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ABSTRACT

An approach to rare event simulation uses the tech­
nique of splitting. The basic idea is to split sample
paths of the stochastic process into nlultiple copies
when they approach closer to the rare set; this in­
creases the overall nUlnber of hits to the rare set for
a given an10unt of simulation time. This paper ana­
lyzes the bias and efficiency of sonle sinlple cases of
this nlethod.

1 INTRODUCTION

Estinlations of the small probabilities of rare events
are required in the design and operation of many en­
gineering systems. Consider the case of a teleconlmu­
nications network. It is custonlary to model such sys­
tems as a network of queues, with each queue having
a buffer of finite capacity. Infornlation packets that
arrive to a queue when its buffer is full are lost. The
rare event of interest may be the event of a packet be­
ing lost. Current standards stipulate that the proba­
bility of packet loss should not exceed 10- 9 . Or in a
reliability model of a space craft conlputer, we may be
interested in estinlating the probability of the event
that the system fails before the nlission completion.
Naturally, one would want this to be extrenlely low.
The nlain problenl with using standard simulation to
estimate such small probabilities is that a large num­
ber of events have to be sinlulated in the model be­
fore any sanlples of the rare event may occur. Hence
special simulation techniques are needed to make the
events of interest occur more frequently.

Inlportance sampling is a technique that has been
widely used for this purpose. The reader is referred
to Heidelberger (1995) and Shahabuddin (1995) for
some surveys. In inlportance sanlpling, the stochas­
tic model is sinlulated with a new probability dy­
namics (called a change of measure), that makes the
events of interest occur nl0re frequently. The sample
value is then adjusted to nlake the final estimate unbi­
ased. Ho\vever, choosing any change of nleasure that
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nlakes the event of interest occur frequently is not
enough; how it is made to happen more frequently
is also very important. For example, an arbitrary
change of nleasure that makes the rare event happen
more frequently may give an estimator with an infi­
nite variance. Thus the main problem in importance
sanlpling is to come up with an appropriate change
of measure for the rare event simulation problem in
hand. This may be difficult or almost impossible for
cOlllplicated models. Hence, even though importance
san1pling works very well for a large class of stochas­
tic nl0dels, the scope of application of importance
sanlpling is limited to systems with "nice" structure.

This paper deals with an alternate approach to rare
event silllulation that uses the simulation technique
of splitting (see, e.g., Hamnlersley and Handscomb
1965). In standard simulation, the stochastic process
being simulated, spends a lot of tinle in a region of
the state space which is "far away" from the rare set
of interest, i.e, from where the chance of it entering
the rare set is extremely low. In splitting a region
of the state space that is ~~closer" to the rare set is
defined. Each tinle the process reaches this region,
from the ~'far away" region, many identical copies of
this process are generated. This way we get more
instances of the stochastic process spending time in
a region where the rare event is more likely to oc­
cur. The boundary between the far away region and
the closer region is called a threshold. The above
described a case with one-threshold; one can easily
extend it to the case where we have multiple thresh­
olds. This approach to rare event simulation was in­
troduced in Kahn and Harris (1951) and used later in
Bayes (1970) and Hopmans and Kleijnen(1979). Re­
cently it was revisited in a significant way by Villen­
Altamirano and Villen-Altamirano (1991), Villen­
Altamirano et al. (1994) and Villen-Altamirano and
Villen-Altamirano (1994), who used it for estimat­
ing the probability of rare events in computer and
communication systems. They called their version of
this approach RESTART. A software package called
ASTRO (Villen-Altamirano and Villen-Altamirano
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1994) was created that implements their method.
They also did some approximate efficiency analysis
that gave some insights into threshold selection and
number of split paths generated at each threshold.
But a formal and thorough analysis was lacking.

Glasserman, Heidelberger, Shahabuddin, Zajic
(1996) (henceforth referred to as GHSZ) describe a
unifying class of n10dels and implementation condi­
tions under which this type of n1ethod is provably
effective and even optimal (in an asymptotic sense)
for rare event simulation. The theory of branching
processes (see, e.g., Harris 1989) was used to derive
the unbiasedness and efficiency results. Experimental
results supporting the theoretical analysis and explor­
ing the robustness of the splitting method, are also
reported in GHSZ. In this paper we introduce and de­
rive some biasedness and efficiency results that sup­
plement those in that paper. We begin with a simple
setting, and give conditions under which the splitting
method is optimal. We then give reasons why devi­
ations from this simple setting result in difficulties.
Some of these have been handled in GHSZ, whereas
others are currently being investigated. Some analyt­
ical results on the optimal selection of thresholds are
introduced next. Finally we give an analysis of the
bias introduced in one implementation of this method
that truncates sample paths to save simulation effort.

