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ABSTRACT

The problem of efficiently generating general multi-
variate densities via a Monte Carlo procedure has ex-
perienced dramatic progress in recent years through
the device of a Markov chain sampler. This procedure
produces a sequence of random deviates correspond-
ing to a random walk over the support of the target
distribution. Under certain regularity conditions, the
corresponding Markov chain converges in distribution
to the target distribution. Thus the sample of points
so generated can serve as a statistical sample of points
drawn from the target distribution. A random walk
that can globally reach across the support of the dis-
tribution in one step is called a Hit-and-Run sampler.
Hit-and-Run Markov chain samplers offer the promise
of faster convergence to the target distribution than
conventional small step random walks. Applications
to optimization are considered.

1 INTRODUCTION

The Monte Carlo problem of efficiently generating
univariate distributions can be attacked from a va-
riety of directions including the simple device of eval-
uating the inverse of the random variables cdf at
a uniform [0,1] deviate. However, the multivariate
case is more problematic with no corresponding trans-
form method for the general case (Schmeiser (1980)).
There are transform methods for special cases, includ-
ing multivariate normals and uniform distributions
over simplices and ellipsoids (Rubinstein (1982)), but
no constant Jacobian analytic function is known that
maps from the unit cube to the epigraph of a general
multivariate density function. Nonetheless, the abil-
ity to generate general multivariate deviates would
have many important applications. The simulation
of complex systems can involve generating multivari-
ate densities that are not only not normal but may
not belong to a named family of distributions. An in-
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teresting and potentially very significant application
from the field of optimization is to generate samples
from multivariate distributions that have a high like-
lihood of being close to a global optimum.

The basic idea is very intuitive. Consider the prob-
lem of minimizing a continuous objective function f
over a unit cube C in R,

Lo f(z)

If we were to generate a point X uniformly dis-
tributed in the epigraph of f on C, ie., in S =
{(z, f(z))|z € C}, then points z € C with higher
objective function values f(z) would be more likely
to be generated than those with lower values. In fact,
the pdf of X would be a scalar multiple of f. We could
increase this bias toward higher values of f by select-
ing X uniform from the epigraph of a transformed
version of f that made higher values of f correspond-
ingly more likely. For example, consider the epigraph
of the function e/(#)/T where T > 0. It is clear that as
T — oo, the distribution of X would converge to the
singular distribution of unit mass at the global opti-
mum z* = argmax{f(z)|z € C}. This observation
in fact forms the basis for an extension of simulated
annealing to the continuous case (Romeijn and Smith
(1994a,1994b)). However since the objective function
f is arbitrary apart from being continuous, the epi-
graph of the function g(z) = e/(®)/T can also be quite
general and in particular non-convex.

A straightforward approach to generating a uni-
form point from such a general bounded region S C
R™ would be to enclose it in a sphere say and then
use Von Neumann’s rejection method (Hammersley
and Handscomb (1964)) by generating a sequence of
independent uniform deviates in the sphere until a
point falls in S. Unfortunately, the number of such
trial points grows exponentially fast in dimension n
even for nice regions S such as a cube. For example,
the expected number of points that must be gener-
ated within a circumscribed sphere around a cube S
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grows from 1.5 for n = 2 to 10%° for dimension n =
100. (The n-dimensional content of an n-dimensional
sphere of radius r is 27" 7"/2(nI'(n/2))"!, so that the
volume of the sphere enclosing an n-dimensional unit
cube is 2(n7/4)"/?(nl(n/2))"1).

Lacking either an efficient transformation or rejec-
tion method of generating a uniform deviate in a
general region S, people have turned to the device
of a so-called Markov chain sampler. Probably the
first instance of such a Monte Carlo procedure was
the celebrated Metropolis Method (Metropolis et al
(1953)). The basic idea is to begin with any point
in the region S and initiate a random walk within
S from this starting point. Since the distribution of
each successor point depends only upon the current
point, the sequence of points generated form a homo-
geneous continuous state Markov chain. The genera-
tor that produces a successor point from the current
point is so constructed that the limiting distribution
of the Markov chain is the target distribution over S,
e.g., the uniform distribution.

2 HIT-AND-RUN SAMPLERS

An important class of Markov chain samplers is the
so-called Hit-and-Run sampler. They differ from
other samplers, such as the neighborhood walk of dis-
crete simulated annealing, by their ability to execute
movements that can span the entire region S in a
single step. This ability to globally reach across a re-
gion has led researchers to conjecture that their rate
of convergence is superior to neighborhood random
walks.

