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ABSTRACT

This paper recommends the following sequence for the
evaluation of simulation models. 1) Validation: the
availability of data on the real system determines the
proper type of statistical technique. 2) Screening: in
the simulation’s pilot phase the important inputs are
identified through a novel technique, namely sequential
bifurcation, which uses aggregation and sequential
experimentation. 3) Sensitivity or what-if analysis: the
important inputs are analyzed in more detail, including
interactions between inputs; relevant techniques are
design of experiments (DOE) and regression analysis.
4) Uncertainty or risk analysis: important environ-
mental inputs may have values not precisely known, so
the resulting uncertainties in the model outputs are
quantified; techniques are Monte Carlo and Latin
hypercube sampling. 5) Optimization: policy variables
may be controlled, applying Response Surface Metho-
dology (RSM), which combines DOE, regression
analysis, and steepest-ascent hill-climbing. This paper
summarizes case studies for each stage.

1 INTRODUCTION

The main message of this paper is that most simulation
studies should go through the following five stages and
apply the following statistical techniques (which have
already been applied in many practical simulations).
Stage 1: Validation and verification (V & V)

The analysts may use design of experiments or DOE
(for example, a fractional factorial design) if there are
no data on the input/output (I/O) of the simulation
model. However, if there are enough data, then the
simulation model may be validated by a special type of
regression analysis (see §4).
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Stage 2: Screening: sequential bifurcation (SB)

If the pilot phase of a simulation study has many fac-
tors, then straightforward experimentation may require
too much computer time. In those situations the ana-
lysts may use SB, which is simple, efficient, and
effective (see §2).

Stage 3: Sensitivity analysis (SA)

Sensitivity analysis is defined in this paper as the
investigation of the reaction of the simulation response
to either extreme values of the model’s quantitative
factors (parameters and input variables) or drastic
changes in the model’s qualitative factors (modules).
(This is also called global, instead of local SA.) How-
ever, if the model’s I/O behavior is non-monotonic, it
may be dangerous to consider extreme input values
only (see Saltelli, Andres, and Homma 1995). Non-
monotonicity may be quantified by quadratic effects.
Notice that this paper concentrates on a single response
per run; also see Helton (1996) and McKay (1995).

The analysts may use regression analysis to gen-
eralize the results of the simulation experiment. To
obtain better regression estimators, the analysts should
apply DOE (see §3).

Stage 4: Uncertainty analysis (UA)

In UA (sometimes called risk analysis) the model
inputs are sampled from prespecified distributions. So
the input values range between the extreme values
investigated in SA. The goal of UA is to quantify the
probability of specific output values, whereas SA does
not tell how likely a specific result is.

UA uses Monte Carlo sampling, possibly including
variance reduction techniques such as Latin hypercube
sampling or LHS; the results may be analyzed through
regression analysis (see §5).

Stage 5: Optimization

To optimize the controllable (policy) inputs, the ana-
lysts may use Response Surface Methodology (RSM),
which builds on regression analysis and DOE (see §6).
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This five-stage procedure implies that SA should
precede UA, which is controversial (see McKay 1995,
pp. 7, 33, and also Firbringer and Roulet 1995).

Uncertainty about a simulated system’s response
may have two different causes: (i) The system’s pro-
cess is represented by a deterministic model, but its
parameters are not known exactly. (ii) Some models
are intrinsically stochastic: without the randomness the
problem disappears; examples are queuing problems.
Helton (1996) points out that stochastic uncertainty is a
property of the system, whereas subjective uncertainty
is a property of the analysts.

Uncertainty is the central problem in mathematical
probability theory. This discipline, however, has two
schools: frequentists versus subjectivists. Many UA
studies concern unique events; for example, a specific
investment, a nuclear accident. See Cooke (1995, pp.
4-6) and Winkler (1996).

Note that Bayesians try to combine prior subjective
data with new factual data; see Draper (1995). Bayes-
ians average the outcomes, using the probabilities of
the various input scenarios. It might be argued, how-
ever, that in general it is the job of ’managers’ to
make decisions, pondering facts and opinions; it is the
job of scientists to prepare a basis for such decisions.

