Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

DEVELOPING A REAL-TIME EMULATION/SIMULATION CAPABILITY FOR THE
CONTROL ARCHITECTURE TO THE RAMP FMS

Wayne J. Davis
Joseph G. Macro
Andrew L. Brook

Michael S. Lee
Guoyan S. Zhou

Department of General Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801 U.S.A

ABSTRACT

This paper first discusses an object-oriented, control ar-
chitecture and then applies the architecture to produce a
real-time software emulator for the Rapid Acquisition of
Manufactured Parts (RAMP) flexible manufacturing sys-
tem (FMS). In specifying the control architecture, the co-
ordinated object is first defined as the primary modeling
element. These coordinated objects are then integrated into
a Recursive, Object-Oriented Coordination Hierarchy. A
new simulation methodology, the Hierarchical Object-Ori-
ented Programmable Logic Simulator, is then employed
to model the interactions among the coordinated objects.
The final step in implementing the emulator is to distrib-
ute the models of the coordinated objects over a network
of computers and to synchronize their operation to a real-
time clock. Specialized displays have also been devel-
oped to allow one to monitor the detailed, real-time opera-
tion of each coordinated object. The research will also
convert the real-time emulation model into a real-time
simulation model for the RAMP FMS. Both the real-time
emulation and simulation capabilities will be demonstrated
at the presentation.

1. INTRODUCTION

Although simulation remains the tool of choice for model-
ing the behavior of FMSs, the accuracy of current simula-
tion tools in modeling modern manufacturing systems such
as Flexible Manufacturing Systems (FMSs) has been ques-
tioned. Mize et al. [1991] have concluded that current
simulation tools cannot accurately estimate the true perfor-
mance of an FMS. Rather, these merely permit the modeler
to compare the relative performance differences among
alternative designs for the FMS.

In our research, we have consistently observed that
available simulation tools overestimate the performance

171

for an operational FMS (see Flanders and Davis [1995] for
areal-world example). We believe that the inherent inac-
curacy of current simulation tools arises from the inability
tomodel allthe constraints associated with the operation of
an FMS. Current simulation tools focus on modeling the
primary job entity as it flows through a stochastic queueing
network representation of the FMS. Few, if any, simulation
tools readily permit the modeler to consider the flow of the
supporting resources (e.g. tooling, part kits, fixtures, and
processingplans). The coordination of all entity flows in an
FMS is crucial, and it is the interactions among the control-
lers within the FMS that coordinate these flows (see Davis
et al. [1993]).

A new simulation methodology has been developed
to explicitly model the controller interactions. This meth-
odology also permits the immediate consideration of the
detailed processing plans for the parts to be produced in the
FMS. In this manner, all entity flows are considered. This
paper discusses an application of this simulation methodol-
ogy to construct a software emulator for the control archi-
tecture of a RAMP FMS that is operated by the Naval Air
Warfare Center/Aircraft Division/Indianapolis NAWC AD
Indpls). This FMS will produce new and spare electronic
circuit boards for defense systems using through-the-hole
assembly technologies. The complexity of this system is
evidenced by the fact that the cell controller requires nearly
a million lines of computer code to implement, excluding
the numerous off-the-shelf software packages contained
within the controller. Given this complexity, no prior
attempt to simulate the entire system has been successful,
and production capabilities are still unconfirmed. Further-
more, given the current failure to model the dynamics for
this FMS, the ability to schedule this FMS has been com-
promised. The development of the emulator is the first step
toward the development of a new scheduler for this system.
This scheduler will be developed within the framework of
a comprehensive methodology for the modeling, schedul-
ing and control of FMSs as discussed in Davis et al. [1993].

172 Davis et al.

In this State-of-the-Art tutorial, a detailed discus-
sion of the development of the real-time emulator for the
RAMP FMS will be provided. The conversion of the real-
time emulator into a real-time simulator for the RAMP
FMS will also be addressed. Finally, an on-line demonstra-
tion of the real-time emulation and simulation capability
will be provided.

