Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

INTRODUCTION & OVERVIEW OF “ARTIFICIAL LIFE” —
EVOLVING INTELLIGENT AGENTS FOR MODELING & SIMULATION

A. Martin Wildberger

Electric Power Research Institute
3412 Hillview Ave.
Palo Alto, CA 94304-1395 U.S.A.

ABSTRACT

“Artificial Life,” despite its biological analogy and the
hyperbole that its name implies, is really a collection of
methods for building discrete event simulations with
evolving multiple agents. It consists mainly of
representing parts of systems or natural phenomena as
individual active objects that may be both persistent and
self-modifiable, operating on them with genetic
algorithms or other evolutionary computing techniques
and treating their multi-dimensional parameter (state)
space discretely, by using cellular automata or similar
coupled map lattices. The attractiveness of these
methods for general purpose modeling and simulation
lies in their ability to produce complex emergent
phenomena out of a small set of relatively simple rules,
constraints and relationships couched in either
quantitative or qualitative terms. This tutorial includes
brief introductions to both GA and CA, a description of
a tool kit for building multi-agent simulations, and an
outline of a current application to electric power systems
and to the evolution of the electric power industry itself.
References are included to demonstration software and
source code available on the internet.

1 BACKGROUND

For at least fifteen years, many simulations, and
simulation tools, have employed multiple agents,
usually called “actors” or “demons” and represented by
separate processes, which operate independently and
interact by communicating selected information through
messages. Until recently, these agents and their
interactions have been specifically modeled to represent
relatively unchanging functions, operations or physical
entities. For most of these simulations, consistency and
reproducibility were essential requirements. In general,
artificial intelligence techniques were used only when
necessary to model human decision making and were
couched in the form of policy rules to be followed, for
instance, by processes simulating additional crew
members in a team trainer.

More recently, some researchers have been building
intelligent agent simulations with some form of self-

161

modifiability in an attempt to model natural or societal
processes whose complexity would otherwise lead to
exponentially increasing computational demands. The
chief difference is that these agents change as the
simulation progresses. They “evolve” by “adapting”
their behavior in both competitive and cooperative ways
to meet general goals which are assigned by the
simulation designer but whose details may also change
through the same “evolutionary” process. Like Monte
Carlo, this simulation technique uses statistical methods
to obtain an end result that is, nevertheless,
deterministic and reproducible within the bounds of
numerical precision, although the route and the CPU
time taken may not be identical over all runs of the
simulation.

These simulations go by various names such as:
artificial life, animats or softbots, all of which may
suggest more capability than is actually being delivered,
and some of the practitioners of these simulations have
been guilty of unrealistic “hype.” Nevertheless, this
approach has been particularly successful in modeling
biological, bio-molecular and ecological phenomena, as
might be expected since it is loosely based on a
biological analogy. What is more surprising is the
success these methods have had in modeling economic
and financial processes such as commodity markets and
currency exchanges.

The attractiveness of these methods for general
purpose modeling and simulation lies in their ability to
produce complex emergent phenomena out of a small set
of relatively simple rules, constraints and relationships
couched in either quantitative or qualitative terms.
Inventing the right set of the local rules to achieve the
desired global behavior is not always easy -- although it
often seems obvious afterward. For instance, in a
simulation of freeway traffic flow, simple rules that
govern the actions of individual vehicles ("travel at such-
and-such a speed," "don't hit anything") result in global
behavior that is highly complicated (structured
"platoons" of fast-moving autos form, as do convoluted
traffic jams). In other examples, flocking arises in a
simulation of multiple individual birds, and elasticity in
polymers emerges from a simulation of molecular
interactions.

162 Wildberger

A variety of evolutionary computational methods are
employed in these simulations, but most are variations
on John Holland’s genetic algorithms (GA). (Holland
1975) The GA structure, based on individual
membership in “species,” most easily lends itself to
modeling individuals as unique instances of more
general (evolving) classes. These simulations typically
include displays of the agent behavior over time in a
physical space, if appropriate, or, more often, in a state
or phase space. Therefore, cellular automata (CA) and
similar spatially extended, coupled map lattices are also
frequently used as another tool for intelligent agent based
modeling.

