
Proceedings of the 1996 Winter Sirnulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Snrain

MODELING WITH EVENT GRAPHS

Arnold H. Buss

Operations Research Department
Naval Postgraduate School

Monterey, CA 93943-5000, U.S.A.

ABSTRACT

Event Graphs are a way of graphically represent
ing discrete-event simulation models. Also known as
"Simulation Graphs," they have a minimalist design,
with a single type of node and two types of edges with
up to three options. Despite this simplicity, Event
Graphs are extremely powerful. The Event Graph is
the only graphical paradigm that directly models the
event list logic. There are no limitations to the ability
of Event Graphs to create a simulation model for any
circumstance. Their simplicity, together with their
extensibility, make them an ideal tool for rapid con
struction and prototyping of simulation models. In
this paper we will demonstrate the ability of Event
Graphs to leverage simple models into more complex
ones with very few additional features.

1 INTRODUCTION

Several extensions to Event Graph capabilities have
been introduced (see Schruben, 1995), including can
celling edges, passing parameters on scheduling edges,
and the use of data structures. This paper presents
some of the ways these features may be utilized to
enhance Event Graph modeling. Of particular inter
est is the ability to easily leverage simple models into
more complex ones.

When considering extensions to any model or
methodology, care must be taken to avoid the
methodology becoming burdened with too many fea
tures, destroying the elegance and utility of the orig
inal. With this paper we hope to demonstrate the
viability of the extensions to the basic Event Graph
paradigm as genuine enhancements to the construc
tion of models. While the formal modeling power is
enhanced, the ease of use and the quality of the re
sulting models are both improved.

In the following section we review the basics of
Event Graph methodology and Section 3 we present

153

some examples. Following that, we describe the en
hanced features and show examples of their use.

2 BASICS OF EVENT GRAPH MODELS

We assume the reader is familiar with the basic con
cepts of discrete event simulation (see any introduc
tory text such as Law and Kelton 1991), so we will
only briefly review the components.

Two fundamental components of a discrete event
sinlulation model are a set of state variables, and a
set of events. The model emulates the system be
ing studied by producing state trajectories, that is,
time plots of the values of the system's state vari
ables. Measures of performance are determined as
statistics of these state trajectories. Discrete event
models have state trajectories that are piecewise con
stant. Events are the points in time at which at least
one state variable changes value. It is important to
note that an event is an instantaneous occurrence in
the discrete event model. No simulated time passes
when an event occurs; simulated time passes only be
tween the occurrence of events.

The timing of the occurrence of events is controlled
by the Future Event List (or simply the Event List),
which is nothing more than a "to-do" list of scheduled
events. Whenever an event is scheduled to occur,
an event notice is created and stored on the future
events list. Every event notice contains two pieces
of information: (1) What event is being scheduled;
and (2) The (simulated) time at which the event is to
occur. The future event list keeps the event notices in
order by ranking them based on the lowest scheduled
time. Events occurring simultaneously in simulated
time must be prioritized according to some secondary
rule.

The future events list is managed by a "Tin1emas
ter" who controls the flow of time in the simulated
world of the model. The Timemaster examines the
event list to see if there are any scheduled events.

154

Figure 1: Fundamental Event Graph Construct

An empty list means there is nothing to do, so
the Timemaster terminates (i.e. the simulation run
ends). If the event list is not empty, the Timemaster
updates the simulated clock to the time of the first
event notice and executes the associated event - that
is, the state transitions associated with that event are
invoked. Note that the terminating condition (empty
event list) means the simulation must be initiated
with at least one scheduled event for any event to
actually occur. We will follow Schruben's (1995) con
vention of a single distinguished event (Ru n) that is
always on the event list initially.

When an event occurs, all state changes are made.
Next, all further events are scheduled, and finally the
event notice is removed from the Event List. The
events scheduled are specified by the occurring event
itself and may be conditional on certain values of the
current state. The order of execution for these three
steps could be altered, but the resulting models would
be different. Although it is possible to mix up the
actions (e.g. First change some states, then schedule
some events, then change some more states, etc.), the
resulting model would be confusing and prone to er
rors. There is considerable benefit from adapting a
convention such as the one above.