2. MODELING APPROACH
2.1 The Coordinated Object

In order to define the set of subsystems contained
within a FMS, we sought to find a single modeling tem-
plate which could be recursively applied to decompose the
system into its component subsystems. Working in col-
laboration with the Government Systems Group at
Motorola, we first published the fractal architecture as a
mechanism for decomposing the factory into its constitu-
ent processing elements (see Tirpak et al. [1992]). During
the past few years, the basic fractal unit defined in that
architecture has been generalized to become the coordi-
nated object, and we now refer to the fractal architecture
as the Recursive Object-Oriented Coordination Hierarchy.

The generalized coordinated object (CO) is depicted
in Figure 1. It represents the most fundamental hierarchi-
cal element where integrated planning and control are
implemented. Each CO contains one or more subordinate
task-capable resources or subsystems, Pp, (n=1,...,N), which
can be allocated to execute the tasks that have been as-
signed to the CO. In order to execute these tasks, entities,
(including both jobs or supporting resources), enter the CO
through its input port and eventually exit through its out-
put port. These entities are assumed to be under the con-

sub-unit state information

SUB-UNITS| - -

e o o o

b SUB-UNIT INPUT b
PORT
INHIBIT FLAG
SUB-UNIT OUTP!

HIERARCHICAL

SUBSYSTEM

5 y COORDINATOR
sub-unit directives with priorities EXECUTION | o

FUNCTION z
£
1 2
PERFORMANCE £
IMPROVEMENT |jg¢— 2
FUNCTION 2
5 =
E + 1 =
< | Process P
0 ASSESSMENT |
FUNCTION
INHIBIT [OUTPUT]
FLAG | PORT
R
assigned lasks| v unit state
and due dates information

Figure 1. Schematic of the Coordinated Object: A
Basic Module for Planning and Control

trol of the CO from the time of their arrival at the input
port until they exit through the output port. Consequently,
any entity residing in the CO's output queue is controlled
by the CO's supervisor since it can be assumed that the CO
no longer has any assigned tasks to be performed upon an
entity in its output queue.

In general, the CO does not perform the tasks itself.
Rather, it decomposes its assigned tasks into subtasks us-
ing detailed process plans. These subtasks are then imple-
mented at the subordinate processes or subsystems. When
the CO allocates a given entity with an assigned subtask(s)
to one of its subordinate subsystems Py, the physical con-
trol of that entity is relegated to that subsystem. Note that
in Figure 1 the Input Port and the Output Queues of each
subordinate subsystem belong to the CO, while the Input
Queue and the Output Port belong to that subordinate sub-
system. Therefore, a consistent chain of command for the
control of a given entity is defined as the entity flows among
the various subsystems contained within the CO.

To move the entities from one subordinate subsystem
to another, we assume that each CO has the essential inter-
facing (material handling) subsystems which contain the
transport processes within the CO. These interfacing sub-
systems are also task-capable resources and must be under
the control of the CO. In general, a subordinate subsystem
cannot execute its assigned tasks until essential entities and
resources are delivered to its control domain. The CO must
be able to manage this flow of entities and resources through
the control of its subordinate Interfacing Subsystems.
Again, the control of the Interfacing Subsystems is mani-
fested via the CO's assignment of tasks to be executed by
the interfacing subsystem.

2.2 The Recursive Object-Oriented Coordination
Hierarchy (ROOCH)

The recursive nature of the ROOCH arises from the fact
that any subordinate subsystem or object within a coordi-
nated object, (including the Interfacing Subsystems), can
also be a coordinated object. This recursive approach may
be applied to construct the ROOCH with the essential num-
ber of hierarchical levels needed to model any FMS.

For an application of the ROOCH, consider the Rapid
Access to Manufactured Parts (RAMP) FMS. The ROOCH
for the RAMP FMS is pictured in Figure 2.

The recursive nature of the ROOCH is immediately
apparent. The RAMP FMS forms the primary CO. In-
cluded in the RAMP CO are ten individual subordinate
processing centers which perform all the tasks that are re-
quired to assemble a circuit board. For the RAMP CO, the
primary interfacing subsystem is the central Automated
Storage and Retrieval System (AS/RS). The AS/RS is also
a CO which includes the primary AS/RS controller and 30
additional controllers to manage the subordinate transport
processes within the AS/RS. Another interfacing subsystem
is the communication network which downloads the es-
sential processing plans to a given processing center.

