
Proceeding...; of the 1996 W1:nter Sirnu.lation C'onference
ed. J. Ai. C~harnes, D. J. Aforrice, D. T. BrunneL and J. J. S"nrain

ESTIMATING STEADY STATE MEAN FROM SHORT TRANSIENT SIMULATIONS

Pieter A. Voss
Jorge Haddock

Thomas R. Willemain

Department of Decision Sciences and Engineering Systems
Rensselaer Polytechnic Institute

Troy, New York 12180-3590, USA

ABSTRACT

This paper presents a new approach to estimating and
constructing confidence intervals for the steady state
mean of a stochastic process from short simulations
which may exhibit significant transient response. Specifi­
cally, we examine the conditional least squares estimator
for the mean of an autoregressive process. If the process
is autoregressive with nonnal innovations, this estimator
is the conditional maximum likelihood estimate (MLE)
of the mean. We show that the MLE is asymptotically
normal, and derive a finite-sample approximation to its
distribution. This provides the basis for two asymptoti­
cally valid single-replication confidence intervals which
do not require choosing a batch size. As a point estimator,
the MLE is a generalization of the estimator due to Snell
and Schruben (1984) and is related to the weighted batch
mean (Bischak, Kelton, and Pollock, 1993).

Empirical results for a queuing network show that the
autoregressive process is a reasonable model of transient
response. For short series with reasonable initializations
(e.g., empty and idle), the MLE yields confidence inter­
vals which are comparable or superior to those of existing
procedures, in both single and parallel replication simula­
tions.

1 INTRODUCTION

In this paper we present a new approach to the problem
of estimating and constructing confidence intervals for
the steady state mean Jl of a stochastic process from
short simulations which may exhibit significant transient
response. We assume that the process may be strongly
autocorrelated (positive or otherwise), that sufficient
knowledge of steady state conditions is not available to
initialize the process in steady state, and that the cost of
collecting simulation observations is large so that avail­
able data is limited to a finite series of Il observations

{Xl' ... , Xn } .

The problem of estimating the steady state mean in
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general, and of controlling the effects of initial transient
response in particular have been widely studied; many ex­
isting methods are surveyed by Law and Kelton (1991)
and Pawlikowski (1990), and progress continues to be
made. However, all existing confidence interval proce­
dures explicitly assume that the observed process is in
steady state, stationary in both mean and covariance.
These include (unweighted) batch means (see Law, 1977),
Fishman's autoregressive approach (Fishman, 1978),
standardized time series (Schruben, 1983), weighted
batch means (Bischak, Kelton, and Pollock, 1993), and in­
tervals based on the ratio estimator due to Glynn and
Heidelberger (1992). Since initial transient effects may in­
validate the assumption of stationarity, either truncation
or initialization methods are employed to minimize bias
due to initial transient response. A third approach, weight­
ing initial observations, is due to Snell and Schruben
(1984) and is developed further in this paper.

For short transient simulations, there is as yet no
completely satisfactory confidence interval procedure. In
particular, Sargent, Goldsman, and Swain (1992) show
that most confidence interval procedures are invalid for
small sample sizes, even when assumptions such as sta­
tionarity and normality are satisfied. Constructing valid
confidence intervals from short stationary series is the
motivation for weighted batch means (Bischak, Kelton
and Pollock, 1993). However, their derivation assumes
the process is in steady state.

The ability to analyze short series is particularly valu­
able when simulating for long periods of time is costly.
When the cost of simulating is high, parallelization is a
simple and direct method of exploiting parallel processors
to obtain results in shorter "wall-clock" time. In this con­
text, two ways in which the problem of confidence inter­
val estimation can arise are:

(1) Different simulation models may be indepen­
dently executed on separate processors; confidence inter­
vals may be periodically computed for each model and
particular systems may be then selected or rejected on the
basis of the results.
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where p is finite and {£I' t = 1, 2, ... } is a sequence of
independent and identically distributed random variables
with mean 0 and variance cri. < 00. The value
<P = {<Po'"'' <Pp } is a vector of autoregressive coeffi­
cients. Provided tnat the mean system response con­
verges to a unique limiting steady state, the steady state
mean response Jl = Jl(<p) is:

where c·· are constants determined by the initial p
IJ

observations, and {,l' ... , , p} m:e the roots to the char-
acteristic equation 1 - I,~=1 4> iX' = O. Since the roots
are not necessarily distinct, we let n; denote the multi­
plicity of root 'i . From (3), we can see that the transient
response decays exponentially to zero for large t if and
only if 1';1 > 1, i = 1, ... , p; otherwise, the transient
response grows exponentially. This stationarity condi­
tion can also be written as:

(4)1 - ~~ If\.x; = 0 V'lxl ~ J£..i, =J'tI 1

Although there may exist a value for (2), it is not nec­
essarily true that mean system response will converge to a
unique finite value. For example, consider a queue where
customers arrive slightly more rapidly than they can be
served, in which case the sequence of time-in-system for
each customer will diverge. While this will become appar­
ent after many observations, it may not be immediately
apparent from the first customers that the server cannot
keep up with demand. If it is not known in advance that
the server can keep up with demand, it may be necessary
to empirically establish the existence of a steady state
mean before estimating its value.

Taking the expectation of (1) yields the linear differ­
ence equation EXI - I,<P;EX I _; = O. Solving this equa­
tion yields the sequence of expected values, called the
transient expectation function:

3 ESTIMATION OF STEADY STATE MEAN

(2) Independent replications of the same simula-
tion model may be executed on parallel processors, and
the results of each simulation run are then combined to
form a single estimate and confidence interval.

While the above situations lend themselves readily to
parallel simulation, similar situations also occur when
simulating on single-processor computers.

This paper investigates the conditional maximum
likelihood estimator for the mean of autoregressive pro­
cesses. Based on two expressions for its asymptotic distri­
bution, we derive asymptotically valid confidence
intervals procedures for both single-replication and multi­
ple-replication experiments. These confidence intervals
are often superior to those obtained by existing methods in
short series with significant initialization bias. In long se­
ries, the estimator reduces to the sample mean, and the
confidence intervals are asymptotically equivalent to
those of existing procedures. Thus the new procedure ap­
plies to simulations of any length.

2 AUTOREGRESSIVE MODEL

The presence of transient behavior necessarily indicates
that the process is autocorrelated, that is, sequential
observations are related to previous observations. The
principal distinction between transient and steady state
observations is that initial observation are typically more
extreme than steady state observations, and they tend to
be systematically so (e.g., initializing a queuing simula­
tion empty and idle). To study the transient response, we
therefore require a model of the process which captures
this dependence. While no single model is able to capture
every situation, the linear autoregressive process is
widely used to approximate the autocorrelation structure
of a wide range of discrete-time stochastic processes.
Further, autoregressive processes exhibit the sum-of­
exponentials transient mean characteristic of many short­
memory stochastic processes. Processes for which tran­
sient response has been theoretically shown to be
bounded by sum-of-exponential functions include
ARMA processes (Fuller, 1976), continuous time
Markov chains (Glynn, 1984) and M/MIk queuing sys­
tems (Odoni and Roth, 1983).

The autoregressive model assumes that each new ob­
servation XI is linearly related to previous observations
with the addition of a random "shock" or innovation. An
autoregressive process of order p, AR(p), is represented as
follows:

P

XI = 4>0+ I, <p;XI_;+£I' t = 1,2, ...
; =1

(1)
Since we assume initialization effects may be large, we
must estimate the autoregressive model parameters with­
out assuming that the process is stationary. We choose
here the method of maximum likelihood, conditioning on
the first p observations. For the purpose of deriving the
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Jl($) {4>{ 1 - j~l4>jrl

, if 1 - i~l4>iXi:;t 0 \flxl ~ /5)

undefined, otherwise

maximum likelihood estimator and its distribution, the
order of autoregression p is assumed known. In practice,
it is also necessary to identify the order of autoregression;
however, to establish consistency of the estimator, it is
sufficient to assume that the estimators of the autoregres­
sive order and coefficients are consistent (Voss, Haddock,
and Willemain, 1996).