Zeigler (1976)’s seminal book on the theory of
modeling and simulation distinguishes between input
variables and parameters. By definition, a variable can
be directly observed; an example is the number of
check-out lanes in a supermarket. A parameter, how-
ever, can not be observed directly, so its value must
be inferred from observations; an example is the arriv-
al rate of customers. Hence mathematical statistics
may be used to quantify the probability of certain
values for a parameter (see §5). This paper will use
the term factor for parameters, input variables, and
modules that are changed from (simulation) run to run,
applying DOE. (For modules treated as factors also
see Helton et al. 1995, McKay 1995, pp. 51-54.)

This paper combines, updates, and revises Kleijnen
(1994, 1995b, 1996). For didactic reasons, the paper
is not organized in the order of the five stages; for
example, DOE is simpler explained for SA (stage 3,
§3) than for V & V (stage 1, §4). Hence §2 discusses
screening, especially SB. §3 explains SA using regres-
sion analysis and DOE. §4 briefly addresses V & V.
§5 discusses UA, distinguishing between deterministic
and stochastic simulations. §6 explains optimization
based on RSM. §7 summarizes the conclusions.

2 SCREENING: SEQUENTIAL BIFURCATION

Screening is the search for the few (say) k important

factors among the many (say) K potentially important
factors (k << K). In practice, simulated systems
often do involve many factors. Andres (1996) gives an
example with 3,300 factors, Bettonvil and Kleijnen
(1996) 281, De Wit (1995) 82, and McKay (1995) 84
factors. These examples concern deterministic simula-
tions. Other examples would be stochastic simulations
of queueing networks; in this field, however, applica-
tions of screening are yet unknown.

The problem is that a simulation run may require
so much computer time that the number of runs (say) n
must be much smaller than the number of factors (n
< < K). Therefore the analysts assume that only a
few factors are important (k¢ < < K): parsimony,
Occam’s razor.

The theory on group screening goes back to the
1960s; see Bettonvil and Kleijnen (1996) and Kleijnen
(1995b). This paper recommends a novel group screen-
ing technique, namely SB, which is more efficient than
competing group screening techniques. Moreover, SB
has been used in practice, namely in the greenhouse
simulation in Bettonvil and Kleijnen (1996), and in the
building thermal simulation in De Wit (1995). In De
Wit’s case study, SB gives the 16 most important
inputs among the 82 factors after only 50 runs. De Wit
checks these results through a different technique,
namely Morris (1991)’s randomized one-factor-at-a
time design, which takes 328 runs.

All group screening techniques including SB use
the following two assumptions.

Assumption 1: Low-order polynomial metamodel
A metamodel implies that the underlying simulation
model is treated as a black box. The advantages of a
low-order polynomial is that it is simple and it may
apply to all types of random and deterministic simula-
tion. The disadvantage is that it cannot exploit the
special structure of the simulation model at hand (for
alternative techniques see Helton 1996, Ho and Cao
1991, and Kleijnen and Rubinstein 1996).

Low-order polynomials are often used in DOE with
its concomitant regression analysis or Analysis of
Variance (ANOVA). Applications, however, are then
limited to systems with a small number of factors (also
see §3).

It is prudent not to assume a first-order polynomial,
but a metamodel with interactions. In SB such a meta-
model requires twice as many runs as a first-order
metamodel does (foldover principle; see Andres 1996
and Kleijnen 1987).

Assumption 2: Known signs
Known signs are needed to know with certainty that
individual effects do not compensate each other within
a group. In practice, signs may be known indeed
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(magnitudes, however, are unknown, so simulation is
used). For example, higher speeds of servers are
supposed to have non-negative effects on the through-
put.

Details on SB are given in Bettonvil and Kleijnen
(1996). Different screening techniques are Andres
(1996)’s Iterated Fractional Factorial Design (IFFD)
and McKay (1995)’s replicated LHS design (also see
Saltelli et al. 1995).

3 SENSITIVITY ANALYSIS: REGRESSION/DOE

Once the important factors are identified (screening,
§2), further analysis is recommended, using fewer as-
sumptions: account for interactions and curvature, and
assume no known signs. (The metamodeling methodol-
ogy of this section is discussed at length in Kleijnen
and Sargent 1996.)

3.1 Regression Analysis

It is good practice to make scatter plots (see Eschen-
bach 1992, Helton 1996). However, superimposing
many plots is cumbersome. Moreover, their interpreta-
tion is subjective: are the response curves really paral-
lel and straight lines? These shortcomings are removed
by regression analysis. See Kleijnen (1995b).

