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ABSTRACT

This paper reviews and evaluates strategies for imple­
menting the batch means method for estimating the
mean of a stationary simulation output process.

1 INTRODUCTION

Suppose {Xi, i 2: I} is a discrete-time stochastic pro­
cess. The method of batch means is frequently used
to estimate the steady-state mean J-L of {..Y i } or the
Var(Xn) (for finite n) and owes its popularity to
its simplicity and effectiveness. The original refer­
ences on the method are Conway (1963), Fishman
(1978a,b), and Law and Carson (1979).

The classical approach divides the output
Xl, ... , X n of a long simulation run into a number
of contiguous batches and uses the sample means of
these batches (or batch means) to produce point and
interval estimators.

To motivate the method, suppose temporarily
that the process {"\i} is weakly stationary, that is,
E(Xi) = J-L, Var("\i) = (J2, and the Cov(Xi,"\j) de­
pends only on the lag Ij - i I. Also assume that
limn-too nVar(Xn) < 00. Then split the data into k
batches, each consisting of b observations. (Assume
n == kb.) The ith batch consists of the observations

"\(i-l)b+1' "\(i-l)b+2' ... '''\ib

for i = 1,2, ... , k and the ith batch mean is given by

b

Y,(b) = ~ L XU-1)b+j'

j=l

For fixed m, let (J~ == Var(-,J{m). Since the batch
means process {Ii (b), i ~ I} is also weakly stationary,
some algebra yields

(J2 1
; + k2 L Corr[Y;(b), Yj(b)]

i:j;j

(J2 ( n(J2 - b(J2 )b 1 n b
k + bal .

214

Since n ~ b, (n(J~ - ba~)/(na~) ~ 0 as first n -t 00

and then b~ 00. As a result, a~ Ik approximates a~

with error that diminishes as band n approach in­
finity. Equivalently, the correlation among the batch
means diminishes as band n approach infinity.

To use the last limiting property, one forms the
grand batch mean

_ _ 1 k

Y k = X n = k LY;(b),
i=l

estimates (J~ by

and computes the following approximate 1 - a confi­
dence interval for J-L:

The main problem with the application of the
batch means method in practice is the choice of the
batch size b. If b is too small, the means Yi(b) can be
highly correlated and the resulting confidence interval
will frequently have coverage below the user-specified
nominal coverage 1 - Q. Alternatively, a large batch
size will likely result in very few batches and poten­
tial problems with the application of the central limit
theorem to obtain (2). An extensive study of batch
size effects for fixed sample size was conducted by
Schmeiser (1982).

Remark 1 For fixed sample size, a plot of the batch
means is a very useful tool for checking the effects
of initial conditions, non-normality of batch means,
and existence of correlation between batch means.
For example, consider the MIMl1 queueing system
\vith interarrival rate r == 0.09 and service rate
w == 0.1. The limiting mean customer delay is
J-L == rl[w(w-r)] == 90. A sample of 100,000 customer



Implementing the Batch l\;]eans Ivletbod 215

y'n(X n - J.l) .!!:.r aN(O, 1) as n --+ 00 (5)

2 CONSISTENT ESTIMATION BATCH
MEANS METHODS

Consistent estimation batch means methods assume
the existence of a parameter a 2 (the time-average
variance of the process {..lX"i}) , such that a central
limit theorem holds

(4)

and

Var(VB(n, k)) = 2 !!.. + 0 (~) ,
(1-p)4 n n

where o(h) is a function such that limh~oo(h)jh =
o. Then the batch size that minimizes the asymp­
totic (as n -t 00 and k -t (0) mean squared error

A • 2 A A

MSE(VB(n, k)) = Bias (VB(n, k)) + Var(VB(n, k)) is

bo = (1 ~P~2) 2/3 n 1/ 3 .