Let $ be an estimate of the vector of autoregressive
coefficients <t>. We can define an estimate for the mean
~ = Jl ($) as follows:

Note that this estimator does not require the assump­
tion that a unique limiting steady state response exists. If
the estimated autoregressive parameters satisfy the sta­
tionarity condition, then the estimate is defined and
finite. On the other hand, if the estimated parameters fall
outside the stationary region, system response is to all in­
dications nonstationary in mean or covariance, and no es­
timate of steady state is meaningful. If <$ is a consistent
estimator of <t> ,and {Xl} converges to a covariance sta­
tionary process, then J1 is defined almost surely and is a
consistent estimator of Jl (Voss, Haddock, and Wille­
main, 1996).

We can compute the conditional least squares esti­
mate of <t> as follows (Fuller, 1976):

(8)

i,j=2,3, ..., p+1

i=j=l

othelWise

{
YJ/i - jl) + Jl2;

1;

Jl;

A = p lim An . The elements of A are given
n----+ oo

a·· =
'J

where
by

where yJk) is the process autocovariance at lag k. The
asymptotic properties for the linear least squares estima­
tors also apply to estimates obtained by any method
which is asymptotically equivalent to the method of max­
imum likelihood, such as solution of the Yule-Walker
equations, which differ from the linear least squares esti­
mates by a quantity which approaches zero in probability
as n increases (Fuller, 1976).

When model (1) holds and the innovations £1 are nor­
mally distributed, then ~ is the conditional ~aximum

likelihood estimate of <1> . Further, wherever 1l(<1» is de­
fined, it is the maximum likelihood estimate of Jl. This
follows from the invariance principle, since the mapping
Jl:~P + J ~ 9\ defines a continuous interval on 9\, and
Jl ( <1» is locally differentiable with respect to <t> . For this

reason, we shall refer to J1 as the MLE.
Voss, Haddock and Willemain (1996) show that the

estimator J1 is related to other estimators in the literature.
In particular, J1 is equivalent to the weighted batch mean
Bischak, Kelton, and Pollock (1993) when all the data are
grouped into a single batch, and is the minimum-variance
instance of the weighted batch mean. However, Bischak,
et al. assume that the process {Xt } is in steady state and
that any initial transient observations have been deleted,
and they use a different consistent estimator of <I> . J1 can
readily be computed for autoregressive processes of any
order, and reduces to the GLS estimator derived by Snell
and Schruben (1984) for the AR( 1) process.

For autoregressive processes, we expect J1 to be
nearly unbiased regardless of the initial observations. If
the autocorrelation structure of the process is known, then
J1 is exactly unbiased and has the same variance as the
sample mean. If model (1) holds, and <1> J' ..• , <1>p are
known and satisfy the stationarity condition of (4), then
the MLE is exactly unbiased for the mean, E(J1) = Jl
V' {Xl' ... , Xp } and Var(J1) = O"E [1 - L~=J <t>i]-2 .

4 CONFIDENCE INTERVALS FOR STEADY
STATE MEAN

(6)

n
1

1

:h = A-Jv't' n n

LX/X,n-p
'=p+J

LX/Xl'n-p
'=p+J

X,

where

Provided that the stationarity condition (4) is satisfied,
this estimator is asymptotically normally distributed:

J/2 A l -J 2)n (<t>-<t» ~N O,A O"E ' (7)

In this section, we develop confidence intervals for the
steady state for both single-replication and multiple-rep­
lication experiments. In order to develop a confidence
interval procedure based on J1, we need to determine its
distribution. We first show that the MLE is asymptoti­
cally normal, which suggests a single-replication interval
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where tJ _ 0./2,J denotes the corresponding quantile of the
student-t distribution and

A '

V r( A) A2[ ""p A]-2a Jln = crt 1 - kJi =1 <Pi / (n - p). An estimate
for the degrees of freedom is

similar to Fishman (1978) and a multiple-replication pro­
cedure very much like that of the traditional replication­
deletion method. Next we show that the MLE is asymp­
totically distributed as the index of a bivariate normal
random variable, which suggests a more complex interval
procedure which is likely more accurate in short series.