Real-Time Emulation/Simulation Capability for the RAMP FMS 173

Test Inspection Pre-Solder Component Assessmrwér?f“[-
Rework Assembly Preparation al

[Performance 3] {5 ¢
£l —
G, 2 T Execution E é

Cell Coordinator

)

Cell Material Handling System--Automated Storage and Retrieval System & Conveyors

_— — =

Conformal Quality &
Coat Packing

| Processesl

Processes

SRS A A

Figure 2. The ROOCH for the RAMP FMS

Each processing center is also a CO containing one or
more primary unit processes and a material handler or in-
terfacing subsystem. At most processing centers in the
RAMP FMS, the human operator provides the primary
material handling. In many cases, the human operator also
functions as one of the unit processors. It should be noted,
however, that the human operator typically functions only
in one capacity at a time. The notion of a unit or transport
process is therefore very generic as it can describe a hu-
man, a machine or any other type of subsystem that can
execute a task.

Despite the apparent complexity of Figure 2, there is
asimplicity in the proposed ROOCH. Each included func-
tion is a CO except the lowest level process controllers.
Each CO is responsible for executing tasks assigned by its
supervisor. In most cases, however, the CO cannot ex-
ecute these tasks itself but rather, defines subtasks to be
executed by a subordinate subsystem.

In addition to the assignment of tasks to its subordi-
nate COs, the CO must also direct the flow of jobs and
supporting resources to the subordinate COs and processes.
This flow of entities is implemented by the CO assigning
tasks to its subordinate interfacing subsystems. As is the
case for the AS/RS in the RAMP FMS, a given interfacing
subsystem may also be a coordinated object. It, too, is
responsible for scheduling the execution of its assigned
transport tasks. Hence, interfacing subsystems may also
possess a dedicated coordination hierarchy which is re-
sponsible for both planning and execution of transport tasks.

We usually prefer to distinguish the Processing Sub-
system, Py (n=1,...,N), from the Interfacing Subsystems.
The Processing Subsystems are responsible for planning
the execution of assigned tasks which physically modify

the state of an entity using instructions contained in a pro-

Board Prep
& Fixture

Mechanical Kitting
Assembly

Processes
% fn]

cess plan. The interfacing subsystems, on other hand, ad-
dress tasks that support the processing subsystems in gen-
erating the desired change in state for a given entity. For
example, a material handling system such as the AS/RS
may change the location of an entity or store an entity until
the next processing task is scheduled. These Interfacing
COs do not execute the processing steps contained within
the processing plan for the product being manufactured.
Rather, the manner in which these execute their assigned
tasks is known by the controller and is inherent within the
subsystem itself. Therefore, the ensemble of tasks that the
Interfacing COs can execute is independent of the product
being manufactured. For example, there is a physical lay-
out and control system for most material handling systems
which specifies which tasks the material handling system
can address and how it will execute each task.

The lowest-level control object in the ROOCH is ei-
ther a Transport or Unit Process Object. Unit processes
are always subordinate to a CO for processing subsystems
while transport processes reside within an interfacing sub-
system. Neither transport nor unit process objects can have
subordinates.

2.3 The Hierarchical Object-Oriented Programmable
Logic Simulator (HOOPLS)

As is the case for most large-scale, discrete-event systems,
numerous types of entity flows must be considered for the
RAMP FMS, including the several types of totes that con-
tain both the production jobs and the supporting resources
(tools, fixtures, part kits and so forth).

The flow (location) of all entity types must be mod-
eled by the simulation, and the control of every entity must
also be explained. The entities in a modern FMS do not

174 Davis et al.

flow of their own volition. Rather, their flows are man-
aged by controllers. Furthermore, whenever there is an
interaction among the controllers, there is likely an ex-
change of control for one or more entities among the inter-
acting controllers. A new simulation approach, the Hier-
archical Object-Oriented Programmable Logic Simulator
(HOOPLYS), has been formulated to explicitly address these
controller interaction concerns.