2 GENETIC ALGORITHMS

Genetic algorithms (GA) provide a technique for the
simulation of complex systems by modeling them in the
form of multiple, interacting, relatively simplistic
agents, represented simply by bit strings of ones and
zeros, that evolve and adapt through competition and
cooperation in a (usually) stable environment defined by
the simulation-builder, modeled as another bit string and
called a "fitness function" by analogy with biological
evolution. The bits may stand for characteristics,
capabilities, or relatively simple strategies which can be
selected and recombined to form different individuals by
"crossover" (cutting up two strings and patching them
together) or by "mutations" (random changes in bit
settings). By comparing randomly selected individuals'
relative success with respect to the fitness function and
then creating a new "generation" of individuals from
crossover and mutation biased toward using the most
successful individuals, eminently successful individuals
are eventually "evolved."

Genetic algorithms are examples of a very broad class
of systems that can be described as "adaptive non-linear
networks" (Holland 1975) Some artificial neural
network paradigms also fit into this class. All these
systems consist of a large number of units that interact in
a non-linear, competitive manner, and are modified by
their own interaction or by external operators so that the
overall system adapts to its environment. That
environment is conventionally defined in terms of the
system's input, its output, and some criterion, either
internal or external to the system, by which its success
in adapting can be measured. The competitive nature of
this process does not necessarily imply a zero-sum game
in which individual units within the system only benefit
at the expense of other units. Combining and/or
cooperating among units can be beneficial to the system,
but ultimately the whole system adapts through change,
growth, or even loss of individual units.

Genetic algorithms are based loosely on the theory of
evolution, genetic diversity, and the "survival of the
fittest." To use genetic algorithms to model individual
agents, it is first necessary to invent, select, or otherwise
define, a number of possible candidate strategies, rules or

procedures to make available to each agent. Each agent
may also be given some number of possible candidate
attributes, qualities or characteristics. If any of these
strategies or attributes are relatively complex in itself, it
should be described in terms of its constituent parts or
aspects, some of which it may have in common with
other strategies or attributes. These (whole or partial)
strategies and attributes may be considered analogous to
biological genes, and an individual agent defined in
terms of whether it has or does not have particular
"genes".

Conceptually, all the agents evolve in parallel over a
series of generations through competition and "selective
breeding." Each generation of individuals is tested as to
how well they perform on the basis of a specified fitness
function, which results in an adjustment of their current
"strength", the measure of their success. The next
generation of new individuals are produced by genetic
recombination and some mutation of the most successful
individuals. Most unsuccessful individuals do not
reproduce at all. Eventually almost all individuals
belong to the same successful set. If we wish to
maintain, or to evolve, two or more different classes of
agents, we can limit the interbreeding to members of the
same class (or species).

2.1 Mathematical Formulation Of GA

Mathematically, genetic algorithms are similar to other
forms of "hill climbing" optimization using randomized
gradients. However, they allow a convenient
representation of a multi-dimensional problem space
when different coordinates of that space are measured by
continuous, discrete, and symbolic values. Genetic
algorithms also provide for direct parallel
implementation whereas conventional algorithms require
the additional effort to convert them from their original
sequential form.

To begin describing the computational
implementation of genetic algorithms, it is first
necessary to define formal classifiers. First, take as
primitive elements, all possible binary strings:
mjmy.....mj.....my (of length k, where m; is taken
from the set {1,0}, and m; is either zero or one). These

binary strings are called "messages". Next, define a
"condition" to be any subset of messages specified by a
string of the form: cjcj...... CjornnnCk (of length k, where
¢ is taken from the set {1.0,#}, ¢j is either zero, or one,
or #, and the number sign, #, is a pure symbol that can
intuitively be taken to mean: "don't care whether it's zero
or one"). The subset of messages that meet a particular
condition have, for all the positions in them:

(1) m; = 1 when = 1

(2) m; = 0 when ¢ = 0

3) m; is either 1 or 0 when c; = #
For instance, the message: "0001100" meets the
condition: "00##100". (In this example, k = 7.)

Introduction & Overview of “Artificial Life" 163

Conditions can be combined according to all the usual
Boolean operations: and, or, not, and any combination
of them. Any set of one or more such conditions is
defined to be a "classifier" on the space of messages.

The definition of "genetic classifiers” requires another
level of abstraction. A "schema" is defined to be any
subset of conditions. For length k = 11, an example of a
schema is: s = *Q##1¥***** where "*" means "don't
care whether it's zero, one, or #". Members of the subset
specified by a schema are called "instances" of that
schema. Examples of two possible instances of the
schema s would be: x = 10##1001010 and y =
00##1010011. A schema defines a subset of the set of
all possible conditions, whereas each condition defines a
subset of the set of all possible messages. Any set of
one or more such schema is defined to be a "genetic
classifier" on the space of messages.