2 A SIMPLE SETTING

Consider the problem of estimating I = P(A), think­
ing of A as a rare event. Let A = Ak => A k- I ... => Al
be a nested sequence of events which we think of
as intermediate thresholds. Let PI == P(A I ) and
Pi+1 == P(Ai+IIAi ), i = 1, ... , k - 1; then

I == Ik = PIP2 ... Pk·

We think of k increasing to infinity and r ---+ 0 (this
would happen, for example, if Pi = P for all i, where
P is some fixed constant between 0 and 1).

To motivate the above setting, consider a single
server queueing system with a finite buffer B. Define
the state of the system to be the number of jobs in
the queue. The problem may be to estimate the prob­
abili ty that starting from state 0, the system reaches
state B before visiting O. We can think of this event
as the event A. Estimating probabilities of this type
are crucial to the simulation based estimation of per­
formance measures like the steady state probability
of packet loss (see, e.g., Heidelberger 1995). Clearly,
if the overall arrival rate is smaller than the overall
service rate (which is a requirement for the stability
of the queue), and B is large, then the event A is a
rare event. Suppose now that we place k - 1 inter­
mediate thresholds between 0 and B (with B being
the kth threshold). Let Ai be the event that start­
ing from state 0, the number of jobs in the system

reaches threshold i before reaching O. Then clearly
A i+1 C .A· i and we have an exan1ple of the setting
mentioned in the previous paragraph.

Suppose that for each -i we can generate ni

Bernoulli random variables with parameter Pi, all
independent of each other. These are the building
blocks of a splitting estin1ator in this simple setting.
From each successful Bernoulli outcome at stage i, we
generate ni+1 stage-(i + 1) Bernoullis. Thus, at the
first stage we have Bernoullis

the jth of these, if successful, spawns

and so on. The estimator is

It is easy to show that I k is an unbiased estin1ator.
By conditioning on :Fk we mean conditioning on the
outcon1es of all Bernoullis up to stage k. Then

Doing this iteratively we get that E( Ik) = PI ... Pk ==
rk·

Returning to the simple queueing example intro-
duced above, a Bernoulli random variable might be
the indicator that a sin1ulated process reaches the
next threshold from the current one, without visit­
ing state O. In particular, the Pi should be consid­
ered unknown, so the ni+1 Bernoullis from each of
the successful outcomes at stage i would typically be
generated implicitly by simulating ni+1 samples of
the underlying process starting from stage i, until it
ei ther hits threshold i + I, or it hits 0 (see Figure 1).
If a sample path hits threshold i + 1 before hitting
0, then the corresponding Bernoulli random variable
is set to 1; else it is set to zero. Of course, since the
Bernoullis are all independent, the queuing process
must satisfy the assumption that the dynamics of the
process after it hits the -ith threshold, is independent
of the past and depends only on i. A simple example
where this is true is the M/M/1/N queue.
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Figure 1: Splitting with Three Thresholds and Two
Split Subpaths at Each Intermediate Threshold.
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We now calculate the variance of this estimator:
The condition in (i) is equivalent to

The next result examines the behavior of this variance
as k increases.

Lemma 1 (i) Iflinlinfj --+ oo y2:i=llog(niPi) > 0,

1 ) 1
limsup-: Llog(-) < 0

)--+00 J i=l niPi

if

which ensures convergence of (3) and proves (2). The
reverse inequality in (iii) similarly ensures divergence
of (3). For (ii), notice that

li~~p(1 - Pi) }] (Pi~!i) < 00,

which holds under the condition in (ii). 0

The conditions in this lemma simplify in the im­
portant special case that the Pi approach some limit p
and all ni equal som.e n for sufficiently large i. In this
setting, the three cases in the lemma can be replaced
with np > 1, np = 1, and np < 1. The corresponding
results for this special cases may be found in GHSZ.

In case (i) of the lemma, the second moment of
the estimator is also O( (Pl' .. pk)2), because the first
moment is PI ... Pk. Nonnegativity of variance makes
this the best possible rate of decrease for the sec­
ond moment. In contrast, straightforward simulation
(corresponding to a single Bernoulli with parameter
PI ... Pk) has variance

(1)

(2)

Var[Ik +l ]

Var[E[Ik+ll:Fk]] + E[Var[Ik+ll:Fk]]
1

-'}- {Var[Iknk+IPk+l]
nk+1

+E[Iknk+lPk+l(l - Pk+l )]}

2 2 PI ... PkPk+l (1 - Pk+l)
Pk+l (1k + .

nl ... nk+1

2_~ (rrk 2) PI ... Pj (1 - Pj)
(1k - L..J Pz ,

j=1 i=j+l nl ... nj

which can also be written as

This recurrence relation can be solved to get

(ii) if -00 < lim infj --+ oo 2:1=110g(niPi),

(iii) if lim sUPk--+oo Pk <
lim infj --+00 J2:1=1 log(niPi) < 0,

1 and

per replication and a second moment of the same or­
der.