Single-replication intervals

1'1 ± t A JV~r (l"'I
n

)""'n J -aI2,! ,.... (11)

LEMMA 1:

[

b _""p+J b . ]= J1 LJi =2 d (13)
_ p+1 b. p+J b.oLi=2 d LLi,j=2 IJ

The approximate estimator (12) is specifically de­
rived for short series. However, in simulation experiments
of AR(I) processes with <P J = 0.95 and n = 128, this
often yielded estimates of less than 1.0, leading to confi­
dence intervals with tails heavier than even the Cauchy
distribution. Here, we arbitrarily restrict J~ 2 .

Since the MLE is the ratio of two random variables
~o and (l - L~;) ,and the variability of the denomi~
nator may be considerable at small sample sizes, a more
accurate solution may be derived as follows. For conve­
nience, let us write J1 = Wn 1/W 2 wheren , n,

W = [w1l = [ <Po J
W2J J - L~= 1$;

and Wn is defined similarly in terms of ~n • From (7),

we can see that n II2 (Wn - W) ---t N (0, L) , since

finite sums of asymptotically normal variables are them­

selves asymptotically normal. Therefore An is the index

of an asymptotically bivariate normal random variable.

Let B = A -1cri with ;lements {b;j} be the limiting

covariance matrix of n (<P - <P) . We can write the limit­

ing covariance matrix Las:

The following result is based on Fieller (1932), who
derived the distribution of the ratio of two correlated non­
central normal random variables. For a bivariate normal
rv with mean J;z Wand covariance matrix L , the distri­
bution of the index is asymptotically:

(9)

(10)

The bias correction is a finite sum of less than 2p2
terms of Xt . Since Xt is covariance stationary for large
t with finite variance, it satisfies the stationarity condition
(4), so the 1 - Lf= J ~i term in the denominator converg­
es to a nonzero quantity in probability. Further, since the
bias correction tenn is a finite sum of variables with finite
mean and variance, and is divided by n - p, it converges
to zero in probability as n ---t 00 • Therefore,
n J/2 (gn - Xn-p) ---t 0 in probability.

Proof: We can rewrite () as the sample mean plus a
bias correction:

Corollary:
If (1) holds and satisfies the stationarity condition (4),

and J1n is the maximum likelihood estimate of J.l , then J1
is also asymptotically normal,

n1 /2 (I1n - Jl) ~ NlO, cri[ J - L~=1 $;]-2). This fol­
lows from Equation (1) and from Yuan and Nelson,

(1994), who note that

nl/
2(~n - Jl) ~ NlO, cri[ J - L~=1$;]-2J.
SInce the MLE has the same asymptotic variance as

the sample mean and is based on an autoregressive model
of the output process, a single-replication confidence in­
terval similar to that of Fishman (1978) and Yuan and
Nelson (1994):

Let Xn - p = (n - p) -1L;= p + J Xt denote the p-trun­
cated sample mean. Assume {Xt} converges to a cova­

riance stationary process satisfying (1). If ~n is the

conditional least squares estimate (5) where p is fixed

and finite, then ~n converges to the sample mean in prob­

ability
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Voss, Haddock, and Willemain

Multiple-replication intervals

In multiple-replication experiments, we can let the data
suggest the sampling distribution of J1. Consider R
independently-seeded replications of the same simulation
model running either in parallel on R processors, or in
sequence on a single processor. Further assume that for
each replication, the same number of observations are
collected, avoiding the issue of ratio bias (Glynn and
Heidelberger, 1992). For each replication, we can iden­
tify and estimate an autoregressive model and obtain an
estimate for the mean, J1(j) j = 1, ... , R . Since ~ is
asymptotically nonnal, this suggests the following confi­
dence interval for ~ :

1
k2 = ---­

2 (1 - p2)

(17)

Estimates of the autocovariances, y(i) ,may be deter­

mined by solving the system of p + 1 linear equations:

y(i) -~1'Y<li-11)-... -~pY(li-pl) = 0,
i = 1, ... , P and 'Y<0) = ai .The estimated covariance

matrix iJ may be substituted into (13) to obtain the esti­

mated covariance matrix t and the estimated probability

density and cumulative distribution functions, gn(y) and

Gn(y) ,respectively. This leads to the following 1 - a
asymptotically valid confidence internal for ~ :

and Gn(y) = f_ gn (t) dt.