As these genetic classifiers evolve through many
generations, they must be tested for how well they meet
the original fitness function. At time t, test the available
instances of s and record their "strengths"; i.e.: their
fitness. Then assign a "payoff" value v(s,t) to s at time t
by averaging the strengths of all its instances. Let v(t)
be the average strength at time t of all instances of all
schema under consideration and let m(s,t) be the number
of instances available of schema s at time t. Then bias
the selective breeding so that, at some future time, t +
T, the number of instances of s will increase or decrease
according to the ratio of the strength of s to the average
strength of all schema: m(s,t + T) = b[v(s,t)/v(t)]m(s,t)
where b is an arbitrary (but strictly positive) constant.

The selection of strings for reproduction is performed
randomly, but the probability of a given string being
selected is made proportional to the normalized value of
its strength ratio as described above. The total number
of strings selected for each generation can be controlled
so as to maintain the size of the population within
tractable limits. Since a single condition is an instance
of 2K substring schema, explicit calculation of these
ratings would be impractical. Genetic operators
accomplish this same effect implicitly by constructing
hybrid offspring from combinations of substring schema
carried by high strength parents.

The simplest method of string reproduction is to
copy without change the strings selected by the random
process. This clones the most successful instances, and
causes the "fittest" schema to grow exponentially until
the population limit is reached. This approach usually
converges rapidly but it assumes that one of the trial
solutions is, in fact, the best. It does not provide for the
"discovery" of any other solution than those candidates
included by the algorithm designer. Other "genetic
operators" combine parts of more than one string
(selected randomly as above) to form wholly new
individuals. These approaches are mostly variations on
a basic operation called "crossover". Crossover is
applied to a pair of strings as follows: select at random a
position i, 1 < i<k, and exchange the segments to the

left of position i in the two strings. Crossover is
considered to be analogous with sexual reproduction.
Clearly, this method can be expanded by breaking the
two strings in more than one place and/or by selecting
pieces from more than two strings. In general, the
simplest technique is as effective as the more complex
ones, although the latter may speed convergence in
certain cases.

Operators of the crossover type mix aspects of the
trial solutions in an attempt to produce a better result
than any one of the original set could achieve. However,
they add nothing really new to that trial set. Another
type of genetic operators, "mutation", can be used to
produce random changes in a string, thus potentially
inventing a wholly new strategy or characteristic.
Experience with this type of operation indicates that the
rate of mutation must be kept relatively low for best
results.

2.2 Other Evolutionary Computing Methods

Two similar computing approaches have developed in
parallel to GA. One, the "evolutionary programming"
technique of Lawrence J. Fogel (1966) is based on
evolution at the "behavioral" (performance) level--where
selection for fitness actually takes place--rather than at the
genetic level of GA. In this method, evolutionary
change is produced solely through random mutation of
the most successful candidates: no explicit connection is
made between "behavioral" fitness and "genetic" change.
Despite this difference, evolutionary programming
generally produces results similar to GA. The second
approach involves "evolutionary strategies," a technique
introduced by Ingo Rechenberg (1973), and Hans-Paul
Schwefel (1975). This method focuses on evolution of
machine learning through trial-and-error search
procedures with automated reinforcement of successful
strategies.

Although evolutionary programming, evolutionary
strategies, and GA developed separately and continue to
represent areas of independent research, they are
beginning to be viewed as different facets of evolutionary
computing rather than fundamentally different techniques.

2.3 Cautions on the Use of GA

Genetic algorithms, and other evolutionary
computing methods, must be used with care. They
cannot be guaranteed to produce an absolutely optimum
solution. It is also difficult to predict how many
generations it will take to produce a satisfactory result.
The inherent combinatoric explosion of which they are
capable, is only avoided because most possible strings
are never tested. Genetic algorithms are most beneficial
when used in a parallel processing environment. Like
neural networks, they can easily be simulated on a single
sequential processor, but either the time or the computer
power must be available to test hundreds of solutions in

164 Wildberger

each generation until a satisfactory set is obtained.
Designing the genetic operators, describing candidate
solutions as strings of genes, and defining the pay-off
function are still more of an art than a science. The
process must be tuned to guard against "super"
individuals winning too soon and causing the
irrevocable loss of genetic material. Furthermore,
problem spaces can be constructed (using Walsh
functions) whose maxima will never be found by a
genetic algorithm.