Consider the well-known second degree polynomial
metamodel with ¥; denoting the simulation response of
factor combination i (capitals denote stochastic vari-
ables); (B, the overall mean response or regression
intercept; (3, the main or first-order effect of factor h;
x, , the value of the standardized factor 4 in combi-
nation i; 8, ,- the interaction between the factors 4 and
h’ with h < h’; B, , the quadratic effect of factor h; E,
the additive fitting error of the regression model for
factor combination i; and n the number of simulated
factor combinations.

Then the relative importance of a factor is obtained
by sorting the absolute values of the main effects 3,
provided the factors are standardized such that they
range between -1 and +1; see Kleijnen (1995b). The
original factor 4 is denoted by z,, which ranges be-
tween a lowest and a highest values (/, < z, < u,).
So either the simulation model is not valid outside that
range (see §4) or in practice that factor can range over
that domain only. DOE addresses the question whether
Z, is to be set at the extreme values only or also at
intermediate values; see below. (Other measures of
factor importance, such as partial correlation coeffi-
cients, are discussed in Helton 1996, McKay 1995,
Saltelli and Sobol 1995, and Sobol 1996. When the
logarithmic scale for Y and z, is used, the regression
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parameters denote elasticity coefficients; these coeffi-
cients are popular in econometrics.)

To make statistical inferences (for example, about
the importance of a factor), a Gaussian distribution is
normally assumed. To satisfy this assumption, the
analysts may apply transformations such as log(Y). An
alternative is to replace both Y and x, by their ranks:
rank regression. Moreover, the analysts may investi-
gate whether the various transformations give the same
qualitative results. See Andres (1996), Helton (1996),
Kleijnen (1987), Kleijnen, Bettonvil, and Van Groe-
nendaal (1996), and Saltelli and Sobol (1995).

Of course, it is necessary to check whether the
fitted regression metamodel is an adequate approxima-
tion of the underlying simulation model:
(cross)validation (see Kleijnen 1995b and Kleijnen and
Sargent 1996).

3.2 DOE

Let g denote the number of regression parameters; for
example, g equals k + 1 + k(k - 1)/2 if there are
main effects and two-factor interactions. Which n com-
binations to simulate can be determined such that the
accuracy of the estimated parameters is maximized
(variance minimized); this is the goal of DOE.

Consider a first-order polynomial metamodel with k
main effects, and an overall mean. By definition, a
resolution [II or R-3 design permits the unbiased esti-
mation of such a first-order polynomial. In practice,
analysts usually first simulate the ’base-case’, and next
they change one factor at a time; hence n = 1 + k.
DOE, however, gives orthogonal designs, which yield
unbiased estimators with smaller variances. A well-
known class of such designs are 2*-7 fractional factori-
als; for example, a simulation with 4 < k < 7 factors
requires n = 27°* = 8 factor combinations. Many
simulation applications of these designs can be found
in Kleijnen (1987) and Kleijnen and Van Groenendaal
(1992).

In practice, however, it is prudent to assume that
two-factor interactions may be important. A resolution
IV or R-4 design permits the unbiased estimation of all
k main effects, even if two-factor interactions are
present. These designs do not give unbiased estimators
of individual two-factor interactions; they may give an
indication of the importance of (confounded, biased)
interactions. Compared with R-3 designs, R-4 designs
require that the number of simulated factor combi-
nations be doubled; for example, k = 7 now requires

n =2 x 8 = 16 runs. Obviously, changing one factor
at a time (a less accurate R-3 design) does not enable
estimation of interactions! Applications of R-4 designs
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are mentioned in Kleijnen (1995b).

Suppose the analysts wish to estimate the individual
two-factor interactions. A resolution V or R-5 design
gives unbiased estimators for all main effects and all
two-factor interactions. Obviously many more simula-
tion runs are now necessary; for example, k = 8§
factors implies g = 37 effects. Therefore practitioners
study only small values of k; for example, k < 5
requires full or complete factorial two-level designs,
denoted as 2*. For higher values of k, however, frac-
tional factorials are recommended, for example, 28 ?
(n = 64) for k = 8 (so g = 37); see Kleijnen (1987).

If all 2* combinations are simulated, then high-
order interactions can be estimated. However, these
interactions are hard to interpret. Hence, the analysts
may apply either transformations such as the logarith-
mic transformation or they may restrict the experi-
mental domain. Also see Helton (1996), and Saltelli
and Sobol (1995).

