the estimated sample of P(A) is always cor-
rect, regardless which parameter set is applied (but it
might be obtained inefficiently). By incorporating the
samples from previous phases, the simulation results are
not lost, if a modified parameter set is used.

Second, during each of the phases, not only the proba-
bility of the rare event A can be estimated, but additionally
an estimate for each of the conditional probabilities P; can
be obtained. These intermediate results can justify the pre-
selection of the threshold locations and the numbers of
retrials. This is important for all thresholds for which no
estimate could be found in the pilot run, and which there-
fore were -stablished heuristically. The location will be
examined by checking the optimality for the assumed
Pi(k). Subsequently, new threshold locations can be used in
the phase k+1, if the set of thresholds applied in phase k
turns out to be inadequate. Additionally, the number of
retrials for each threshold level is optimized using the esti-
mated conditional probabilities P;. This becomes neces-
sary especially if constraints apply for the threshold
values, as it is always the case in discrete models. Finally,
the total number of thresholds is adjusted considering the
first estimate of P(A).

Since the small probabilities related to heuristically
established thresholds describe always a tail of the distri-
bution density function, for the determination of the
threshold location linear regression is applied to predict
the tail of the function. For this region of the most com-
mon pdfs, linearity turns out to be a useful assumption.
Each of the decisions derived from the estimates of the
various probabilities is only be taken, if the estimates are
obtained from a sufficient number of samples. Of course,
the accuracy requirements can be assumed to be signifi-
cantly lower than those for the final estimation of P(A).
Additional tests, which compare the probabilities of the
first thresholds (obtained in the pre-simulation) with esti-
mates of the same measures obtained in the RESTART
simulation ensure further stability.

4.3 The RESTART Component of TimeNET

After preliminary studies, a RESTART algorithm has been
implemented in the simulator TimeNET-Sim (Kelling
1995a), which is the simulation component of the tool
TimeNET. It allows for complete simulation experiments
to estimate rare event probabilities. User have to provide
the model with the performance measure specified. As an
additional input parameter the number of thresholds might
be given. This value can be approximated using the
expected order of magnitude of the probability to be esti-
mated. If this parameter is not specified, the adaptive pro-
cedures start with default values and determine the
optimal number automatically.
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The experiment starts with a pre-simulation to obtain
the initial location of thresholds as described in
section 4.1. With these thresholds the RESTART algo-
rithm will be executed. During the run, the parameters are
optimized as described in section 4.2. The simulation may
run in parallel, i.e. distributed in a workstation cluster.
Each of the distributed replications obtains an estimate
for the performance measure and a centralized variance
estimation determines a confidence interval. The optimi-
zation is done in each of the replications independently in
order to omit synchronization. The simulation stops when
a predefined accuracy is reached.

5 SIMULATION RESULTS

In this section we demonstrate the performance of the
method. The simulation technique is employed to the
evaluation of the quality of service in a real-time trans-
mission setting. The example in figure 2 describes an
ATM switch, the model together with the measures con-
sidered here has been explained in section 3.

The small probabilities for different numbers of ATM
cells in the buffer (place P4) are investigated. All meas-
ures were estimated with a maximum relative half-width
of the confidence interval of 0.1 at 0.95 confidence level.
The length of the pre-simulation was set to 10 minutes.
Thus, at least three thresholds can be selected optimally.
All runs were executed using 10 parallel and independent
replications in a workstation cluster. For the first two
measures, also a crude simulation was performed to
derive the speedup ratios. The overhead of this experi-
ment ranges from 208 to (fictitious) 1.6-10® minutes. All
other speedups are approximations based on these values.

Table 1 shows the results for a first experiment. The
total number of thresholds was initially set to a default
value of 10. This is a non-optimal choice for probabilities
different from about 107'°, but a realistic situation, since
the experimenter does not know the model behavior in
advance. Without refinement during the simulation, in
some cases the run length was disastrous. It can be shown
that the refinement reduces the run length in all cases.
Note that the improvement is better for higher run length
of the first approach.