Let In (y I$) denote the true finite-sample probability

density function of P-n . We can approximate In(Y 14» by

gn (yl$) . Similarly, we can approximate the cumulative

distribution function, Fn(y I$) , by Gn(y I<t» . For any fixed

y , gn(YI4» ~ In(Y I<t» and Gn(y I4» ~ Fn(y I<t» .

If {~, ai} are the maximum likelihood estimates,
and P- is defined, the finite sample distribution of J1 may
be approximated as follows. An estimate of the covari­
ance matrix, B ,is iJ = A-1 0 2 where the elements of
A are

Q, .. =
IJ {

YX<li - jl) + P-2 ;

1;

J1;

i,j=2,3, ... , p+1

i=}=1

otherwise

(15)

- R
where J1 = R-J'L. = J J1(j) and

V~r(A) = R-I (R -1) -1'L;= /(11(;) - A) 2 • This is simi­

lar to the traditional confidence interval for the method of

independent replications (see Law, 1991) except that it is

based on the MLE J1 instead of the sample mean X.

5 NUMERICAL EXPERIMENTS

The perfonnance of the proposed estimator and confi­
dence interval procedure is demonstrated empirically in a
series of numerical experiments for the queuing network
studied by Schruben (1982). The sequence of the number
of entities in the system just before each customer arrival
is shown in Figure 2 for two independent replications. On
this graph is also superimposed the steady state mean,
which is 22.40 ± 0.12 with 95% confidence, based on
100,000 observations. We see here that in short series, the
initial transient period can be a substantial portion of the
available data.

We compare the proposed procedure with the method
of unweighted batch means (UBM) (see Law and Kelton,
1991) and weighted batch means (WBM). In single-repli­
cation experiments, MLE (F) indicates intervals based on
Fieller's distribution (16) and MLE (N) indicates intervals
based on the normal distribution (11); in multiple-replica­
tion experiments, intervals are computed by (17). We
evaluate estimators on the basis of mean error (bias) and
root-mean-square-error, and confidence intervals on the
basis of coverage and mean interval width
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FIGURE 1. Number of customers in system vs. time
\ ..v ~ ~J<J &.&&..,... , Single replication Intervals:

I.n these experiments, series of length
n = {128, 256, 512} are generated for 1000 super-rep­
lications, and series of length n = {8192, 16384}
are generated for 200 super-replications. Table 1 summa­
rizes performance of the estimators and interval proce­
dures for single-replication experiments. First, in short
simulations when the process is initialized empty and
idle, MLE and WBM exhibit nearly the same bias, and
are much less biased than even the optimally truncated
sample mean in UBM, though MLE and WBM also
exhibit considerably higher root-mean-square error than
UBM. Second, in short samples initialized at steady state,
all three estimators are practically unbiased, though MLE
and WBM exhibit larger root-mean-square error for short
series. Third, for large samples, all three estimators,
UBM, WBM and MLE perfonn nearly identically in both
mean error and root mean square error regardless of ini­
tial conditions. While optimal truncation can greatly min­
imize the root-mean-square error of the sample mean in
short series, enough residual transient response remains
that the truncated sample mean is still somewhat biased.

In addition to an estimate of the steady state mean, we
also require an accurate assessment of how accurate the
estimator is. Table 1 shows coverage frequencies and
mean widths for nominally 90% confidence intervals. In
short series initialized empty and idle, MLE(F) and
MLE(N) yield coverages equal or very close to nominal
coverages for all run lengths studied, even for very short
run lengths n = 128. Further, MLE yields coverages
which are much closer to nominal coverage than those ob­
tained by UBM and WBM. In short series which are ini­
tialized from the steady state distribution, none of the
three interval procedures attain nominal coverages, but
MLE(F) and MLE(N) again yield coverages closer to
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In UBM, the series is optimally truncated to minimize
the mean square error of the sample mean, as in Snell and
Schruben (1984). For the series in Figure 1, the optimal
truncation point is 36 when initialized empty and idle, and
owhen initialized in steady state. The entire observed se­
ries is always used for MLE and WBM since these are ro­
bust to initialization bias. For UBM and WBM, the batch
size is 8 when n = 128 and 16 when n ~ 256. The au­
toregressive order is estimated by minimizing the finite­
sample information criterion (FIC) (Broerson and Wen­
sink, 1993). The maximum candidate order Pmax ' is one
unit less than the batch size since this is the largest value
which can be chosen with WBM; Pmax is therefore 7
when n = 128 and 15 when n ~ 256.