3 CELLULAR AUTOMATA

Cellular automata (CA) are massively parallel computing
engines that provide tools for simulating phenomena
characterized by simple local rules and complicated,
unpredictable global behavior. CA can produce complex
"emergent" behaviors even though they do not appear to
have been included in the original CA design. CA in
use range from J.H. Conway's classic computer game
"Life" (Conway 1982) to the ECHO and SWARM
(Santa Fe Institute 1996) series of programs designed by
researchers at the Santa Fe Institute (SFI) to simulate
some of the emergent phenomena mentioned previously.

CA are built from an array of ordered sites; input data
or boundary conditions are represented by the initial site
configuration. Values assigned to sites change
synchronously in discrete steps over time by application
of relatively simple, local rules. This process is
somewhat similar to the evolution of successive GA
generations except that no external fitness function is
used to evaluate computations: all information is
endogenous.

Construction of a CA and examination of its
operation is relatively simple; "programming" it to
produce meaningful results, which requires selection of
the correct initial configuration and proper behavioral
rules, is not--and the programming considerations are
usually difficult to express formally. Despite
considerable effort, the mathematical fundamentals of CA
design are still not well understood. However, the
ability of GA to evolve good solutions to poorly
formulated problems may provide an approach to
improved CA design. Melanie Mitchell (Mitchell and
Forrest 1993) and colleagues at SFI are investigating GA
that can evolve an initial CA configuration and a set of
local rules appropriate for specific computational tasks.

3.1 Mathematical Formulation of CA

The simplest CA can be built by starting with a linear
array of zeros and ones: for example, 01100101, and
applying a rule to construct another such array. For
instance, the rule: "If both nearest neighbors are equal,
change; otherwise stay the same," produces,
sequentially:

01100101

11100010

10101001

11010001

In this example, it is assumed that the first and last cells
are neighbors: i.e., the array is circular.

Although it is clear that this deterministic, finite
machine will eventually repeat itself, it is not
immediately obvious how soon repetition will occur,
nor is it easy to predict the length and membership of
the limit cycle into which any finite CA must eventually
fall. Small changes in the starting values and in the
rules can have significant effects. By displaying each
new linear array beneath (or above) the last and using
contrasting colors (or black and white) to represent the
ones and zeros, it is possible to watch the sequence of
developing patterns and immediately recognize stable
states or limit cycles. CA of higher dimensions and/or
more complex rules can evolve to chaotic, aperiodic
patterns that are the analog of strange attractors in
dynamical systems. Since these extremely simple CA
produce global effects from strictly local operations, they
make it possible to model the emergence of the most
complex known phenomena, perhaps life itself, from
multiple, simple activities by many individual elements
that appear to be affecting only their immediate
neighbors.

3.2 CA Notation and Terminology

The simplest form of finite CA is made up of a lattice of
L cells, each of which, at time t, can be in one of K
states. A single fixed rule is used to update the state of
each cell. The rule may be different for each cell, but the
rule associated with each cell is not subject to change.
The rule for each cell operates on that cell
simultaneously with all the rest to convert all their
states, (called the configuration or global state of the CA)
at time t, to a new configuration at time t+1. The rule
is a mapping from the current state of the cell and that of
its nearest neighbors to the updated state of the cell in
question. The number of neighbors that enter into the
rule is known as the cell’s radius, r. Note that the
terminology in this paper is used by most, but not all
researchers in the field.

The rule is usually the same for all cells and is often
expressed as a table. The following is a rule table for a
binary-state (0,1) nearest neighbor (r=1) CA. All 8
possible neighborhood patterns are shown on the left
while the right hand bit shows the rule’s output bit,
which becomes the center cell’s value at the next time
step.

000 -> 0
001 >0
010->0
011 ->1
100 >0
101 -> 1
110 -> 1
111 ->1

Introduction & Overview of “Artificial Life” 165

This rule is known in shorthand as #232 because the
output values for sequentially increasing inputs make up
the binary version of that number, i.e.:
111010007 = 23219

CA can be extended to any number of dimensions,
the number of cells allowed to become infinite, and their
rules made as complicated as desired. The rules can
include probabilities, and uncertainty (noise) can also be
allowed to affect the accuracy with which values can be
read.

33 Visualizing CA

There are two common ways to visualize CA. A state
space (or phase space) plot is best for showing space-
time patterns, but a state transition graph is more
effective in illustrating CA behavior as a non-linear
dynamical system. Software is available on the Internet
(Wuensche 1996) that demonstrates these visualizations
and allows the user to explore various rules and initial
configurations for CA.