Event Graphs are a way of representing the Future
Event List logic for a discrete-event model. An Event
Graph consists of nodes and edges. Each node corre
sponds to an event, or state transition, and each edge
corresponds to the scheduling of other events. Each
edge can optionally have an associated Boolean con
dition and/or a time delay. Figure 1 shows the funda
mental construct for Event Graphs and is interpreted
as follows: the occurrence of Event A causes Event
B to be scheduled after a time delay of t, providing
condition (i) is true (after the state transitions for
Event A have been made). By convention, the time
delay t is indicated toward the tail of the scheduling
edge and the edge condition is shown just above the
wavy line through the middle of the edge. If there is
no time delay, then t is omitted. Similarly, if Event B
is always scheduled following the occurrence of Event
B, then the edge condition is omitted, and the edge
is called an unconditional edge.

Thus, the basic Event Graph paradigm contains
only two elements (event node and scheduling edge)

Buss

(B >0)

{Q++}

(Q>O)

{B++}

Figure 2: Discrete Event Model for Multiple Server
Queue

with two options on the edges (time delay and
edge condition). The simplicity of the Event Graph
paradigm is evident from the fact that we can rep
resent any discrete event model using only these
constructs (Schruben 1992, 1995; Schruben and
Yiicesan 1993). A major advantage of the minimalist
approach of Event Graphs is that the modeler can
spend more time on model formulation and less on
learning the constructs of the paradigm.

There is a price to the simplicity of Event Graphs,
however. Since Event Graphs represent the event
scheduling relationship, rather than the physical
movement of, say, customers through a queueing sys
tem, Event Graphs require a higher degree of abstrac
tion on the part of the user than other graphical sys
tems. The author's experience using Event Graphs in
an introductory simulation course indicates that this
higher abstraction is easy to master and provides rich
payoffs for understanding and creating discrete event
simulations. Indeed, the use of Event Graphs tends
to accelerate the understanding of the Discrete Event
paradigm.

3 EXAMPLES

3.1 The G/G/k Queue

An Event Graph model for the standard G/G/k
queue is shown in Figure 2. The state transitions for
each event are shown in curly braces beside the corre
sponding node. The model utilizes the C notation for
incrementing ('++') and decrementing ('--') vari-

lvlodeling \vitll Event Graphs L55

abIes).

3.2 Tandem Queue Model

The G / G / k queueing model of the previous section
may be extended to a tandem queueing model by con
necting copies of the model together, as shown in Fig
ure 3. The two stations have their respective events
and state variables indexed by the station, so that Qi
is the number of parts in the queue for workstation
i == 1,2, for example.

This stringing together of models superficially re
sembles the corresponding models in simulation lan
guages with process interaction world views (GPSS,
SIMAN, etc.) in which transaction block diagrams
are connected. However, in the process languages,
connecting blocks indicates transactions that get
passed, whereas for Events Graphs it is the scheduling
of events that is added. Since neither transactions nor
entities are being passed, Event Graph models may
be connected in more intricate ways, leading to much
greater flexibility and more potential for modularity.

While very straightforward, this approach to the
tandem queue model does not leave enough flexibility
in the number of stations that can be modeled. The
number of workcenters is hard-wired into the struc
ture of the model, so that a different model is needed
for each size shop. This is needless repetition of the
model's logic, since the fundamental dynamics of an
N-workstation tandem queueing model are exactly
the same regardless of the value of N. A more robust
approach is to have a single model for the tandem
queueing structure and have the capability to specify
N at runtime. That is, the number of stations in the
queue is considered data for the model rather than
a fundamental structural part of the model. Such a
model is presented below when we discuss advanced
features of Event Graphs. First, however, we will give
another example of connecting two models in a useful
way.

3.3 Worker Interference Model

A workcenter has K identical machines with a sin
gle worker operating them. Arriving parts must be
loaded on a machine (if available) by the worker. If all
machines are busy, the parts wait in a queue. Even
if a machine is available, the parts must wait until
the worker is free to load them on a machine, a situ
ation called worker interference. More generally, in
terference can occur whenever multiple resources are
required to perform a task but not all are available
when the part is ready. Once loaded, machines auto
matically process a part with no further input needed

from the worker until finished. Ho\vever, \vhen com
pleted, the part must be unloaded by the \vorker.