The output analysis procedures and process (1) simu­
lation are written in C++ and compiled using the Sparc­
Works on a Sun workstation. Simulations are conducted
under SIMAN IV on an IBM RS6000 workstation, and the
results are exported to a text file for analysis.

100 200
Service Completion (observation number)

TABLE 1. Estimator Performance - single replication experiments

Mean Error Root Mean Square Error Coverage Frequency Mean Interval Width

N Initialized UBM WBM MLE UBM WBM MLE UBM WBM MLE(F) MLE UBM WBM MLE(F) MLE(N)
(N)

128 Empty -4.8 0.30 0.26 5.8 15. 15. 25% 71% 900/0 91% 2.9 7.2 13. 12.

256 Empty -2.1 -0.80 -0.80 3.1 2.4 2.4 40% 81% 930/0 95% 2.0 4.3 7.1 7.2

512 Empty -0.88 -0.48 -0.48 1.8 1.9 1.9 620/0 81% 890/0 89% 1.8 2,8 3.5 3.8

8192 Empty ·0.048 -0.036 ·0.035 0.35 0.35 0.35 89% 89% 88% 88% 0.62 0.62 0.54 0.55

16392 Empty -0.046 -0.039 -0.038 0.24 0.24 0.24 890/0 8go/0 890/0 89% 0.43 0.43 0.43 0.43

128 SSD -0.32 0.28 0.29 2.7 4.0 3.9 56°,10 730/0 n% 780/0 2.0 3.9 5.3 5.1

256 SSD .Q.10 0.20 0.23 2.0 2.9 2.6 570/0 780/0 800/0 81% 1.5 3.0 3.8 3.9

512 SSD 0.019 0.14 0.14 1.4 1.5 1.5 670/0 810/0 820/0 840/0 1.5 2.2 2.3 2.4

8192 SSD .Q.04O .Q.025 -0.025 0.30 0.30 0.30 920/0 91% 93% 930/0 0.60 0.60 0.54 0.55

16392 SSD .Q.OO57 .Q.OO29 .Q.OO27 0.24 0.24 0.24 910/0 91% 900/0 90% 0.43 0.43 0.43 0.43
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nominal than those of UBM and WBM. In long series
with n ~ 8192 , all intervals yield coverages nearly equal
to nominal. In every case, WBM also yields coverages
closer to nominal than UBM, though MLE yields cover­
ages closer to nominal than WBM.

The improved coverage of MLE(F) and MLE(N)
come at the expense of wider intervals, just as the im­
proved bias comes at the expense of increased root-mean­
square error. While for very long series all the interval
widths are nearly equal, for very short series, MLE(F) and
MLE(N) yield intervals somewhat wider than WBM and
much wider than UBM. However, this appears to be an
unavoidable result of the short series. Interval-width is a
valid measure of relative performance only among those
methods which achieve nominal, or at least superior, cov­
erage. Lastly, for this example, the simpler MLE(N)
yields intervals nearly as accurate as MLE(F) on each of
the four performance measures.

Multiple-Replication Intervals

Table 2 summarizes the performance of UBM,
WBM, and MLE for multiple-replication confidence in­
terval procedures. In these experiments, the total number
of observations, N , is held constant, and are obtained by
running R independent replications of length

n = N / R . Intervals are computed as in (17), except for
R = 1 where intervals are obtained using the corre­

sponding single-replication procedures. Statistics are col­
lected over 200 super-replications. Because of difficulty
in generating and storing simulation results, these results
are based on simulations of an AR model identified and
estimated from an observed series of 100,000 observa­
tions of the model in Figure 1.