A HOOPLS-based model for a FMS consists of four
primary frames. The first frame is the model frame which
contains the specifications for the ROOCH associated with
the modeled FMS. The second frame is the control frame
which provides for the exhaustive definition of the control
messages that will be issued or received by each control-
ler contained within the ROOCH. This frame also defines
the state transition mechanisms which occur upon the re-
ceipt of a control message and the subsequent control
message(s) that are issued.

Given that HOOPLS explicitly models the interaction
among the controllers within the ROOCH and considers
the flow of all entities to be a consequence of these inter-
actions, HOOPLS has abandoned the use of a traditional
event calendar. Instead, HOOPLS employs a message
relay which stores the control messages that will be passed
among the controllers, chronologically-ordered based upon
their delivery time. Each control message designates the
controller that issued the message, the recipient controller
for the message, the message content, and the scheduled
delivery time. The message relay is responsible for deliv-
ering the control message to the recipient controller at the
appropriate simulated time. It is obvious that the prescribed
operation of the message relay physically mimics the com-
munication network which links the controllers in an ac-
tual FMS (for the RAMP FMS, this is a dedicated Local
Area Network).

The third simulation frame in the HOOPLS-based
model is the processing plan frame. The processing plan
details not only which manufacturing processes will be
required, and in which order, but also details which sup-
porting resources will be required to complete a process-
ing task.

The fourth simulation frame is the experimental
frame which specifies the experimental parameters gov-
erning the simulation study. The experiment frame also
includes extensive capabilities for initializing the simula-
tion to a known system state.

To demonstrate the modeling objectives for HOOPLS,
a simulation/emulation model developed for the RAMP
FMS will now be summarized. HOOPLS intrinsically em-
ploys an object-oriented architecture, and the C++ program-
ming language was selected for implementing of the simu-
lation model. In addition, the object-oriented design and
analysis methods detailed by Booch [1991] were used to
specify the class hierarchy for the objects.

3. IMPLEMENTING THE EMULATOR
3.1 Prior Modeling Effort

Space limitations do not permit a detailed discussion of
all the essential steps that are required to construct the
emulator. Rather, we can only provide an overview of
our basic approach. In an earlier paper, we discuss an
initial effort to construct the basic object classes for the
controllers, entities, and control messages that are needed
to describe the RAMP FMS (see Davis et al. [1994]). The
ROOCH used for this paper is depicted in Figure 2. This
same ROOCH is also employed in the definition of the
model frame for the HOOPLS-based emulator.

The distinction between an emulation and simulation
is simple. Both employ the same model. The primary
difference arises with the manner in which the model is
executed. In a HOOPLS-based simulation approach, the
messages are stored chronologically on a message calen-
dar. After the state transitions arising from the receipt of
a given message at a given controller are implemented
and the new controlled messages derived from the pro-
cessing of the current message are chronologically stored
in the message calendar, the next message is popped from
the message calendar for processing. At this moment, the
simulation time is advanced to the delivery time for the
next control message to be popped. A HOOPLS-based
emulation uses the same approach save one fundamental
difference. The emulation is also tied to a real-time clock.
When the next message is removed from the event calen-
dar, it will not be executed until the actual time at which
that message is to be delivered to the recipient controller.
Thus, the difference between an emulation and simula-
tion may simply be summarized by saying that under a
simulation, message processing procedures control the
advancement of time while under an emulation, the ad-
vancement of time is controlled by a real-time clock.

In the development of the control frame, over sev-
enty controllers were described. As shown in Table 1, the
AS/RS alone includes 31 controllers. These controllers
are differentiated into four classes of objects. The Coor-
dinate Nodes model the cell and station controllers. The
Transport Nodes, (a special case of the Coordinate Node),
model the AS/RS and station-level material handler con-
trollers. The Unit Process Nodes model the process con-
trollers at each station. Finally, Transport Process Nodes
model the dedicated transport process controllers within
the AS/RS. Using this class definition schema, Coordi-
nate Nodes can have other Coordinate Nodes, Transport
Nodes and Unit Process Nodes as subordinates. A Trans-
port Node can have only Transport Process Nodes as sub-
ordinates. Unit and Transport Process Nodes cannot have
subordinates.