Clearly, the optimal batch size increases with the
absolute value of the correlation p between successive
observations. Unfortunately, such an analysis cannot
be performed for the majority of output processes.
Furthermore, asymptotically optimal batch sizes may
differ considerably from optimal batch sizes for finite
sample sizes (as Song and Schmeiser (1995) observed
for a congested MjMl1 queue).

and aim at constructing a consistent estimator for a 2

and an asymptotically valid confidence interval for
J.l. [Notice that the Xi'S in (5) need not be i.i.d.]
Consistent estimation methods are often preferable
to methods that "cancel" a 2 (see Glynn and Iglehart
1990) because: (a) The expectation and variance of
the halfwidth of the confidence interval resulting from
(5) is asymptotically smaller for consistent estima­
tion methods; and (b) Under reasonable assumptions
n Var(Xn) ---+ a 2 as n --+ 00.

Chien, Goldsman, and Melamed (1996) consid­
ered stationary processes and, under quite general
moment and sample path conditions, showed that as
both b, k --+ 00, MSE[bVB(n, k)] --+ O. Notice that
mean squared error consistency differs from consis­
tency.

The limiting result (5) is implied under the fol­
lowing two assumptions, where {W(t), t 2: O} is the
standard Brownian motion process (see Resnick 1994,
Chapter 6).

Assumption of Weak Approximation (AWA).
There exist finite constants J.l and (J > 0 such that

b = 2000

10 15 20 25 30 35 40 45 50
batch number
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delays, Di , was generated by means of Lindley's re­
cursionD i +1 =max{Di+Si-Ai+1,0}, i 2: l,start­
ing with an empty system (D1 == 0), where Ai is the
ith interarrival time and Si is the service time of the
ith customer. For moderate-to-heavy traffic intensity
v = r jw, the autocorrelation function for the process
{D i } has a very long tail (see Blomqvist 1967). This
property makes the M/M/1 system a good model for
evaluating simulation methodologies.

Figure 1 shows the plot of the batch means
Y1 (2000), ... , Yso (2000) for batch size b = 2000. The
first batch mean is small but not the smallest, relax­
ing one's worries about the effect of the initial tran­
sient period. This also hints that l = 2000 is a reason­
able truncation index for removing transient observa­
tions. Had the first batch mean been smaller than
the other batch means, one can assess the effect of
the initial conditions by removing the first batch and
comparing the new grand batch mean with the old.
Although the plot does not indicate the presence of
serious autocorrelation among the batch means, the
asymmetric dispersion of the batch means about the
actual mean should make the experimenter concerned
about the coverage of the confidence interval (2).

Example 1 shows how an asymptotically optimal
batch size can be obtained in special cases.

Figure 1: Batch means for delay times in an M/M/l
queue

Example 1 Consider the stationary AR(l) process

Xi == Jl + P(Xi - 1 - Jl) + Zi, i 2: 1,

where Ipi < 1, X o ,......, N(Jl, 1), and the Zi'S are i.i.d.
N(O,l - p2). Carlstein (1986) showed that

. " 2p 1 (1)
Blas(VB(n, k)) = - (1 _ p)3(1 + p) b+ 0 b (3) as n -t 00.
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Assumption of Strong Approximation (ASA).
There exist finite constants J-l, a > 0, .\ E (0,1/2]' and
a finite random variable C such that, with probability
one,

In(X n - J-l) - aW(n)1 ~ Cn1j2
-

A as n -+ 00.

Both AWA and ASA state that the process
{n(~Yn - J-l) / a} is close to a standard Brownian mo­
tion. However the stronger ASA addresses the con­
vergence rate of (5).

The ASA is not restrictive as it holds under rel­
atively weak assumptions for a variety of stochastic
processes including Markov chains, regenerative pro­
cesses and certain queueing systems (see Damerdji
1994 for details). The constant ,\ is closer to 1/2
for processes having little autocorrelation while it is
closer to zero for processes with high autocorrelation.
In the former case the "distance" between the pro­
cesses {n(X n - J-l)/a} and {W(n)} "does not grow"
as n increases.

2.1 Batching Rules

Fishman and Yarberry (1994) and Fishman (1996,
Chapter 6) presented a thorough discussion of batch­
ing rules. Both references contain detailed instruc­
tions for obtaining FORTRAN implementations for
various platforms via anonymous ftp.