3.3.1 Space-Time Patterns in State Space

A finite sized CA may be bounded in any way that is
desired, but the boundary cells will then require special
rules to handle their unique situations. The simplest
CA architecture is a small, 1-D array of cells of length L,
with binary values (K=2) and a small local
neighborhood (r<<L). This array is treated as circular,
thus creating periodic boundary conditions which do not
require any special rules for cells 1 and L since they are
considered to be neighbors. Evolution of the CA may
be represented an a sequence of configurations wrapped
around a cylinder.

However, it is convenient to split the cylinder

between cells 1 and L, flatten it out, and represent its
evolution as a 2-D space-time pattern, with space
running across the screen or page, and time progressing
downward. By painting pixels in differing colors
depending on the value of each cell (or black and white
in the case of a binary valued CA), it is easy to detect
patterns, observe static, periodic, or complex (possibly
chaotic) behavior, and to compare the effects of different
rules and different initial configurations. Although many
researchers have developed rule classification schemes on
the basis of such space-time patterns, these effects are
necessarily phenomenological and not all observers may
detect the same patterns.

3.3.2 State Transition Graphs

A finite, deterministic CA must eventually repeat a
configuration (or global state) that occurred at some
earlier time. Its trajectory will then become trapped in a
repeating sequence of the same configurations. This
becomes a cyclic attractor, with a period of 1 or more,

but no greater than KL. All configurations are either part

of one such attractor or belong to some transient
sequence of configurations that lead to an attractor.
Configurations at the beginning of such a transient
cannot be reached from any other such global state of the
CA and can only exist if the creator of the CA initializes
it in one of those configurations. (These configurations
have become known as “garden-of-Eden” global states.)
All the configurations on a cyclic attractor, along with
all configurations on transient trajectories leading to that
attractor, make up its basin of attraction. Any particular
CA may have one or many such basins, but it is
impossible to transition from a configuration in one of
these basins to a configuration in any other one. All of
the basins of attraction for a particular CA make up that
CA’s basin field.

If we represent each configuration of a CA by drawing
a small circle, and connect each of those circles to all the
other circles that represent just those configurations that
can transition to the first state, we will produce a
directed graph that links all of the configurations
belonging to each basin of attraction for that CA. This
graph of the entire basin of attraction field displays all
the possible dynamics of that CA. The set of basins
partitions all the configurations of the CA into disjunct
classes. The CA cannot evolve from one basin to
another.

In any finite CA, it is always theoretically possible to
compute the complete basin of attraction field by
exhaustively working either forward (as described above)
or backward (by computing all the pre-images of each
configuration). However, the time to compute pre- or
post- images increases exponentially with lattice size so
that this approach is impractical for larger arrays.
Wuensche and Lesser (1992) have developed a
computational shortcut, the “reverse algorithm,” which
directly computes pre-images and improves the
computation time by several orders of magnitude. They
have also defined a parameter, Z, as the probability that
the next unknown cell in a partial pre-image can be
uniquely determined from the values of the cells already
known. A relatively high value for Z implies the ability
to compute all configurations of a CA without an
exhaustive search.

3.4 Using CA as System Simulators

The remarkable computing capability of CA make them
useful tools for modeling and simulation, especially for
phenomena whose local actions are easily described but
exhibit complex behavior of mixed deterministic and
random origins.

As a very simple example of pattern recognition or
image enhancement that is, nevertheless, actually used in
pixel-based image processing, consider this CA that
automatically computes whether its initial configuration
contained more black or white sites. The CA is
represented as a looped string of m ordered, black-or-
white sites. It follows the rule:

166 Wildberger

the color of any site at time = t, 4 is the color of
the majority of the site and its two neighbors at
time = t
Eventually the CA becomes all white or all black,
reflecting the initial majority.

In an area of more engineering interest, Professor Kai
Nagel of the University of Cologne has constructed a CA
model for freeway traffic. (Nagel and Rasmussen 1994)
The deterministic version produces a high/low density
phase transition at the point of maximum throughput
with self-organized criticality driven by the speed of the
slowest car. Adding random noise causes spontaneous
formation of traffic jams. Their distribution responds to
a scaling law near the critical point and expansion of the
scaling region can be characterized by the percentage of
drivers using "cruise control" to reduce their fluctuations
at high speed.