In the control frame, we establish the communica-
tion scheme for the controller interactions. Here, we de-
fine two classes of message. An Action Message requests
a subordinate to take execute an action. A Status Mes-

Real-Time Emulation/Simulation Capability for the RAMP FMS 175

RAMP Cell Controller
Kitting Station
Processor : Human Operator
Material Handler : Human Operator
Board Preparation Station
Processor : Human Operator
Material Handler : Human Operator
Component Preparation Station
Processor : Human Operator
Material Handler: Human Operator
Part Carousel
Tinning Robot
Pre-Solder Assembly Station
Processor : Human Operator
Material Handler: Human Operator
Part Carousel
Part Location Indicator
Test Facility Station
Processor : Human Operator
Material Handler: Human Operator
Burn In Tester
Conductivity Tester
Inspection/Rework Station
Similar to Board Preparation Station
Mechanical Assembly Station
Similar to Board Preparation Station
Conformal Coat Station
Similar to Board Preparation Station
Quality & Packaging Station
Similar to Board Preparation Station
Wave Solder and Clean Station
Similar to Board Preparation Station
Automated Storage and Retrieval System
Storage layer Conveyors (6)
Inserter/Extractor (5)
Machine Station Input/Output Conveyors (20)

Table 1. Controllers in the RAMP FMS

sage provides feedback to the supervisor at the completion
of the requested action.

With the interaction of either a Coordinate Node or
Transport Node with a subordinate of any class other than
a Transport Node, we have three basic action messages.
Acceptltem instructs the subordinate that an entity is in its
input queue and that the subordinate now has control of
that entity. Returnltem instructs the subordinate to place
the entity in its output queue and return the control to the
requesting supervisor. ExecuteTask requests the subordi-
nate to execute a specific task upon a given item. If the
subordinate is a Coordinate Node or Unit Process Node,
this task will be defined within the process plan database.
If the subordinate is a Transport Node, then the instruction
is predefined within the process's capabilities.

Kitting: Generate the parts kits for the order
Input: KIT tote containing all order components
Output: Bare Board Tote containing up to 10 boards

Pre- and Post-Solder Assembly Tote(s)
Mechanical Tote holding large parts

Board Preparation: Place board into fixture
Input: Bare Board Tote with bare boards
Output: One Pallet Tote for each fixtured board

Component Preparation: Bend/tin component leads
Input: Pre- and Post-Solder Assembly Tote(s)
Output: Same

Pre-Solder Assembly: Place components on board
Input: Pre-Solder Assembly Tote(s) and

all Pallet Totes for given order
Output: Same
Pre-Solder Inspect/Rework:
Input: Pallet Totes and Pre-Solder Assembly
Tote(s) if rework is needed
Output: Same
Wave Solder and Clean:
Input: All Pallet Totes
Output: Same

Post-Solder Assembly: Mount small parts
Input: All Pallet and Post-Solder Assembly Tote
Output: Same

Post-Solder Inspection
Input: All Pallet Totes with Pre- and Post-Solder

Assembly Totes if reworked
Output: Same

Mechanical Assembly: Remove board from fixture
and mount larger mechanical parts.

Input: All Pallet and Mechanical Part Tote
Output: Printed Wiring Assembly Tote for
each board and Mechanical Part Tote

Test: Perform bed-of-nails and burn-in test.
Input: Printed Wiring Assembly Totes for job

and various part totes if reworked
Output: Same

Conformal Coat: Apply protective coating to board.
Input: Printed Wiring Assembly Totes for order
Output: Same

Final Quality Control and Inspection/Packaging:
Input: Post-Wiring Assembly Totes
Output: Packaged boards

Table 2. Processing Steps for Production in the
RAMP FMS

When the subordinate to the Coordinate Node is a
Transport Node, there are two action messages.
Delieverltem instructs the Transport Node to deliver an
entity to a requested station while Pickupltem instructs the
Transport Node to pickup an entity at a specified station.
Each of the above action messages has a corresponding
status message which notifies the supervisor when the re-
quested action is completed.

176 Davis et al.

The process planning frame specifies the details for
all the processing instructions needed to manufacture a
given part. A generic processing plan for any part manu-
factured in the RAMPFMS is given in Table 2. Note, how-
ever, that the actual process plan contains considerably more
detail pertaining to the execution of each task. For ex-
ample, detailed instructions on how to bend the leads for
each component and where the component is to be placed
upon the board are provided.