Equation (1) suggests that fixing the number of
batches and letting the batch size grow as n -+ 00

ensures that a~ / k -+ a~. This motivates the following
rule.

The Fixed Number of Batches (FNB) Rule.
Fix the number of batches at k. For sample size n,
use batch size bn == Ln / kJ.

The FNB rule along with AWA lead to the follow­
ing result.

Theorem 1 (Glynn and Iglehart 1990) If {..Yi } sat­

isfies AWA, then as n -+ 00, "Y n 4 J-l and (5) holds.
Furthermore, if k is constant and {bn , n 2: I} is a se­
quence of batch sizes such that bn -+ 00 as n -+ 00,

then

The primary implication of Theorem 1 is that

is an asymptotically valid confidence interval for J-l.
Unfortunately, the FNB rule has two major limita­
tions: (a) bn (~B (n, k) is not a consistent estimator

of (J2. Therefore the confidence interval (6) tends
to be wider than the interval a consistent estimation
method vlould produce; (b) Statistical fluctuations in
the halfwidth of the confidence interval (6) do not di­
minish relative to statistical fluctuation in the sample
mean (see Fishman 1996, pp. 544-545).

The following theorem proposes batching assump­
tions which along with ASA yield a strongly consis­
tent estimator for a 2

.

Theorem 2 (Damerdji 1994) If {Xi} satisfies ASA,
then ..Yn ~. J-l as n -+ 00. Furthermore suppose that
{ (b n , kn ), n 2: I} is a batching sequence satisfying

(1) bn -+ 00 and kn -t 00 monotonically as n ~ 00

(2) b;;ln1-2A ln n -+ 0 as n -+ 00

(3) there exists a finite positive integer a such that

00

Then
(7)

and

(8)

The last display implies that

is an asymptotically valid 1 - Q confidence interval
for J-l.

Theorem 2 motivates the consideration of batch
sizes of the form bn == LnOJ, 0 < () < 1. In this case
one can show that the conditions (1)-(3) are met if
() E (1 - 2.\,1). In particular, the assignment () = 1/2
and the SQRT rule below are valid if 1/4 < ,\ < 1/2.
Notice that the last inequality is violated by processes
having high autocorrelation (.\ ~ 0).

The Square Root (SQRT) Rule. For sample size
n, use batch size bn == LViiJ and number of batches
kn == LViiJ·

Under some additional moment conditions Chien
(1989) showed that the convergence of Zk

n
'to the

N (0, 1) distribution is fastest if both bn and kn grow
proportionally to Vii. Unfortunately, in practice
the SQRT rule tends to seriously underestimate the
Var( ..Yn) for fixed n.

Example 2 (The MIMI! queue) Consider an
M/M/l queueing system with interarrival rate T =
0.9 and service rate w == 1, and assume that the
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system starts empty. Table 1 contains performance
statistics for 0.95 confidence intervals for the steady­
state mean customer delay J.L == 9. The confidence
intervals resulted from 500 independent replications.
The FNB rule used 16 batches and batch sizes 2m ,

m ~ o. The SQRT rule started with batch size b1 == 1
and number of batches k1 == 8, and computed confi­
dence intervals with batch sizes

Columns 2 and 4 contain the estimated cover­
age probabilities of the confidence intervals produced
by the FNB rule and the SQRT rule, respectively.
Columns 3 and 5 display the respective average inter­
val halfwidths. Specifically, for sample size n ~ 217 ==
131,072, roughly 94 percent of the confidence inter­
vals resulting from the FNB rule contained J.L whereas
only 78 percent of the confidence intervals resulting
from the SQRT rule contained J.L. However, the latter
intervals were 43 percent narrower. Experiments by
Fishman and Yarberry showed that the disparity in
coverage between the two rules grows with increasing
traffic intensity.

b - 2([-1)/2 X {b1

[ - 3/(2.;2)

and numbers of batches

k == 2(l-I)/2 X { k1

1 11/.;2

if 1 is odd
otherwise

if l is odd
otherwise.

means, the batching for the next review is determined
by the FNB rule. If the test fails to detect correla­
tion, all future revie\vs omit the test and employ the
SQRT rule.