If factors are quantitative and their quadratic ef-
fects are to be estimated, then factors must be simulat-
ed for more than two values (taking extreme values
minimizes the variance of the estimated main effects;
see Cheng and Kleijnen 1996). Central composite de-
signs have five values per factor. These designs re-
quire relatively many runs (the number of parameters
is also high): n > > q. See Kleijnen (1987) and Kle-
jjnen and Van Groenendaal (1992). Applications are
found in the optimization of simulation models (see
§6).

Simulating as many as five values per factor resem-
bles UA, in the sense that the range of factor values is
well covered (see §5).

4 VALIDATION

This paper confines the discussion of V & V to the
role of SA (§3); other statistical techniques for V & V
are discussed in Kleijnen (1995a).

If the simulation is fed with real-life input data
(trace driven simulation), then Kleijnen, Bettonvil, and
Van Groenendaal (1996) propose a novel test. This test
uses regression analysis, but does not hypothesize that
real and simulated data lie on a straight line through
the origin! Instead, the difference between simulated
and real data is regressed on their sum.

If no data are available, then the analysts and their
clients still have qualirative knowledge; that is, they do
know in which direction certain factors affect the re-
sponse (see §2). If the regression metamodel (see §3)
gives an estimated effect with the wrong sign, this is a
strong indication of a wrong simulation model or a
wrong computer program. An application is Kleijnen

(1995¢), concerning the hunt for mines on the bottom
of the sea. This case-study further shows that the
validity of a simulation model is restricted to a certain
domain of factor combinations, called experimental
frame in Zeigler (1976).

5 UNCERTAINTY ANALYSIS

The regression metamodel (see §3) shows which fac-
tors are important; for the important environmental
inputs the analysts should try to collect data on the
values that occur in practice. If they do not succeed,
then they may use UA: its goal is to quantify the
probability of specific output values (whereas SA does
not tell how likely a specific result is).

First the analysts derive a probability function for
the input values, based on sample data if available;
otherwise this distribution must use subjective expert
opinions (see Draper 1995, p. 92, Helton et al. 1995,
p. 288, Kleijnen 1996). Correlated inputs are discussed
in Cooke (1995), Helton (1996), and Kleijnen (1996).

Next the analysts use pseudorandom numbers to
sample input values: Monte Carlo. They often use
Latin hypercube sampling (LHS), which forces the
sample (of size n) to cover the whole experimental
area; see Avramidis and Wilson (1996) and Helton
(1996).

This paper claims that LHS is a variance reduction
technique, not a screening technique. For screening
purposes the inputs should be changed to their extreme
values (see §2). Of course, the larger sample in LHS
gives more insight than the small sample in screening
does; however, for a large number of factors such a
large sample may be impossible. Also see Kleijnen
(1996) and McKay (1992).

5.1 Deterministic Simulation

The distribution of the simulation response may be
characterized by its location (measured by the mean,
modus, or median) and its dispersion (quantified by the
standard deviation or various percentiles and quanti-
les). Which quantities sufficiently summarize the distri-
bution, depends on the users’ risk attitude: risk neutral
(the mean is then sufficient), risk averse, or risk seek-
ing. See Helton (1996) and Kleijnen (1996).
Combining UA with regression analysis gives esti-
mates of the effects of the various inputs; that is,
regression analysis shows which inputs contribute most
to the uncertainty in the output. (Technically, in the
regression metamodel x, is replaced by X,.) Because
more values are sampled per factor, more complicated
metamodels might now be used; for example, for
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prediction purposes splines may be used. For explana-
tory purposes and SA, however, simple metamodels
may be preferred; see Kleijnen and Sargent (1996).

Applications in business and economics are, for
example, investment studies on the probability of
negative Net Present Values; see Kleijnen (1996) and
Van Groenendaal and Kleijnen (1996). Applications in
the natural sciences are, for example, Sandia investiga-
tions on nuclear waste disposal and reactor safety
(Helton 1996); Oak Ridge studies of radioactive doses
in humans; European Communities investigations on
nuclear reactor safety; and Dutch studies on ecology;
see Kleijnen (1996).