Finally, the experiment frame is very similar to that of
most simulations detailing the length of the simulation run
and other parameters that are needed to specify the simula-
tion experimental trial. The experiment frame under the
HOOPLS paradigm also provides extensive provision for
initializing the simulation to a known state.

3.2 On-Going Development of RAMP Emulator

The development of the emulator is initiated as a
"clean-sheet" design. All that is being retained from the
prior development of the HOOPLS-based simulation model
is the basic structure of the ROOCH and the control mes-
sages that will be employed. However, the list of control
messages will probably be expanded. A distributed object
architecture is being employed in the development of the
emulator such that each controller can be positioned on a
different computer if desired. The controller objects are
being coded in C++.

In developing the new emulation model, the greatest
effort has been devoted to the definition of the state vari-
ables for each coordinated object, especially the state vari-
ables for the AS/RS. There are several reasons for the fo-
cus upon the AS/RS. The AS/RS includes 30 transport pro-
cesses. The complete AS/RS will have a total of 31 con-
trollers, nearly half the total number of controllers in the
entire RAMP FMS.

In defining the state variables for each control object,
there are fundamental issues to be addressed. For example,
should the AS/RS controller know the contents of the totes
which contain jobs and supporting resources while they
are being stored and transported by the AS/RS? This single
issue has been the subject of hours of debate. Our current
design assumes that the AS/RS will know the contents of
the totes. This decision extends the general capability of
the formulation as the cell controller can request to the AS/
RS that a given item be moved without specifying the tote
that it is in. By making this design decision, the AS/RS
can easily be replaced by another material handling sys-
tem, one which may not employ totes. In fact, there are
presently other versions of the RAMP FMS which do not
include an AS/RS.

Distributing the controllers across several computers
creates several other problems. First and foremost, a
method of communication between the objects on differ-
ent computers must be developed. The computers, (in this
case, Sun workstations), are networked. If a control object
wants to send a message to another control object across

this network, it needs to know on which computer the ob-
ject resides. To fulfill the communication requirements,
we have written our own mail system which knows the
address of every control object. When an object desires
to send a message, it must specify the recipient of the
message, the time that the message is to be delivered, and
the contents of the message. The message is then placed
into the local computer's mail box. If the recipient object
resides on the same computer, the message-passing is
handled by the local mailer. If the recipient controller is
located at another computer, then the message is routed to
the mailer on the computer where the recipient object re-
sides.

Messages are retained in the recipient object's mail-
box until the scheduled time of their delivery. When the
messages are delivered, the recipient controller executes
the appropriate state transitions and generates its response
messages which it then places in its mail box for trans-
mission to other controllers at the desired time.

Using the same message service, we have also in-
cluded programmed features which will permit the emu-
lation to proceed at a rate that is faster than real time.
Specifically, we have included a clock object which moni-
tors a real-time clock and advances the emulated time ata
time-scale factor greater than real time. The clock object
sends messages to each computer's mail service specify-
ing the current emulated time, which the mail service then
uses to determine when messages are to be forwarded to
their recipient controllers.

Each controller type also has its own specialized dis-
play, which was developed under X-Windows/Motif®.
Within each controller display, the state of the controlled
subsystem will be constantly updated. Much time has also
been devoted to the development of the displays. Our
desire is for an individual to be able to view a given con-
troller's window and visualize the operation of the sub-
system that is being controlled. These displays also are
especially useful when validating the model. These pro-
vide a far more detailed depiction of the operation of the
system than that which can be achieved using current simu-
lation and animation techniques. Current animation ca-
pabilities provide iconic displays which permit only the
basic entity flow among the various objects to be depicted.
Using our emulation capabilities, the modeler will be able
to access the detailed state information for each modeled
object within the simulation as it evolves in real-time. The
interaction among the primary modeled controller objects
can also be visualized by monitoring the control messages
that are being transmitted among the controllers.