The ABATCH Strategy. If at time nl the hypoth­
esis test detects correlation between the batch means,
the next review employs the FNB rule. If the test
fails to detect correlation, the next review employs
the SQRT rule.

Both strategies LBATCH and ABATCH yield
random sequences of batch sizes. Under relatively
mild assumptions, these sequences imply convergence
results analogous to (7) and (8) (see Fishman and
Yarberry 1994 and Fishman 1996).

Test for Correlation

We will briefly review a test for the hypothesis Ho:
the batch means Y1(b), ... , l'k(b) are uncorrelated. A
commonly used test is due to von Neumann (1941)
and is very effective when the number of batches k is
small.

Assume that the process {..Yi} is weakly stationary
and let

PL(b) == Corr[li(b), li+l(b)], 1 == 0,1, ...

be the autocorrelation function of the batch means
process. The von Neumann test statistic for H o is

Table 1: Performance statistics for the FNB and
SQRT rules on 0.95 confidence intervals for the mean
customer delay in an MIMII queue with utilization
v == 0.9

FNB Rule SQRT Rule
Average Average

log" n Coverage Halfwidth Coverage Halfwidth
10 0.544 3.244 0.326 1.694
11 0.640 3.506 0.366 1.665
12 0.746 3.304 0.414 1.437
13 0.798 2.963 0.466 1.271
14 0.838 2.435 0.498 1.063
15 0.880 1.901 0.604 0.904
16 0.912 1.437 0.664 0.738
17 0.944 1.053 0.778 0.599
18 0.934 0.756 0.810 0.471
19 0.950 0.541 0.854 0.369
20 0.940 0.385 0.858 0.283

With the contrasts between the FNB and SQRT
rules in mind, Fishman and Yarberry proposed two
strategies that dynamically shift between the two
rules. Both strategies perform "interim reviews"
and compute confidence intervals at times nl ~

n 12[-1 , l == 1, ... , L + 1.

The LBATCH Strategy. At time nl, if an hypoth­
esis test detects autocorrelation between the batch

where

A (b) = 2:7:11(1i(b) - Xn)(}~+l(b) - X n)
PI 2:7=1 (Y;(b) - X n )2

is an estimator for the lag-1 autocorrelation PI (b).
Under Ho, R k ~ N(O,l) for large b (the batch

means become approximately normal) or large k (by
the central limit theorem). If {.JX"i} has a monotone
decreasing autocorrelation function (e.g., the delay
process for an MIMl1 queueing system), one rejects
Ho at level (3 if R k > Zl-j3. Alternatively, if {Xi} has
an autocorrelation function with damped harmonic
behavior around the zero axis (e.g., an AR(l) pro­
cess with p < 0), the rejection of Ho when Rk > ZI-{3

can lead to erroneous conclusions. In this case, re­
peated testing under the ABATCH strategy reduces
this possibility.

The p-value == 1 - <I!(Rk ) of the test is the largest
value of the type I error (3 == P(reject Ho I Ho is true)
given the observed value of Rk . Hence, a p-value close
to zero implies low credibility for Ho. The plot of the
p-values versus the batch size is a useful graphical
device.
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RL fraction of rejected tests for Ho
on reviews 1, ... ,1.

and number of batches

k[ 2(L-l)(l-R,-d/2

{
kl if (l - 1) (1 - Rl - I ) is even

x - M
k1 / v 2 otherwise,

LBATCH Strategy ABATCH Strategy
Average Average

log2 n Coverage Halfwidth Coverage Halfwidth
10 0.398 2.085 0.562 3.384
11 0.420 1.992 0.632 3.450
12 0.464 1.693 0.712 3.100
13 0.518 1.477 0.760 2.686
14 0.562 1.227 0.816 2.168
15 0.652 1.029 0.850 1.708
16 0.714 0.834 0.902 1.296
17 0.808 0.663 0.932 0.955
18 0.852 0.513 0.938 0.688
19 0.866 0.395 0.930 0.493
20 0.876 0.298 0.936 0.353