When all independent replications are initialized
from the steady state distribution, all three estimators,

UBM, WBM and MLE, result in confidence intervals with
nominal coverage and comparable interval widths, as ex­
pected. However, initializing all replications from the
steady state distribution is usually only possible by trun­
cating excessive numbers of observations.

When each independent replication is initialized
empty and idle, the MLE emerges as the superior estima­
tor. As the available observations consist of more replica­
tions of shorter series, the optimally-truncated sample
mean in UBM gradually becomes more biased, and the
coverage of nominally 90% intervals based on the sample
mean deteriorates rapidly. However, parallel intervals
based on the MLE and WBM are much more robust to ini­
tialization bias. For R = 32 , 90% intervals based on
UBM yield coverages of 720/0, whereas MLE. and WBM
yield about 86%. Further, the interval widths for all meth­
ods are nearly equal, regardless of whether the series are
initialized empty or in steady state, or the number of rep­
lications into which available data is distributed. Even
more extreme, for R = 64 , nominally 90% intervals
based on UBM yield coverages of 0%, whereas those
based on MLE and WBM yield about 80%. Note again
that for relatively few replications of long series, all meth­
ods yield nearly identical results, regardless of initial con­
ditions.

These results indicate that when running multiple
replications, there is little hann in using the MLE as the
point estimator, and that in highly replicated series, there
can be significant advantage. One would do almost as well
using the WBM, but the MLE perfonns somewhat better
for the example considered here.

6 SUMMARY

These numerical experiments demonstrate that the pro­
posed estimator and distribution are robust to transient

TABLE 2. Estimator Performance - multiple replication experiments

Mean Error Root Mean Square Error Coverage Frequency Mean Interval Width

N Initialized UBM WBM MLE UBM WBM MLE UBM WBM MLE UBM WBM MLE

128 Empty -.046 -.039 -.039 0.25 0.24 0.24 89% 890/0 89% 0.43 0.43 0.39

256 Empty -0.12 -0.025 -0.023 0.27 0.25 0.24 84% 88% 89% 0.41 0.41 0.41

512 Empty -0.26 -0.074 -0.074 0.36 0.26 0.26 720/0 87% 860/0 0.41 0.41 0.41

8192 Empty -1.33 -0.29 -0.27 1.37 0.87 0.76 0% 800/0 81% 0.56 0.81 0.75

16392 Empty -1.3 -0.36 -0.33 1.3 0.50 0.45 0% 64% 65% 0.39 0.52 0.48

128 SSD -0.0056 -0.0030 -0.0027 0.24 0.24 0.24 90% 91% 900/0 0.43 0.44 .039

256 SSD -0.028 -0.016 -0.019 0.23 0.23 0.23 90% 90% 90% 0.40 0.40 0.40

512 SSD -0.048 -0.032 -0.035 0.22 0.23 0.23 90% 90% 90% 0.39 0.41 0.41

8192 SSD -0.032 -0.015 -0.015 0.24 0.24 0.24 89% 89% 89% 0.38 0.40 0.40

16392 SSD -0.018 -0.018 -0.018 0.22 0.23 0.22 90% 900/0 90% 0.43 0.43 0.39
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behavior resulting from initial conditions~ yielding esti­
mates and confidence intervals which are comparable or
superior to those of unweighted batch means and
weighted batch means, even for extreme initializations.
The confidence interval procedures presented here permit
rapid evaluation of complex systems on the basis of
steady state mean in short simulations. They can be use­
fully applied for providing decision support in evaluating
many systems in real-time, where the cost of simulating
long series of observations is prohibitively expensive. An
areas for further investigation is rapid ranking and selec­
tion based on the MLE.

ACKNOWEDGMENTS

This research was partially supported by NASA under
grant NAG-I-1469, and by the Department of Decision
Sciences and Decision Systems, Rensselaer Polytechnic
Institute.

REFERENCES

Bischak, D. P., W. D. Kelton, and S. M. Pollock. 1993.
Weighted Batch Means For Confidence Intervals In
Steady-State Simulations. Management Science, 39,
1002-1019.