Lattice gases (LGA) constitute a distinct subclass of
CA that can simulate complex fluid dynamics governed
by non-linear equations such as the Navier-Stokes
equation. There have been some significant recent
developments in programming languages and computer
architectures that strongly support CA (and especially
LGA) based parallel computations. (Margolus 1995,
Toffoli 1995)

35 Modeling Wave Equations with CA

In a project sponsored by EPRI at San Jose State
University, Prof. Rudy Rucker and his students are
developing techniques for using complex cellular
automata to model certain aspects of the electric power
grid. The long term goal is to perfect a distributed-
computation simulation of the global behavior of a
circuit (for instance, its stability) based on the local
behavior of the individual components, and to apply this
approach to power quality (harmonics, load induced
transients, etc.) where CA cells might represent
individual loads (such as electrical appliances) within a
building.

A cellular-automaton implementation of partial
differential equations has been developed, including: the
heat equation, the wave equation (or telegrapher's
equation), the damped driven oscillator, the damped
driven oscillator coupled with the wave equation, and
the Fermi-Pasta-Ulam non-linear soliton wave. These
simulations have never before been implemented as pure
cellular automata. The CA implementation makes it
possible to rapidly explore alternate parameter settings,
to breed and mutate parameter settings, and to view
space-time diagrams of the simulation in real time.
These simulations can run rapidly on a standard desktop
Windows computer. Research is continuing on how
best to use these techniques for real world problems, as
well as on extending these techniques to branching
networks and to higher-dimensional systems. Version
3.0 of CAPOW (Cellular Automata Power Simulator)
has been posted on the Intemet. (Rucker 1996)

This modeling approach, while it makes use of
computations carried out by local rules on a spatially
extended lattice, does not include any explicit
intelligence or agency in the individual cells. However,
the possibility of using genetic algorithm-based agents
to guide the evolution of the CA is being explored. The
rules developed in these CA-based experiments can also
be provided as methods for the agent-objects used to
model components in a distributed agent simulation of
the electric power grid. (See Section 5 below.)

4 SWARM -- A TOOL FOR MULTI-AGENT
SIMULATIONS

The SWARM Simulation System has been developed
by the Santa Fe Institute as a tool kit for the study of
complex adaptive systems using multi-agent discrete
event simulation. The full source code is available free.
(SFI 1996) It requires the use of the GNU C Compiler,
UNIX, and X-Windows.

The basic unit of a SWARM simulation is the agent,
which may be any entity that can generate events that
affect itself and other agents. Simulations consist of
groups of many interacting agents, called “swarms,”
which may, themselves, be grouped into more
comprehensive swarms. The logical structure of swarms
of agents interacting through discrete events is
implemented in Objective C, an object-oriented (OO)
language. As in most OO programming, software
consists primarily of definitions of various classes of
objects. An object is then a combination of instance
variables for the object's state and methods (services,
procedures) that implement the object's behavior. Each
object carries with it its own state variables, but the
generic definition of its behavior is provided by the
class.

The SWARM system itself is an object framework: a
set of class libraries that are designed to work together.
These include support libraries with potential use
outside of SWARM as well as domain-specific libraries
that provide facilities for building two dimensional
discrete lattices, genetic algorithms, and neural
networks. Agents are created by taking a class from the
SWARM libraries, specializing it for the particular
modeling domain, and then instantiating it, with each
instantiated object an agent. A schedule of discrete
events involving the agent-objects defines a process
occurring over time and is implemented as a partially
ordered series of actions to be performed by objects on
objects. In the simplest case, a model consists of one
swarm inhabited by a group of agents and a schedule of
activity for those agents. In SWARM, the environment
is itself modeled by one or more other agents. In the
general case, the environment for each agent consists of
many or all of the other agents, some of whom might
have a larger influence than others.

In addition to all the common OO facilities,
SWARM implements a “probe” facility which allows

Introduction & Overview of “Artificial Life" 167

any object's state to be read or set and any method to be
called in a generic fashion, without requiring additional
user code. Probes are used to make data analysis tools
work in a general way and are also the basis of graphical
tools to inspect objects in a running system. SWARM
also provides data collection tools in the form of
observer agents, special objects whose purpose it is to
observe other objects via the probe interface. The
observer agents themselves are a swarm, a group of
agents and a schedule of activity. By combining this
swarm with a model swarm running as a subswarm of
the observer, a full experimental apparatus is created. By
using hierarchical swarms to separate data collection
from the model, the model itself remains pure and self-
contained, a simulated world under glass. Different
observer swarms can be used to implement different data
collection and experimental control protocols, but the
model itself remains unchanged.