3.3 The Demonstration

At the State-of-the-Art tutorial, we plan to demonstrate
the real-time emulation of the RAMP FMS. The ability
to execute this demonstration is derived from another
unique capability which we have included within the emu-
lator. As stated above, we chose to employ a distributed-

Real-Time Emulation/Simulation Capability for the RAMP FMS 177

object programming architecture within the emulation
which permits each controller to be executed on a differ-
ent platform. Each platform is connected to the Internet.
To provide a future capability to model all types of RAMP
FMSs, it was also necessary to implement the display win-
dow to each controller as a distinct programmed object
from the programmed object representing the controller
itself. Thus, a given controller and its associated control
window are separate programmed objects which can also
run on different computers. This design decision also en-
hanced the virtual manufacturing capability by permitting
the operations of the RAMP FMS to be viewed and even-
tually controlled from any computer on the Internet.

The computer code for the control displays is situated
at the computer where the displays are viewed. When this
code is executed, the display object initially logs into the
message service for the emulation and provides the mes-
sage service with its IP address on the Internet. Eventu-
ally, the message service will request the viewer's name
and password which it will then employ to control access
to certain state information and to limit the viewer's capa-
bility to interact with the operating RAMP FMS. Once
the viewer has gained access, the primary control window
for the RAMP FMS cell controller is opened at the remote
location. The message service then notifies the cell con-
troller for the RAMP FMS to begin sending state informa-
tion to the requesting window object at intervals of ap-
proximately 1 second duration.

The displaying software is contained at the distal lo-
cation. Therefore, when the display object receives the
state information, it then employs the state information
based upon the control window being viewed. It is impor-
tant to observe that only textual state information is being
transmitted across the Internet, not the entire pixel infor-
mation that is needed to construct the control window.
Therefore, the information transmission requirements are
minimal.

The remote viewer can interact with the system as
various elements of a given controller's window are user-
selectable icons. For example, when the viewer clicks the
icon of the AS/RS within the cell controller window, the
viewing programming immediately opens a window for
the AS/RS controller. The program then identifies the
message service that the viewer wishes to monitor the op-
erations of the AS/RS. The message service then tells the
cell controller to temporarily suspend state updates to the
remote viewer and simultaneously tells the AS/RS con-
troller to start sending state information updates. Within
the AS/RS controller window, the viewer may choose to
have detailed information presented for a given insertor/
extractor or level of the storage conveyors.

As stated above, a simulation and an emulation differ
only in the manner in which they advance time. When the
emulation of the RAMP FMS is complete, the emulation
model will immediately be converted to a simulation model
for the RAMP FMS. Multiple instances of the resulting
RAMP FMS simulation model will then be assigned to

distinct processors. Each instance of a simulation model
(referred to as a simulation engine) will operate under a
different control strategy and each simulation engine will
receive current state information updates from the control
objects executing the real-time emulation. Operating un-
der the selected control strategy, each simulation will per-
form a real-time simulation of the future response of the
system over a future planning horizon given the current
state of the emulated system. Each simulation engine will
attempt to generate real-time simulation trials as quickly
as possible. »

Using the included message service, the output of these
real-time simulation trials will be forwarded to the various
programmed objects which perform the essential real-time
statistical and compromise analyses which are needed to
select the best control strategy among the considered strat-
egies for implementation. This capability will be demon-
strated at the tutorial.

Given space limitations, we cannot discuss all the com-
ponents of the real-time simulation analysis in this paper.
Our basic approach to real-time simulation has been pre-
viously discussed in Davis, Wang and Hsieh [1991] and
Tirpak, Deligiannis and Davis [1992]. In a chapter of the
forthcoming Handbook on Simulation (see Davis [1997]),
we discuss evolving directions in simulation tools and real-
time simulation. This chapter will provide an overview of
the real-time simulation and emulation technology which
will be demonstrated at the State-of-the-Art tutorial.
Harmonosky [1995] also provides an abridged summary
of ongoing research in real-time simulation and schedul-
ing.

5. FUTURE WORK

The emulator will be completed in time for this paper
to be presented. After the emulator is completed, the emu-
lation code will be modified such that it can operate as a
second generation, HOOPLS-based simulation model for
the RAMP FMS. This simulation model then will be em-
ployed to perform real-time simulation (see Davis, Wang
and Hsieh [1991]). This is a necessary first step to de-
velop areal-time production scheduler for the RAMP FMS
(see Davis [1992] and Davis et al. [1993].