It is prudent to study the effects of different specifi-
cations of the input distributions. Sometimes, this type
of SA is called robustness analysis. Examples are
given by Helton et al. (1995), Kleijnen (1987, 1996),
and McKay (1995, p. 31). The analysis may also use
sophisticated, fast sampling techniques based on impor-
tance sampling or likelihood ratios; see Kleijnen and
Rubinstein (1996). (Importance sampling is indispens-
able whenever rare events are simulated; see Helton
1996, and Kleijnen and Rubinstein 1995.)

5.2 Stochastic Simulation

A well-known example of stochastic simulation is a
queueing model with interarrival times sampled from
an exponential distribution with parameter A (Helton
1996 discusses UA of three stochastic models in nucle-
ar science). For this example Kleijnen (1983) discusses
UA, assuming that the central limit theorem (CLT)
applies. For example, suppose A is estimated from a
sample of independent interarrival times, and assume
the distribution of the estimated interarrival parameter
approximates a normal distribution. Then a value for

A can be sampled from this distribution, and used as
input to the simulation. That simulation is run for
‘enough’ customers. Next the procedure is repeated:

sample A, and so on. Cheng and Holland (1996),
however, do not rely on the CLT, but apply boor-
strapping.

Still, the question remains which response to report
to the users: the unconditional, ex post variance (see
Cheng and Holland 1996); the ex post variance, mean,
and various quantiles (see Haverkort and Meeuwissen
1995); or the conditional moments (conditioned on the
values of the estimated parameters)? The discussion in
Draper (1995, pp. 78, 83) clearly demonstrates how
controversial this issue is.
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6 OPTIMIZATION: RSM

The decision makers should control the policy vari-
ables. This paper is limited to RSM, which combines
regression analysis and DOE (see §3) with a hill-
climbing technique called steepest ascent; see Myers
and Montgomery (1995).

Four general characteristics of RSM are: (i) RSM
uses first and second order polynomial regression
metamodels, now called response surfaces (see §3).
(ii) RSM employs the statistical designs of DOE (sce
§3). (iii) RSM augments DOE with the sreepest ascent
technique, to determine in which direction the decision
variables should be changed. (iv) RSM uses canonical
analysis to analyze the shape of the optimal region
(unique maximum, saddle point, ridge).

Kleijnen (1995b) mentions several simulation stud-
ies that use RSM. Kleijnen (1995d) discusses a system
dynamics model for coal transport.

7 CONCLUSIONS

There are several related types of analysis in simula-
tion studies. Questions are: when should which type of
analysis be applied; which statistical techniques should
then be used?

This paper proposes a five-stage procedure for the
analysis of simulation models: (i) validation and verifi-
cation (V & V), (ii) screening, (iii) sensitivity analysis
(SA) (iv) uncertainty analysis (UA), and (v) optimiza-
tion.

Each type of analysis may apply its own set of
statistical techniques, for example, SA may use 2* 7
fractional designs, and UA may apply LHS. Some
techniques may be applied in both analyses, for exam-
ple, regression modelling.

Applications of the statistical techniques recom-
mended above, are quite plentiful. Further research is
needed on UA of stochastic simulation models.

SA and UA remain controversial topics; for exam-
ple, this paper claims that SA should precede UA. S4
shows which model inputs are really important. From
the users’ perspective, these important inputs are either
controllable or not. The controllable inputs may be
optimized. The values of the uncontrollable inputs may
be well-known, in which case these values can be used
for validation of the simulation model. If, however,
these values are not well known, then the likelihood of
their values can be quantified objectively or subjective-
ly, and the probability of specific output values can be
quantified by UA.

More specifically, SA means that the model is
subjected to extreme value testing. A model is valid
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only within its experimental frame. Mathematically
that frame might be defined as the hypercube formed
by the k standardized inputs of the model. Experimen-
tal designs such as 27 fractional factorials specify
which combinations are actually observed or simulated;
for example, a 27 fraction of the 2* corner points of
that hypercube (also see Draper 1995, p. 55). The n
observed input combinations and their corresponding
responses are analyzed through a regression (meta)mo-
del, which is an approximation of the simulation mo-
del’s I/O behavior. That regression model quantifies
the importance of the simulation inputs. DOE gives
better estimates of those input effects.

SA does not tell how likely a particular combination
of inputs (specified by DOE) is, whereas UA does
account for the probabilities of input values.

Further development of a methodology for the
evaluation of complicated simulation models certainly
requires continued communication within and among
scientific disciplines!
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