We now supplement results for the variance with
an assessment of the computational effort. We as­
sume, for simplicity, that the work per sample is con­
stant across stages. (In many cases this may not be
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true. For example, in many queueing models the
expected cost of simulating a trial from threshold i
grows proportionally with i. This is because, with
positive probability bounded away from zero, the sys­
tem never reaches threshold i + 1 and therefore many
trials consist of simulating the queue until it empties
again. However, these other cases can be handled
similarly and lead to similar conclusions.) Then the
expected work is proportional to the expected num­
ber of samples, which is

nl + (nlPl)n2 + ... + (nlPl ... nk-lPk-l)nk
- ",k-l TIj
- nl i...Jj=O i=l Pi ni+l·

For the expected work we have:

Lemma 2 (i) If limsuPj-+oo t2:i=llog(Pi n i+l) >
0, the expected work per run grows exponentially
in k.

(ii) If2:~llog(Pini+l) < 00, then the expected work
per run is O(k).

(iii) If lim SUPj -+00 J2:1=1 10g(Pi ni+l) < 0, then the
expected work per run is O( 1).

Proof. For case (i), note that

> ~ log (g Pini+l )

1 k-l

k I)og(Pini+d
i=l

so a positive limsup for this expression indicates expo­
nential growth of expected work. The expected work
is O(k) if

1 k-l j

k 'Ellpi ni+l
j=O i=l

converges, and a sufficient condition for this is the
condition in case (ii) above. The condition in case
(iii) above ensures that the series

00 j

'Ellpini+l
j=O i=l

converges, by the root test. 0

As in Lemma 1, the conditions here can be replaced
with np >, =, or < 1 in the case of Pi -+ P and fixed
ni = n. The corresponding results for these special
cases may also be found in GHSZ.

The work-normalized variance, balancing compu­
tational effort and estimator variance, is the product
of the variance and the expected work per run; see
Glynn and Whitt (1992) for full justification of this
criterion. Combining Lemmas 1 and 2 yields a con­
dition for optimal splitting:

Theorem 1 If

j

-00 < lim infL log(pi ni)
i=l

and 00

L 10g(Pini+l) < 00,

i=l
then Ik is asymptotically efficient in the sense th.at

I
" logO(k2(Pl ... Pk)2)
1m - 2

k-oo log E[Ik] -.

We interpret this result to mean that splitting is
most effective when ni ~ l/Pi. GHSZ discuss the
use of a random number of splits in order to get the
expected number of subpaths equal to l/pi when Pi
is not the reciprocal of an integer.

The analysis above is based on a very simple model
of splitting in which the success probabilities Pi are
constant at each threshold, regardless of what may
have happened at previous thresholds. Consider esti­
mating the probability that a Markov chain reaches
some rare set before returning to its initial state. We
label the initial state 0 and assun1e it is recurrent.
Imagine introducing intermediate thresholds in the
state space of the Markov chain and splitting each
path that reaches a threshold into some number of
subpaths. In general, the probability that the chain
will reach the ith threshold before 0, given that it
has reached the (i - 1)th threshold before 0, will de­
pend on the state of the chain when it reached the
(i - 1)th threshold. The assumption of constant Pi
would hold if, say, there were just one state through
which the (i - 1)th threshold could be reached; but,
more typically, Pi would vary depending on the entry
state.

The case where we have a fixed and finite number
of entry states into each threshold, and the probabil­
ity dynamics of the process is homogeneous (in some
limiting sense) with respect to the thresholds, is fur­
ther analyzed in GHSZ. To get a sense of the pos­
sible impact of the variability of the Pi'S in a more
general setting (i.e., uncountably infinite number of
entry states into thresholds), we consider a simple
two-threshold problem. Our objective is to estimate
, = PIP2 where, now, P2 = E[P2] , with P2 stochas­
tic. The mechanism we have in mind is this: each
path has probabili ty PI of reaching the first thresh­
old; upon reaching that threshold, its offspring are
randomly assigned a sample of P2 as their common
second-stage success probability. This accurately rep­
resents the Markovian setting described above. The
estimator is
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with each I il '"'-' Bernoulli(PI) and each 2:::7,">2=1 li l i 2

conditionally Binon1ial( n2, P2), independent * for dif­
ferent i l .