Table 2: Performance statistics for the LBATCH and
ABATCH strategies on 0.95 confidence intervals for
the mean customer delay in an M/M/! queue with
utilization v = 0.9

2.3 Tests for the Batching Rules

The experiments in Examples 3, 4 and 5 compare
the LBATCH and ABATCR strategies by means of
three queueing systems with traffic intensity v = 0.9.
Each system starts empty and has a first-come, first­
served discipline. Each experiment computed 0.95
confidence intervals for the long-run mean customer
delay from 500 independent replications. Both strate­
gies started with k1 = 8 batches of size b1 = 1 and
used type I error 13 = 0.1 for Ho·

Example 3 (Example 2 continued) The entries
of Tables 1 and 2 indicate that the ABATCH strategy
comes closer to the FNB rule's superior coverage with
shorter confidence intervals.

andLBATCH

if bi = 1
if bi > 1,

- _ { 3/2
bi

- lJ2 b1 + 0.5J

where

2.2 Implementing the
ABATCH Strategies

To understand the role of the hypothesis test in the
LBATCH and ABATCH algorithms, define the ran­
dom variables

A sufficient condition for strong consistency
(equation (7)) and asymptotic normality (equation
(8)) is (30 > 1 - 4A (or A > (1 - (30)/4), where
(30 = liml--+cx:> Hi is the long-run fraction of rejections.
In practice, 130 differs from but is expected to be close
to the type I error (3. Clearly, A > 1/4 guarantees (7)
and (8) regardless of 130. However, 130 plays a small
role when A ::; 1/4. Specifically, for 130 equal to 0.05
or 0.10, the lower bound (1 - 130)/4 becomes 0.2375
or 0.2225, respectively, a small reduction from 1/4.

On review l, both strategies induces batch size

b
L

2(l-1)(I+R,-d/2

{
bi if (1 - 1)(1 + Rl - 1 ) is even

x bi / J2 otherwise,

where k1 = lJ2 ki + 0.5J.
The resulting sample sizes are

if (1 - 1)(1 + Rl - 1 ) is even
otherwise

and the definitions for b1 and ki guarantee that if
Ho is never rejected, then both bl and kl grow ap­
proximately as J2 with 1 (i.e., they follow the SQRT
rule) .

The final implementation issue is the relative dif­
ference between the potential terminal sample sizes

This quantity is minimized (i.e., the final sample size
is deterministic) \vhen 2k I bi = k1bl . Although this
condition excludes several practical choices for bi and
k1 , such as b1 = 1 (to test the original sample for
independence) and 8 ::; k1 ::; 105 , ~ (b1 , k1 ) remains
small for numerous choices of b1 and k1 .

Example 4 (An M/G/! queue) Consider an
M/G/l queueing system with i.i.d. interarrival times
from the exponential distribution with parameter
7 = 0.9 and i.i.d. service times Si from the hyper­
exponential distribution with density function

f(x) = 0.9 (_1_e- x / O.5 ) +0.1 (_1_ e- x / 5 .5 ) , x 2: O.
0.5 5.5

This distribution applies when customers are classi­
fied into two types, 1 and 2, with respective probabil­
ities 0.9 and 0.1, type 1 customers have exponential
service times with mean 0.5, and type 2 customers
have exponential service times with mean 5.5. The
service times have mean E(S) = 0.9(0.5) + 0.1(5.5) =
1, second moment E(S2) = 0.9(0.52 )+0.1(5.52 ) = 6.5,
and coefficient of variation JVar(S) /E(S) = 2.345,
which is larger than the unit coefficient of variation
of the exponential distribution.