We will construct an Event Graph model for this
scenario by combining a G / G / k queueing model (for
the loading part) \vith a piece that resembles the
downstream workstations for the transfer line model.
First, define the following variables:

Q == # parts in queue awaiting processing
B == Worker status (1 if idle, 0 if busy)
AI == # available machines (0 :::; A! :::; K)
U == # parts \vaiting to be unloaded from
machines (0 :::; U :::; A!)
P == Total number of parts processed
tA == Time between part arrivals
tL == Loading times
tv == Unloading times
ts == Part processing times

The loading process is identical to the G/ G / k queue
described above, as shown in Figure 4, with two ex
ceptions: (1) The condition for starting to load a
part requires both a machine and a worker available,
reflected in the edge condition on the Arrival-Start
Loading edge. (2) The loading activity requires both
a machine and a worker, reflected in the state transi
tion for Start Loading.

The unloading piece is shown in Figure 5 Note that
the unloading portion only differs structurally fron1 a
G/ G / k model in the arrival process: unloading is trig
gered by the completion of processing by a machine,
not by outside arrivals. The only other difference is
the fact that a machine is freed by the last event (Fin
ish Unloading) in addition to the worker.

Now all we need to do is connect the two pieces of
the model. Since a machine starts processing as soon
as it is loaded, we can schedule a Finish Processing af
ter Finish Loading with a delay of ts, the service time.
After the worker is finished loading a part, another
loading/unloading task may be performed, if neces
sary. At this point there is some ambiguity in the
problem description, since it is not specified what the
worker is to do if there are parts waiting to be both
loaded and unloaded. Assume that the worker's pri
ority is unloading parts over loading parts. Then after
the Finish Loading event, a Start Unloading is sched
uled, providing there is a part waiting to be unloaded
(i.e. if (U > 0)). On the other hand, if there are
no parts waiting to be unloaded (U == 0) and there
is at least one part waiting to be loaded (Q > 0)
and there is a machine available to load the part onto
(M > 0), then a Start Loading may be scheduled after
a Finish Loading. Similarly, after a Finish Unloading
event, if no parts are waiting to be unloaded (U == 0)

156 Buss

{Ql++}
(Ql > 0)

{Bl++}

{Q2++}

~ .~~
~ (B2> 0) /" ~ '\

~rriVal2)l-_-~S---~S:~~:~ ~e~~e~
\~/ .~

{Q2--,B2-- J {B2++}

(Q2 > 0)

Figure 3: A Two Station Tandem Queue

{Q++} {Q-- B--, M--}

(Q> 0)
and

(M>O)
/~

(FiniSh
{B++}~oading

Finish \
proCeSSing)

{u++}

(B > 0)

tv
(Start
\Jnloading

Finish
Unloading

Figure 4: Event Graph for Loading Portion of Model
{B-- }

(U> 0)

{B++, U--,
M++,P++}

and there are parts waiting to be loaded, then a Start
Loading event may also be scheduled. Note that fol
lowing a Finish Unloading event there is no need to
check the condition (M > 0) since M has just been
incremented. The final model is shown in Figure 6.

Figure 5: Event Graph for Unloading Portion of
Model

Modeling with Event Graphs 157

(i)

t------~-€)

Figure 7: Passing Attributes on Edges

Figure 6: Final Event Graph Model for Worker In
terference Problem

The Event Graph paradigm described above is a sim
ple and elegant way to represent discrete event logic.
Without any further enhancements it has sufficient
flexibility and power to represent any discrete event
model. We will discuss three such enhancements of
the basic Event Graph paradigm: passing attributes
to events on scheduling edges, event-canceling edges,
and the use of data structures (instead of just simple
data types). As noted previously, these enhancements
do not increase the formal power of Event Graphs,
only their readability, ease of construction, and in
some cases the quality of the model itself.

4.1 Passing Attributes on Edges

The first enhancement provides the event node with
the capability to pass attributes on an event schedul
ing edge to the scheduled event. Figure 7 illustrates
the basic construction and is interpreted as follows:
When event A occurs, A's state transitions are made
and expression k and condition (i) evaluated. If con
dition (i) is true, then event B is scheduled to occur
after a delay of t time units with parameter j set
equal to the computed value of k. Note that k could
be a parameter list, as with a procedure call with
arguments.