Let N2 = 2:::7
2

2
=1 li l i 2 for some i l . Then

Var[N2] = n2P2(1 - P2) + (n~ - n2)Var[p2].

Proceeding as we did for (1), we get

Var[h] = niln~ {n~p~nIPI(1- pd + nlPI Var[N~]} .

This becomes

p~PI(l - pd + PIP2(1 - p~) + pdn~ - n2~Var[p~].

nl n1 n 2 nIn§

The last term gives the effect of a random P2 com­
pared with a fixed P2. To get a sense of its im­
pact, divide through by ,2 = pip~, and suppose that
ni ~ 1lpi, i = 1,2. The contribution of the first two
terms is then O( 1) whereas the new variability tern1
contributes O(n§Var[p2]) = O(Var[p2]lp§)·

This simple observation has important inlplications
for the effectiveness of multithreshold splitting proce­
dures: splitting will be most effective if there is little
variability in the success probability at each thresh­
old. This further suggests (at least heuristically) that
the thresholds should be chosen in a way that is con­
sistent with the most likely path to a rare set. For
then each subpath will draw a success probability
close to that for the nl0st likely path, resulting in
little variation across subpaths. Understanding the
large deviations behavior of a rare event n1ay there­
fore be useful in designing a splitting procedure.

and the expected work per run becomes

k 1
2:-.
i=1 Pi

Our objective is then to minimize

k
~ I-Pi

g(Pl, .. · ,Pk) = L....J--
.. Pi
z ,}

subject to PI ... Pk =,. Rewriting the constraint and
appending it with a Lagrange multiplier yields

The first-order conditions

1 k k 1 ,,\
-22:(1-Pi)-2:~+~=0, i=l, ... ,k,

Pi j=1 j=1 p} pz

and 2:::J=llogPi - log, = 0, are solved by taking

Pi = P == ,11 k and ,,\ = kip. Moreover, the objective
9 is convex because it is a sunl of ternlS (1 - Pi )/Pj,
each of which is convex in (pi, Pj) (or simply Pi in
case j = i). Thus, it is optimal to make the Pi equal.

It is now a sin1ple matter to conclude that parti­
tioning so that the Pi converge is asymptotically op­
tinlal (at least anl0ng schen1es wi th ni = 1Ipi). For

h k I t (k) (k) b b b'l' . I . Ieac ,. e ql , ... , qk e any pro a 1 ltles mu tIp y-
ing to 'k. We claim that if Pk -1- P as k -1- 00, then

whenever the Pi converge. To see this, notice that

for all k. In addition, we now argue that

Al . nk 11kso, SInce i =1 Pi = Ik, 'k -1- P, so

(4)

r g(Pl' ... , Pk)
un sup . (k) (k)::; 1.
k-+oo g(ql , ... , qk )

In light of the optimization carried out above,

(
11k 11k

9 'k ,... ,'k )
(k) (k)::; 1

g(ql , .. ·,qk )

3 OPTIMAL PARTITIONS

We now return to the sinlple setting fronl the start of
Section 2. In particular, the Pi are constant at each
threshold and we want to estimate, == "'lk = PI ... Pk,
with PI = PCAI) and Pi = p(.A i l ..4i - 1 ), continuing to
think of k -1- ()O and ,k ----+ 0. We consider the problem
of choosing the intermediate events Ao, ..4. 1 , ... , Ak-I
and make two observations: choosing these events so
that the Pi converge as i -1- 00 has an asymptotic op­
timality property, and there is a connection between
being able to choose the thresholds so that the Pi con­
verge and being able to analyze the large deviations
behavior of a rare event.

We begin by exan1ining the optin1al choice of
PI , ... ,Pk for fixed ,. Based on the analysis in Sec­
tion 2, we restrict attention to the case ni = Ilpi,
ignoring the integrality constraint on the ni. In this
case, the variance becomes
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(5)

as k -1- 00, which verifies (4). We conclude that
choosing the Pi so that they converge to a limit is
asymptotically as effective (as k -1- oc» as using the
optimal partition at each k.