The long-run mean delay time in queue is given by
the Pollaczec-Khintchine formula (Heyman and Sobel
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1982, pp. 250-252)

- r E(D.) _ TE(S2)
Jl - i~~ 1 - 2[1 _ rE(S)] =29.25. (9)

Notice that the MIMl1 system in Example 2 with
the same traffic intensity v == 0.9 has much smaller
long-run mean delay time.

Table 3 displays the results of this experiment. As
n increases, the conservative ABATCR strategy pro­
duces 0.95 confidence intervals for J.-L that are roughly
50 to 100 percent wider than the respective confi­
dence intervals produced by the LBATCR strategy
but have coverage rates that are acceptably close to
0.95 for substantially smaller sample sizes (as small
as 217 == 131,072).

Table 3: Performance statistics for the LBATCR and
ABATCR strategies on 0.95 confidence intervals for
the mean customer delay in an MIGl1 queue with
hyperexponential service times and utilization v ==
0.9

LBATCH Strategy ABATCH Strategy
Average Average

log" n Coverage Halfwidth Coverage Halfwidth
10 0.204 5.865 0.356 10.305
11 0.254 5.962 0.436 11.426
12 0.294 5.552 0.566 11.635
13 0.354 5.083 0.652 11.166
14 0.392 4.418 0.746 10.147
15 0.452 3.863 0.794 8.658
16 0.540 3.215 0.856 7.057
17 0.620 2.678 0.898 5.483
18 0.632 2.178 0.896 4.090
19 0.694 1.761 0.900 2.997
20 0.748 1.387 0.924 2.145
21 0.806 1.083 0.926 1.525

Example 5 (An M/D/1 queue) Consider an
MIG II queueing system with i.i.d. interarrival times
from the exponential distribution with parameter
T == 0.9 and fixed unit service times. Then, by (9),
the long-run mean delay time in queue is J.-L == 4.5.

The results of this experiment are contained in
Table 4. As in Examples 3 and 4, the performance of
the ABATCR strategy makes it an attractive compro­
mise between the "extreme" FNB and SQRT rules.

Example 6 tests the LBATCH and ABATCR
methods by means of an AR(l) process.

Example 6 Consider the stationary AR(l) process
Xi == -0.9Xi- 1 + Zi with mean 0 (see Example 1).
The autocorrelation function Pj == (-0.9)j, j ~ 0, of
this process oscillates around the zero axis and the
time-average process variance is a 2 == (1 - 0.9)/(1 +
0.9) == 0.053.

Table 4: Performance statistics for the LBATCR and
ABATCR strategies on 0.95 confidence intervals for
the mean customer delay in an MIDl1 queue with
unit service times and utilization v == 0.9

LBATCH Strategy ABATCH Strategy
Average Average

log2 n Coverage Halfwidth Coverage Halfwidth
10 0.460 1.062 0.616 1.631
11 0.548 0.962 0.720 1.538
12 0.598 0.842 0.788 1.391
13 0.648 0.686 0.842 1.101
14 0.696 0.556 0.858 0.852
15 0.794 0.445 0.884 0.632
16 0.808 0.351 0.924 0.472
17 0.862 0.271 0.942 0.343

Table 5: Performance statistics for the LBATCR and
ABATCR strategies on 0.95 confidence intervals for
the mean J.-L == 0 of the stationary AR(l) process Xi ==
-0.9Xi- 1 + Zi

LBATCH Strategy ABATCH Strategy
Average Average

log2 n Coverage Halfwidth Coverage Halfwidth
5 1.000 0.1217 1.000 0.1153
6 0.978 0.0364 0.980 0.0367
7 0.980 0.0244 0.980 0.0246
8 0.982 0.0166 0.980 0.0167
9 0.972 0.0111 0.966 0.0111

10 0.984 0.0076 0.980 0.0075
11 0.976 0.0051 0.978 0.0050
12 0.982 0.0035 0.984 0.0035
13 0.964 0.0024 0.962 0.0023
14 0.960 0.0016 0.962 0.0016
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The entries of Table 5 were obtained from 500 in­
dependent replications. The type I error for Ho was
/3 == 0.1. The 0.95 confidence intervals for J.l produced
by both methods have roughly equal halfwidths and
coverages. In fact, almost all cover age estimates are
greater than the nominal coverage 0.95. This behav­
ior is due to the fact that bVar(VB(n, k)) tends to
overestimate (72 (the coefficient of 1/ b in equation (3)
is 2.624 > 0).