The SWARM software package is currently being
used in a research project started in 1996 with the
support of the Electric Power Research Institute (EPRI).
Professor V. C. Ramesh at the Illinois Institute of
Technology is investigating a multiple agent approach
to contingency analysis. All electric utility control
centers run computer simulations continuously to test
whether any single accident or failure will cause any
security constraint to be violated for longer than a
specified short time period and thus lead to the
possibility of a serious blackout. Prof. Ramesh is
retaining the conventional model of the problem as
constrained non-linear flow, but he is building (five to
ten) individual intelligent agent solvers, each of which
will attack the solution of the model in a different way.
He expects that their cooperation and competition will
achieve a faster convergence than could any one alone.

5 MODELING THE ELECTRIC POWER GRID

The North American power network may realistically be
considered to be the largest machine in the world since
its transmission lines connect all the electric generation
and distribution on the continent. A design for
distributed control of an electric power system by
intelligent agents operating locally with minimal
supervisory control is being developed systematically to
include modeling, computation, sensing and control.

(Wildberger 1994)

The distributed intelligent agent model of the electric
power grid is being developed to serve two purposes:

1. Concurrent simulation of the grid for real-time
distributed control using new developments in
active, high-power, electronic control devices and
self-calibrating, self-diagnostic sensors. (Wildberger
1994)

2. “What if” studies and computer experiments
intended to provide insight into the evolution of the
entire electric power industry under various forms of
organization imposed or evolved as the result of

varying degrees of deregulation, competition and
unbundling of services.

Since intelligent agents have been used successfully
to model the traders in commodities and the commodity
futures markets, model development began by using
artificial agents represent the buyers and sellers of bulk
power. Software developed by Prof. Gerald Sheblé at
Iowa State University, based on a form of genetic
algorithm, permits the user to assign combinations of
relatively simple strategies to a small number of agent-
traders and to compare their profits and losses as the
market clears. Rather than the bilateral trading between
utilities which has been the rule in the past, this models
the “power pool” arrangements that are now being
established both by institutions and private parties. The
trading model is being extended to include futures
trading and retail as well as wholesale contracts, but, in
order to include the effects of each transaction on power
flow and stability in the electrical network itself, the
network’s physical components must also be modeled as
intelligent agents.

The basic concept is to represent each component of
the network by an agent of limited intelligence which
seeks to ensure its own survival while optimizing its
performance in the context of all the other agents. For
instance, a single bus will strive to stay within its
voltage and power flow limits while still carrying the
voltages and power flows imposed on it by the
combination of other agents representing generators,
loads, transformers, etc. Specific classes of components
will have additional survival constraints which may not
be exceeded or, if exceeded, would require replacement or
off-line maintenance. For instance, the chemical state of
the oil bath in a large transformer must stay within
specified limits for safe operation. It’s state may be
tested periodically by taking samples, or instrumentation
may be installed for continuous monitoring. The cost-
benefit of this instrumentation for each transformer is one
example of management information this distributed
model and simulation is intended to provide.

More complex components, such as a generating
plant or a substation, must be modeled as class and
object hierarchies of simpler components. An Integrated
Knowledge Framework (IKF) has been developed that
describes the management and operational functions at a
generic, coal-fired, steam power plant as an OO model
containing 422 classes, interconnected through three
different types of relations. (EPRI 1996) This framework
identifies the data, information and knowledge required
for the important functions typically performed at a fossil
power plant, as well as the flow of that data, information
and knowledge between the function that generates it and
those that use it. Although the IKF was not developed
solely as a design for distributed agent control and it
contains many classes which would not be appropriate
for instantiation as active objects, this model defines, at
an abstract level, all the structure needed for an

168 Wildberger

intelligent agent model of the generation aspects of
electric power.