Broerson, P. M. T., and H. E. Wensink. 1993. On Finite
Sample Theory for Autoregressive Model Order Selec­
tion. IEEE Transactions on Signal Processing, 41, 194­
204.

Fieller, E. C. 1932. The Distribution of the Index in a
Normal Population. Biometrika, 24, 428-440.

Fishman, G. S. 1978 Principles of Discrete Event Simu­
lation. John Wiley and Sons, New York.

Fuller, W. A. 1976. Introduction to Statistical Time
Series. John Wiley and Sons, New York.

Glynn, P., and P. Heidelberger. 1992. Experiments with
Initial Transient Deletion for Parallel, Replicated
Steady State Simulations. Management Science, 38,
400-419.

Kelton, W. D., and A. M. Law. 1985. The Transient
Behavior of the MlM/s Queue, with implications for
Steady-State Simulation. Operations Research, 33,
378-396.

Law, A. M. 1977. Confidence Intervals in Discrete Event
Simulation: A Comparison of Replications and Batch
Means. Naval Logistics Review Quarterly, 24, 667­
678.

Law, A. M., and W. D. Kelton. 1991. Simulation Mod­
eling and Analysis, 2nd ed. McGraw-Hill, New York.

Murray, J. R., and W. D. Kelton. 1988. The Transient
Behavior of the MlE2/2 Queue and Steady-State Simu­
lation. Computers & Operations Research, 15, 357­
367.

Odoni, A. R., and E. Roth. 1983. An Empirical Investi­
gation of the Transient Behavior of Stationary Queue­
ing Systems. Operations Research, 31, 432-455.

Pawlikowski, K. 1990. Steady-State Simulation of
Queueing Processes: A Survey of Problems and Solu­
tions. ACM Computing Surveys, 22, 123-171.

Roth, E. 1994. The Relaxation Time Heuristic for the Ini­
tial Transient Problem in MIMIk Queueing Systems.
European Journal of Operational Research, 72, 376­
386.

Sargent, R. G., K. Kang, and D. Goldsman. 1992. An
Investigation of Finite-Sample Behavior of Confidence
Interval Estimators. Operations Research, 40, 898­
913.

Schruben, L. 1982. Detecting Initialization Bias in Simu­
lation Output. Operations Research, 30, 569-590.

Snell, M. and L. Schruben. 1984. Weighting Simulation
Data to Reduce Initialization Effects. lIE
Transactions, 17, 354-363.

Voss, P. A., J. Haddock, and T. R. Willemain. 1996. Esti­
mating Steady State Mean in Short Simulations with
Initial Transient. Technical Report 37-96-443. Dept. of
Decision Sciences and Engineering Systems, Rensse­
laer Polytechnic Institute. Troy, New York.

Yuan, M., and B. Nelson. 1994. Autoregressive-output­
analysis methods revisited, Annals of Operations
Research, 53, 391-418.

AUTHOR BIOGRAPHY

Pieter A. Voss is a Ph.D. Candidate in Operations
Research and Statistics at Rensselaer. Research interests
include simulation analysis and engineering pedagogy. As
instructor of Engineering Economics, he received the
Master Teaching Fellowship and Outstanding TA Award.
He is president of the RPI Student Chapter of InfORMS.
He has industrial experience with the Cedel Group, Gen­
eral Electric, the US Anny, and Ingersoll-Rand.

Jorge Haddock is Professor of Industrial Engineer­
ing and Operations Research and Director of Undergrad­
uate Programs in the department of Decision Sciences and
Engineering Systems at Rensselaer. He received his Ph.D.
in Industrial Engineering from Purdue University. His re­
search interests are modeling of production and service
systems, and analysis methodology. He received the Out­
standing Young Industrial Engineer Award in 1990.

Thomas R. Willemain is Associate Professor of De­
cision Sciences and Engineering Systems at Rensselaer.
He received the BSE from Princeton University and the
SM and Ph.D. from Massachusetts Institute of Technolo­
gy, all in Electrical Engineering. His research interests in­
clude time series analysis and forecasting.