What does choosing the Pk to converge entail for
the sets A k ? We now point out that the availability of
a convergent Pk sequence is related to the A k satisfy­
ing a limit theorem of the large deviations type. More
specifically, if the Pk converge then the P( A k ) have a
logarithmic limit; and if the P(Ak ) have an asynlp­
totically exponential decay, then the Pk converge. For
if Pk -1- P then

k

lim -k
1

log P(A k ) = lim -k
1 L logpj = logp.

k-oo k-oo
j=l

And if

as k -1- 00 through integer values, then

This gives another sense in which knowing something
about the large deviations behavior of a rare event
could be useful in designing a splitting procedure.
Knowing the large deviations behavior should be use­
ful in setting thresholds for which the resulting Pk
converge.

4 TRUNCATION BIAS

As mentioned before, in many queueing models the
expected cost of simulating a trial from threshold i
grows proportionally with i. This is because, with
positive probability bounded away from zero, the sys­
tem never reaches threshold i + 1 and therefore many
trials consist of simulating the queue until it emp­
ties again. As such unsuccessful trials do not con­
tribute positive weight to the estimation of Ik, it
seems wasteful to devote significant computing re­
sources to them. Therefore, it is desirable to "throw
away" trials that have dropped many thresholds from
the starting threshold and thus are very unlikely to
reach the next highest threshold. However, doing so
introduces some bias in the estimator. In this section
we analyze this "truncation" bias for a simple exam­
ple, which should nevertheless yield insight into nl0re
complex situations.

We assume there is a truncation threshold d. If
a trial started at threshold i where i ::; d, then we
simulate the sample path the same way as in the case
without truncation. If a trial started from threshold i,
where i > d, ever drops to threshold (i - d), that trial
is counted as a failure and discarded. We analyze

this bias for the simplest possible queueing system 1

the M/j\l/I queue. We let A and J.l denote the arrival
and service rates 1 respectively, and define p = A/ J.l <
1. We assume A + J.l = 1. The embedded discrete
time Markov chain is a randool walk with increments
that take on the value +1 with probability A and -1
with probability J.l. In this case we let the thresholds
correspond to queue sizes of 1,2, ... k. To estimate
the bias \ve first need to calculate Pi 1 which is the
probability that the queue length ever reaches (i + 1)
before emptying, given that the initial queue length
is i. Such probabilities are known frool analysis of
the "gambler's ruin" probleol; see pages 344-348 of
Feller (1968). rvlore generally, if rj = P{hit 0 before
nl start at j}, then

1 _ pn- j

1 - pn

Specializing (5) to j =i and n = (i + 1) 1 we have Pi =
p[I- pi]/[I_ pi+l]. Now let P~ denote the probability
of reaching threshold i+ 1 before threshold i-d, given
an initial1ueue length of i. Splitting using truncation

yields an unbiased estiolate of I~ = f1~:/ p~. Note
that P~ = Pi for 0 :::; i ::; d. The forolula for P~ for
i 2: d is deterolined from the right-hand-side of (5)
with j = d and n = (j + 1): P~ = p[I - pd]/[I_ pd+l].

We \vish to COOlpare I~ to Ik and in particular
wish to kno\v how d = dk should be chosen so that
'~/'k ~ 1 as k ~ 00.

I k - 1 I [1 d] k - d - 1 k - 1 1_pi+1
'Yk = II Pi = - P II
Ik i=d+l Pi 1 - pd+l i=d+l 1 - pi .

(6)
The product ternl on the right-hand-side of (6) tele­
scopes to [1 - pk]/[I - pd+l] which ---4 1 provided
both k and d -+ 00. Thus we require [(1 - pd)/(I ­
pd+l )]k-d ---4 1. This will be true provided (1 ­
pd)k-d __ 1 or, equivalently, (k - d) log(I - pd) -+ O.
Using the Taylor series expansion log( 1 - f) ~ - f for
sOlall f, we then require that kpd ~ 0 (since dpd ~ 0
as d ---.,. (0). That is, we require that d ---.,. 00 and that
k not grow too quickly with respect to d, specifically:

(7)

In an asymptotically optimal splitting procedure the
expected cost to simulate all of the offspring from
a single trial from threshold 0 without truncation is
of order UJ = k2. With truncation, this is reduced
to order u/ == d x k. Thus UJ/u/ = kid can grow
arbitrarily large and still satisfy (7), i.e., by appro­
priately choosing the truncation threshold we obtain
significant computational savings without introduc­
ing significant bias. As a nuolerical example, when
Equation 6 is conlputed with p = 0.5, k = 20 and
d = 5, ~/~I,k == 0.81 representing a truncation bias
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of about 20%, but when d is increased to 10, ,~/'k

increases to 0.996. Even with k = 50 (and d = 10),
,~/'k = 0.98, representing only 2% bias.
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