This simple enhancement allows complex models to
be built up from simpler components in a relatively
straightforward manner. To illustrate we will extend
the queueing model of the previous section to the
tandem queueing model discussed earlier. A produc
tion facility consists of N machine groups, each group
having a single waiting line. Jobs enter at machine
group 1 and upon leaving go to machine group 2, etc.
For simplicity, we will assume the queues (buffers) all
have infinite capacity.

Modeling this system is made much simpler by the
observation that each machine group operates like the
multiple-server queueing system with two exceptions:
the departure from a machine group schedules the ar
rival of a job to the next machine group, and the only
arrival of jobs from outside the facility are to machine
group 1. The state space must also be expanded to

4 ADVANCED FEATURES OF EVENT
GRAPHS

Finish
Unloading

(Q>O)
and

(U=O)

{B++}

{B++, U--, M++}

{Q++}

(U>O)

{B-- }

(B >0)
and

tA (M> 0)

Finish
Processing ts

{U++} //

// CU> 0)
/

./
tv

Start \
Unloading)

158 Buss

(i)

--s

4.3 Use of Data Structures

The modeling power of Event Graphs is considerably
increased with the judicious use of data structures,
such as lists and priority queues. For example, in the
G/G/k queue of Figure 2, suppose statistics on indi
vidual customers' times in queue are needed. These
can be determined by creating a queue containing the
times of arrival for each customer. Assume the cur
rent value of simulated time is available in a global
variable called "Clk" (after Schruben, 1995). Upon
arrival, the value of Clk is stored in a fifo queue called
ArrivalTimes. When service is started, the time of
arrival for that customer is removed, and the differ
ence between it and the current value of Clk is that
customer's time in queue. We will utilize a stylized
syntax for a fifo queue (the data structure, not the
system being modeled). Add(< Queue>, < Value»
puts < Value> at the end of the list < Queue>, and
Remove(< Queue» removes and returns the first el
ement of < Queue>. The only changes that need to
be made to Figure 2 are in the state transitions for
Arrival and Start Service events as follows:

4.2 Canceling Edges

Figure 9: A Canceling Edge

The second enhancement covers situations in which
the modeler wishes to have an event notice removed
from the event list. That is, a scheduled event needs
to be canceled. This is accomplished in a Event
Graph by the addition of canceling edges denoted by
dashed arrows; Figure 9 shows the basic construction
of a canceling edge. The interpretation of Figure 9
is: When event A occurs, then (after the appropriate
state transitions are made), if Condition (i) is true,
the next occurrence of event B with parameter j equal
to k is removed from the Event List. If there is no
such event notice on the event list, nothing happens.
The parameter is optional and, if omitted, the next
occurrence of B is cancelled.

to be constructed. In contrast, the Event Graph in
Figure 8 can be used to model transfer lines of any
size by simply setting the appropriate value of Nand
of k(j) for j = 1, ,N.

~,

Service
.,~.

{B(j)++}

(B(j) > 0)

(j <N)

Figure 8: Event Graph for Transfer Line Model

identify the number of jobs in queue as well as the
number of available machines at each workcenter. It
is convenient to simply make Q and B arrays, with
Q(j) the number in queue and B(j) the number of
available machines at machine group j. Similarly, the
parameters of the system are now an array, with k(j)
the number of machines in machine group j.

Figure 8 shows the Event Graph model for the
transfer line. The similarity of this model to the
queueing model in Figure 2 is self-evident. The self
scheduling edge for the Arrival(j) event adds the con
dition that j = 1 to generate the arrival of jobs from
outside the shop. The other Arrival(j) events are
scheduled from the previous machine group. How
ever, an End Service(j) event with j = N results in a
job leaving the system. Therefore, there is the condi
tion j < N. All other edges in the model are the same
as the corresponding ones in Figure 2, with param
eter j representing the current machine group being
passed. The state transitions for the events are sim
ilarly indexed by the corresponding machine group
number.