REFERENCES

Booch, G. 1991. Object Oriented Design with Applica-
tions, Benjamin Cummings, Redwood City, California.

Davis, W. J., H. Wang and C. Hsieh. 1991. Experimental
Studies in Real-Time, Monte Carlo Simulation. [EEE
Systems, Man and Cybernetics, 21(4), 802-81.

Davis, W. J. 1992. "A Concurrent Computing Algorithm
for Real-time Decision Making." Proc. of the ORSA
Computer Science and Operations Research: New De-
velopments in their Interfaces Conference, eds. O. Balci,

178 Davis et al.

R. Sharda and S. Zenios, 247-266, Pergamon Press, Lon-
don.

Davis, W. J., Setterdahl, D., Macro, J., Izokaitis, V. and
Bauman, B. 1993. "Recent Advances in the Modeling,
Scheduling and Control of Flexible Automation.” Proc.
of the 1993 Winter Simulation Conference, eds. G. W
Evans, M. Mollaghasemi, E. C. Russell, W. E. Biles, 143-
155, The Society for Computer Simulation, San Diego,
CA.

Davis, W. J., J. G. Macro and D. L. Setterdahl. 1994. "An
Object-Oriented, Coordination-Based Simulation Model
for the RAMP Flexible Manufacturing System." Proc.
of the Flexible Automation and Integrated Manufactur-
ing Conf., eds. M. M. Ahmad and W. G. Sullivan, 138-
147, Begell House, Inc., New York.

Davis, W. J. 1997. "Reat-Time Simulation: The Need
and the Evolving Research Requirements.” To appear
in The Simulation Handbook,Wiley, new York.

Flanders, S. W. and W. J. Davis. 1995. "Scheduling a
Flexible Manufacturing System with Tooling Con-
straints: An Actual Case Study." Interfaces, 25, 42-55.

Harmonosky, C. M. 1995. Simulation-Based Real-Time
Scheduling: Review of Recent Developments. Proc. of
the 1995 Winter Simulation Conf.,eds. C. Alexopoulos,
K. Kang, W. R. Lilegdon and D. Goldsman, 220-225,
The Society for Computer Simulation, San Diego, CA.

Mize J. H., H. C. Bhuskute, and M. Kamath. 1992. " Mod-
eling of Integrated Manufacturing Systems." [IE Trans-
actions , 24(3):14-26.

Tirpak, T. M., S. M. Daniel, J. D. LaLonde and W. J. Davis.
1992. "A Fractal Architecture for Modeling and Con-
trolling Flexible Manufacturing Systems.” [EEE Trans.
on Systems, Man and Cybernetics, 22(5), 564-567.

Tirpak, T. M., S. J. Deligiannis and W. J. Davis. 1992.
Real-Time Scheduling of Flexible Manufacturing.
Manufacturing Review (ASME), 5(3), 193-212.

ACKNOWLEDGMENT

This research is supported by the US Army Research Labo-
ratory/Battelle Grant TCN 95-300 and the corporate mem-
bers of the Hyper-Linked Manufacturing Consortium.

BIOGRAPHICAL SKETCHES

WAYNE J. DAVIS is a professor of General Engineering
at the University of Illinois at Urbana-Champaign. His
research areas include distributed planning and control ar-
chitectures for large-scale, discrete-event systems; com-
puter-integrated manufacturing; and simulation.

JOSEPH G. MACRO is a Ph.D. candidate in Mechani-
cal and Industrial Engineering at the University of Illi-
nois at Urbana-Champaign. His research interests include

advanced simulation methodologies and computer-inte-
grated manufacturing.

ANDREW L. BROOK is an undergraduate student in
Computer Science at the University of Ilinois at Urbana-
Champaign.

MICHAELS., LEE is an undergraduate student in Com-
puter Science and General Engineering at the University
of Illinois at Urbana-Champaign.

GUOYAN ZHOU is a master's degree candidate in Com-
puter Science at the University of Illinois at Urbana-
Champaign.