When the number of iterations of the walk required
to obtain a variational distance from the target dis-
tribution of at most ¢ is a polynomial function of the
size of the problem (e.g., the dimension of the region),
then the sampler is called rapidly mixing. Recently,
Lovasz and Simonovits (1993) have demonstrated a
neighborhood walk that achieves rapid mixing for a
class of “well rounded” convex regions. The walk pro-
ceeds by generating successor points within the inter-
section of the region S with a small ball around the
current point. Surprisingly however, the polynomial-
ity of Hit-and-Run remains an open question.

2.1 Uniform Target Distributions

We now turn to describing a series of Hit-and-Run
samplers that have in practice experienced excellent
rates of convergence to their target distributions. The
first is the first instance of a Hit-and-Run sampler
which was termed at the time a symmetric mixing al-
gorithm (Smith (1984); see also Smith (1980), Boneh

and Golan (1979)). It is only required that the re-
gion S be an open subset of R" (and that the target
distribution be the uniform distribution over S). In
particular, S may be non-convex and indeed discon-
nected. However, since S is open, for every point
z € S there must exist a small ball around it that lies
totally within S.

Hit-and-Run Sampler (Uniform Target Distri-
bution)

1. Select a starting point zo € S and set i = 0.

2. Generate a random direction d;+; uniformly
distributed over a direction set D C R".
Find the line set L = SN {z]z = z; +
Adit+1, A areal scalar} and generate a random
point z;4, uniformly distributed over L.

3. If i = N, stop. Otherwise, set ¢ = 1 + 1 and
return to 2.

Since the region S is arbitrary apart from being
open, the step of generating z;,; uniform over L can
be computationally very demanding. To avoid this,
in practice one would execute step 2 by having first
enclosed the region S in a hypercube. Then after gen-
erating a uniform direction d over D (easily done by
simply normalizing a vector of n independent normal
[0,1] components), the end points y' and y? of the
bidirectional line emanating from the current iterate
z and intersecting the enclosing cube are determined.
Then a rejection method is employed by generating
one-dimensional uniform points on the line segment
from y! to y? until one falls within L. Since this
subproblem is one-dimensional, a rejection method is
typically very efficient for this task. The remaining
(n — 1)-dimensional effort lies in choosing d uniform
over D, an easy task for D a sphere for example.
In this latter case the procedure is called the Hyper-
sphere Directions Hit-and-Run Sampler.

The reason that the Markov chain corresponding
to the iterates X, X3, X2,... converges in distribu-
tion to a uniform distribution over S is easily seen
from the fact that 1) it is possible to go from any
point in S to a neighborhood of any other point in
one step, and 2) the uniform distribution is a station-
ary distribution of the chain. The latter observation
is clear if we observe that from the directional sym-
metry of the direction distribution and next iterate
chosen, the probability of transitioning from a point
z to a neighborhood of a point y in S is the same as
the probability of transitioning from the point y to
a neighborhood of the point z, for all z and y in S
(see Smith (1984) for a formal proof of this result).
Smith (1984) reports on empirical tests that suggest
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rapid convergence to a uniform distribution for rela-
tively large dimensional regions. An analytic bound
on the error from uniform after a fixed number of it-
erations is also provided. The bound is smallest for
the case where the region is a sphere since the bound
is decreasing in the ratio of the volume of the region
to the volume of the smallest circumscribed sphere.
Thus elongated ellipsoids can be expected to require
more iterations to achieve a given closeness to unifor-
mity. This is also intuitively clear since most of the
directions generated from a current iterate will result
in small movements from the current point (thus the
conductance is small). Since the uniform distribution
remains the limiting distribution regardless of how
directions are generated (Smith (1984)), it can prove
profitable to alter the distribution employed to bet-
ter fit the region. Kaufman and Smith (1996) show
how to select a direction distribution to accelerate
convergence and in particular show how to achieve
a sphere-case rate of convergence for any ellipsoid re-
gion. Incidentally, if we choose the direction distribu-
tion set D to be a hypercube, we obtain the so-called
Coordinate Directions Hit-and-Run Sampler, a ver-
sion of the Gibbs Sampler except that the sequence
of coordinate directions chosen is not deterministic.
See Chen and Schmeiser (1993) for a computational
comparison of the two approaches.