The transfer line model could have been modeled
using just the basic constructs in Section 2 (with
out passing attributes) by simply stringing together
copies of the model in Figure 2 and making the appro
priate adjustments in edges. However, that approach
would "hard-wire" the number of machine groups N
into the model. To simulate facilities having different
numbers of machine groups a new model would have

Modeling with Event Graphs 159

5 CONCLUSIONS

Figure 10: Modeling Customers' Reneging

End Service
B++

Start Service
Q- -, B--
S = Remove(Queue)

Arrival

Q++, A++
Generate ts
Add(Queue, A)

Renege(j)
Q-
Remove(Queue, j)

~ tA (B > 0) .~,

Start
/ Service
.~' ts

tR /

[SJ
/

/ (Q>O)

/

~
,~,

I End

U) Service

Thus, A gives each customer a unique number in the
Arrival event which is then passed to the Renege event
via its scheduling edge. If the Renege event occurs be
fore Start Service, the corresponding customer is re
moved from the queue and the number in queue is
decremented. On the other hand, if the Start Service
event occurs first, then the Renege event correspond
ing to that customer is canceled. The state changes
are summarized as follows:

We have given a brief overview of the use of some
advanced features of Event Graphs for discrete-event

Figure 10 utilizes passing a parameter on a cancel
ing edge. When Start Service occurs, the number of
the customer about to receive service (8) is removed
from Queue and the event list is scanned for a Re
nege event with parameter value S. When that event
is found, it is removed from the Event List, thus can
celing the scheduled Renege event. Since a Renege
event may have occurred prior to the Start Service,
successive values of S are not necessarily sequential.

End Service
B++

Start Service
Q- -, B--
TimeOfArrival = Remove(ArrivaITimes)
TimelnQueue = Clk - TimeOfArrival

Arrival

Q++
Add(ArrivalTimes, Clk)

Another use for lists in queueing simulations is
when service disciplines other than first-come first
served are employed. One such rule that is often used
is shortest processing time (SPT). The state changes
for the Event Graph of Figure 2 can be modified by
generating each customer's service time ts upon ar
rival to the system. The service times are then put
on a priority queue called ServiceTimes, ranked ac
cording to the smallest value. The new state changes
are:

4.4 A Queue with Reneging

In a G/G/k model, suppose customers who wait in
the queue for more than tR time units renege, that
is leave the system without receiving service. The
reneging behavior can be modeled in a straightfor
ward manner using a canceling edge, as shown in Fig
ure 10. Each customer's renege event is 'scheduled'
upon entry to the system. Since each customer's re
nege time is different, the order of reneges is not nec
essarily the same as the order of arrival to the system.
Therefore, we add the state variable A which rep
resents the cumulative number of customer arrivals.

End Service
B++

The use of data structures such as fifo and priority
queues for Event Graph modeling is generic in that
no specifications are made with regard to their actual
structure or implementation. Any implementation of
Event Graph methodology should utilize the most ef
ficient data structure for the task.

Arrival

Q++
Generate ts
Add(ServiceTimes, ts)

Start Service
Q- -, B--
ts = Remove(ServiceTimes)

160

simulation models. Event Graphs are currently the
only graphical tool that directly models the Event
List paradigm. The enhancements we have described
here allow the modeler to easily leverage simple mod
els into more complex ones. More important, the vi
sual power of the Event Graph gives the modeler a
unique perspective on the model and allows the key
underlying relationships to be vividly represented.
The availability of Event Graph software in the form
of Sigma™ (Schruben, 1995) allows simulation mod
elers to take advantage of the benefits offered by the
Event Graph paradigm.

ACKNOWLEDGEMENTS

The author wishes to thank Paul Sanchez and Brian
Widdowson for very helpful comments on an ear
lier draft of this paper. Support for this work from
the Naval Postgraduate School is gratefully acknowl
edged.

REFERENCES

Buss, A. 1995. A Tutorial on Discrete-Event Mod
eling with Simulation Graphs, Proceedings of
the 1995 Winter Simulation Conference, C. Alex
opoulis, K. Kang, W. Lilegdon, D. Goldsman (eds).

Schruben, L. 1983. Simulation Modeling with Event
Graphs, Communications of the A CAl, 26, 957
963.

Schruben, L. 1992. Sigma: A Graphical Simulation
Modeling Program, Boyd and Fraser Publishing
Company, Danvers, IvIA.

Schruben, L. 1995. Graphical Simulation A10deling
and Anal~ysis Using Sigma for Windows, Boyd and
Fraser Publishing Company, Danvers, MA.

Schruben, Land E. Yiicesan. 1993. Modeling
Paradigms for Discrete Event Simulation, Opera
tions Research Letters, 13, 265-275.

AUTHOR BIOGRAPHY

ARNOLD BUSS is a Visiting Assistant Profes
sor of Operations Research at the Naval Graduate
School.

Buss