6 SUMMARY

What is generally called “Artificial Life,” is essentially a
combination of methods for building discrete event
simulations with evolving multiple agents As such, it
provides another important tool for Simulationists to use
in the modeling and analysis of many complex adaptive
systems produced by humans either through engineering
design or as a (possibly unintended) result of their social
and economic behavior. The tools for artificial life
simulations include a variety of evolutionary computing
techniques operating on a coupled map lattice. Genetic
algorithms and cellular automata, respectively, are the
most common ones used. These methods are
particularly useful in modeling and simulating very large
and complex systems for two major reasons:
their ability to produce complex emergent
phenomena out of a small set of relatively simple
rules, constraints and relationships couched in either
quantitative or qualitative terms
2. their inherent parallel, distributed structure

REFERENCES

Conway, J.H. 1982. What is Life? In Winning Ways for
Your Mathematical Plays. eds. E. Berlekamp, J.H.
Conway and R. Guy, Vol. 2, Chap. 25. New York,
NY: Academic Press

Electric Power Research Institute. 1996. Integrated
Knowledge Framework (IKF) for Coal-Fired Power
Plants. EPRI Technical Report TR-106211-
V1/2/3, (Mar). Pleasant Hill, CA: EPRI Dist. Ctr.

Fogel, L.J., AJ. Owens, and M.J. Walsh. 1966.
Artificial Intelligence Through Simulated
Evolution. New York: Wiley

Holland, J. H. 1975. Adaptation in Natural and
Artificial Systems. University of Michigan Press,
Ann Arbor, MI.

Koza, J.R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge. MA: MIT Press.

Koza, J.R. 1994. Genetic Programming II: Scalable
Automatic Programming by Means of Automatically
Defined Functions. Cambridge. MA: MIT Press

Margolus, N. 1995. Ultimate Computers. In
Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing (San
Francisco, Feb. 15-17) eds. D.H. Bailey et al. 181-
186. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Mitchell, M. and S. Forrest. 1993. Genetic Algorithms
and Artificial Life. Technical Report SFI 93-11-072,
Santa Fe Institute, Santa Fe, NM.

Nagel, K. and S. Rasmussen. 1994. Traffic at the Edge
of Chaos. Technical Report SFI 94-06-032. Santa
Fe Institute, Santa Fe, NM.

Rechenberg, 1. 1973. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der
biologischen Evolution. Stuttgart: Frommann-
Holzboog

Reynolds, C.W. 1987. Flocks, Herds, and Schools: A
Distributed Behavioral Model.” In Proceedings of
SIGGRAPH’87. Computer Graphics V 21(4): 25-
34.

Rucker, R. (rucker@jupiter.sjsu.edu). 1996.
“CAPOW3B?.ZIP,” from WEB site:
http://www.mathcs.sjsu.edu/capow!/.

Santa Fe Institute (sfi@santafe.edu). 1996.
ftp:/ftp.santafe.edu/pub/swarmy/, or from WEB site:
http://www .santafe.edw/projects/swarmy/.

Schwefel, H-P. 1981. Numerical Optimization of
Computer Models. Chichester, UK: Wiley

Toffoli, T. 1995. Fine-Grained Models and Massively-
Parallel Architectures: The Case for Programmable
Matter. In Proceedings of the Seventh SIAM
Conference on Parallel Processing for Scientific
Computing (San Francisco, Feb. 15-17) eds. D.H.
Bailey et al., 181-186. Philadelphia, PA: Society
for Industrial and Applied Mathematics.

Von Neumann, J. 1949. Theory of Self-Reproducing
Automata. In 1949 University of Illinois Lectures
on the Theory and Organization of Complicated
Automata. (reprinted 1966) ed. A.W. Burks.
Urbana, IL: University of Illinois Press

Wildberger, A.M. 1994. Automated Management for
Future Power Networks: A Long-Term Vision.
Public Utilities Fortnightly 132, 20 (Nov): 38-41.

Wuensche, A. 1996. http://www .santafe.edu/~wuensche

Wuensche, A. and M.J. Lesser. 1992. The Global
Dynamics of Cellular Automata: an Atlas of Basin
of Attraction Fields of One-Dimensional Cellular
Automata. (diskette included). Santa Fe Institute
Studies in the Sciences of Complexity. Reference
Vol. I. Reading, MA: Addison -Wesley

BIOGRAPHY

Dr. A. Martin Wildberger manages Strategic Research
and Development projects in Applied Mathematics and
Information Science at the Electric Power Research
Institute (EPRI). He also provides institute-wide
applied research support in mathematical modeling and
computer simulation.

Dr. Wildberger received his B.S. degree (cum laude)
from Fordham University, his M.S. degree from the
U.S. Naval Postgraduate School Engineering School and
his Ph.D. from the Catholic University of America. He
has published or presented over sixty technical papers
and has been, since 1987, the editor of a monthly
column in Simulation entitled: “Al and Simulation”