A second experiment addresses the improvement
caused by the refinement of the threshold location and the
number of retrials only. Here the number of thresholds
was set to their optimal values. The results in table 2
attest that the heuristic for the selection of the initial
thresholds works very well and in some cases no
improvement can be achieved by the refinement. On the
other hand a further run length reduction by about 60% is
possible. A detailed study is needed here to develop con-
ditions for the successful application of the refinement.
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Table 1: Speedups for a Default Number of Thresholds

no refinement with refinement

meas. prob. sim. speed- sim. speed-
time up time up
(min.) (min.)

226 | 127.106 | >2700 | <<l 140 1.5

6231 | 10107 644 4 156 17
b235 | 1.34.108 187 104 71 275
b240 | 107.10° | 6! 4180 24| 11000
b244 1 14010710 | 48 4-10* 39 4810
b248 | 1359010 | 126 | 13.00° | 112 | 1510°

b=50 | 1.59.1012 | 154 1-100 146 | 11108

Table 2: Effect of the Refinement of Threshold Location

(Number Optimal)

no refinement with refinement
meas. prob. sim. speed- sim. speed-

time up time up

(min.) (min.)

b>26 1.27-10°6 37 5 30 7
b>31 1.0-107 40 65 52 50
b>35 1.34-10°8 60 325 130 150
b>40 1.07-10° 61 4180 24 1.1-104
b244 | 1401070 | 58 | 33.10* 39 | 4810
b248 | 35001 | 50 | 38107 | 105 | 1610°
b=50 | 159.10712 | 96 | 17106 | 206 | 738.70°

The last study comprises the sensitivity of the method, if
initially a non-optimal number of thresholds is chosen.
Table 3 summarizes the values. The RESTART approach
without refinement shows drastically decreasing speedup,
if the number of thresholds is smaller than the optimal one.
Using the refinement, this effect can be compensated in
most cases and a further run length reduction of more than
one order of magnitude can be achieved.

The results show that the new simulation component
offers excellent speedups. With the optimal number of
thresholds given, the heuristic establishes thresholds as a
set of input parameters for RESTART. Then, the simula-
tion run reaches speedups up to 1.7-10° for probabilities of
about 10712, Compared to the accurate numerical results,
non of the relative errors was greater than 0.02. The opti-
mization of the number of retrials turned out to have a
greater impact than the refinement of the actual threshold
location. The improvement by the factor 20 demonstrates
that this feature is helpful when the optimal number of
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Table 3: Effect of the Refinement if the Optimal Number
of Thresholds Is Unknown

initial run length (min.)
number
[hre:tfolds no refinement | with refinement
7 6000 305
8 100 177
9 61 69
10 (optimal) 70 24
11 93 73

thresholds is unknown prior to the simulation run. How-
ever, in some situation the refinement overhead is remark-
able and simulations without this procedure are shorter.
Thus, additional studies are required to discover the rea-
sons for the increasing run length due to the refinement
and to improve the algorithm.

The execution of the experiments in parallel provides
independent samples for the variance estimation and
yields an additional gain of about one order of magnitude.

6 SUMMARY

We have introduced an automatic simulation framework
for fast simulation of rare events with RESTART. The
implemented heuristic to determine the thresholds allows
the incorporation of the RESTART acceleration into a
Petri net simulation environment, runs transparently to
the analyst and does not require detailed knowledge about
the applied algorithm. Furthermore, an additional refine-
ment to improve locations of thresholds and the number
of retrials with respect to the optimality criterion is pre-
sented. The method conserves the simulation overhead
done in previous phases by incorporating these samples
into the final result estimation. Thus, no simulation time
is lost, but the efficiency increases during the simulation
run, if non-optimal parameters were selected at the begin-
ning. A remarkable gain can be reached applying the
refinement strategies, if the initially chosen parameters
turn out to be significantly different from the optimal
ones. Examples show that an investigation of probabili-
ties as small as 10712 is possible and that very accurate
estimates can be obtained.

The techniques extend the work in (Villén-Altamirano
1994) by providing selection heuristics for thresholds and
by proposing an adaptive algorithm for the refinement of
the parameter setting during the simulation run. It
presents the first integration of the RESTART method into
a Petri net modeling tool.

Some additional studies are necessary for the detailed
investigation of complex measures. Future work will

address the reasons for the increasing run length due to the
refinement and transient simulation with RESTART.
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