From equation (4), the batch size that minimizes
MSE(VB(n, k)) is bo == 113.71. 500 independent repli­
cations with 144 batches of size 114 (sample size
16416) produced 0.95 confidence intervals with esti­
mated coverage 0.958 and average halfwidth 0.0016
- not a substantial improvement over the statistics
in the last row of Table 5 (for sample size roughly
equal to 214 == 16384).

3 OVERLAPPING BATCH MEANS

An interesting variation of the traditional batch
means method is the method of overlapping batch
means (OBM) proposed by Meketon and Schmeiser
(1984). For given batch size b, this method uses
all n - b + 1 overlapping batches to estimate J.l

and Var( ..Y" n). The first batch consists of obser­
vations ..Y1 , ... , ..Yb, the second batch consists of
..Y2 , ... ,"\b+l, etc. The OBM estimator of J.l is

__ 1 k

1"0= b "'Y;(b)n- +1L...,;
2=1

(iii) The behavior of Var(Vo) appears to be less sen­
sitive to the choice of the batch size than the
behavior of Var(VB) (Song and Schmeiser 1995,
Table 1).

(iv) If {..Yi } satisfies ASA and {(bn , kn ), n 2: I} is a
sequence that satisfies the assumptions (A.1)­
(A.3) in Theorem 2 and

b; 0- -t as n -+ 00,
n

then (Damerdji 1994)

Song and Schmeiser (1995) considered weakly sta­
tionary processes with /m == 2::-00 jmCj < 00 for
m == 0,1 and studied batch means variance estima­
tors with

.... 1 (1)Blas(V) == -Cb/l b+ 0 b

and

Var(V) = CV'Yg~ + 0 (~) .

The constants Cb and Cv depend on the amount of
overlapping between the batches. In particular, the
estimator VB has Cb == 1 and Cv == 2, while Vo has
Cb == 1 and Cv == 4/3. Then the asymptotic batch size
that minimizes MSE(V) == Bias2 (V) + Var(V) is

Song (1996) developed methods for estimating the ra­
tio (,1/,0)2 for a variety of processes, including mov­
ing average processes and autoregressive processes.
Then one can obtain an estimator for b* by plug­
ging the ratio estimator into equation (10). Sherman
(1995) proposed an alternative method that does not
rely on the estimation of (/1//0)2.

and has sample variance

... 1 n-b+l
~ -- 2

VO==n_b L...,; (Yi(b)-Yo).
i=l

The following list contains properties of the estima­
tors r 0 and Vo:

(i) The OBM estimator is a weighted average of
non-overlapping batch means estimators.

(
2 2)1/3

b* = 2cb'Yi n 1/ 3 .
cv / o

(10)

(ii) Asymptotically (as n, b -+ ex) and bin -+ 0),
the OBIvI variance estimator Vo and the non­
overlapping batch means variance estimator
VB == VB(n, k) have the same expectation. Fur­
thermore,

Var(Vo ) 2
--A- -+-.
Var(li~B) 3

In words, the asymptotic ratio of the mean
squared error~ of Var(f'O) to the mean squared
error of Var(1'B) is equal to 2/3 (Meketon and
Schmeiser 1984).

Remark 2 Welch (1987) noted that both traditional
batch means and overlapping batch means are spe­
cial cases of spectral estimation and, more impor­
tantly, suggested that overlapping batch means yield
near-optimal variance reduction when one forms sub­
batches within each batch and applies the method to
the sub-batches. For example, a batch of size 64 is
split into 4 sub-batches and the first (overlapping)
batch consists of observations Xl,' .. , X 64, the sec­
ond consists of observations X 17, ... ,Xso , etc.
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