Turning to applications, in addition to their direct
use for the Monte Carlo generation of uniform sam-
ples, these Hit-and-Run Samplers with uniform tar-
get distributions have also been employed as random
probes to discover the properties of various regions in
R™. Berbee et al (1987) explored their use in identi-
fying redundant constraints in a linear program. See
also Caron, Hlynka and McDonald (1993). The idea
here is that the bidirectional line emanating from the
current iterate z; will hit two points on the boundary
of the polyhedral feasible region of the LP, thus iden-
tifying two non-redundant constraints. By repeating
for each iterate, we play a coupon-collectors problem
of non-redundant constraint identification until all
non-redundant constraints have been identified with
a given probability. By then removing the redundant
constraints, the resulting smaller LP may be more
efficiently solved for an optimal solution (if the re-
sulting solution is feasible for the original LP, it must
be optimal as well). The construction of a stopping
rule that guarantees that every non-redundant con-
straint has been identified with a certain probabil-
ity is complicated by the fact that the hit point on
the boundary of the polyhedron will not in general
be uniformly distributed on that surface (see Caron
and MacDonald (1989) for how to address the depen-
dency of the two hit points). In fact, the distribution
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will in general be quite irregular and complexly de-
pendent on the geometry even though the interior it-
erates Xo, X1, X2, ... will asymptotically be uniform
within the polyhedron. The problem is that the prob-
ability of hitting a neighborhood of a facet depends
on the angle the facet makes with the bidirectional
line emanating from the current iterate: the more or-
thogonal the line meeting the facet, the better the
chance. Boender et al (1991) alter the Hit-and-Run
Sampler to reject hit points in proportion to the co-
sine of that angle to remove this bias and thereby
produce hit points that are asymptotically uniform
on the boundary of the polyhedron. Since the vol-
ume of the surface of a polyhedron is zero, rejection
methods cannot be used here; nor can transforma-
tional methods since the number of simplices in a
decomposition of the surface is exponentially large in
the dimension of the polyhedron. The resulting Hit-
and-Run sampler, somewhat whimsically called the
Shake-and-Bake algorithm, is arguably the only prac-
tical way to generate uniform samples on the surface
of large dimensional polyhedrons.

2.2 General Target Distributions

Thus far we have only discussed Hit-and-Run Sam-
plers for generating uniform distributions on regions
S C R". The problem of devising a Markov chain
sampler to generate essentially arbitrary distributions
f over S C R™ is addressed in Belisle, Romeijn, and
Smith (1993). They propose the following sampler:

Hit-and-Run Sampler (General Target Distri-
bution)

1. Select a starting point zo € S and set ¢ = 0.

2. Generate a direction d;4+; in D with distribu-
tion v. Find the line set L = SN {z|]z =
z; + Adi41, A a real scalar} and generate a point
Tiy1 = T + Aidiy1 € L with ); having the den-

sity
f(zi + Adig)
[ f(zi + rdiyr)dr’

3. If i = N, stop. Otherwise return to 2.

fi(d) =

The sampler for arbitrary densities f over S then
proceeds as in uniform Hit-and-Run except that the
next iterate x4 is chosen according to the condition-
alized density of f in the direction d;;;. The direction
distribution v needs to span R™ but is otherwise ar-
bitrary. In Belisle, Romeijn, and Smith (1993), it is
shown that for S a bounded open set in R™ and f
the pdf of the target distribution 7, the sequence of
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iterates Xy, X1, X3, ... converges in total variation to
the target distribution .

Romeijn and Smith (1994a) extend this sampler to
a Metropolis type sampler that also converges to ar-
bitrary target distributions. They utilize the sampler
within a simulated annealing type optimal search pro-
cedure to generate densities that come from a tem-
perature parametrized family of Boltzman distribu-
tions to converge to a global optimal solution. See
also Zabinsky et al (1993) for a more direct use of
Hit-and-Run within an optimization framework.

3 CONCLUSION

The field of Markov Chain Samplers is currently quite
active both from the theoretical and practical points
of view. At least some of the interest stems from the
recent results that random procedures can achieve
polynomial performance for tasks such as approxi-
mating the volume of convex bodies that it has been
demonstrated no deterministic procedure can ever
achieve (Dyer and Frieze (1991), Dyer, Frieze, and
Kannan (1991)). However in a larger context the
problem of generating general multivariate distribu-
tions is a fundamental problem of simulation whose
importance hardly needs justification.
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