Proceedings of the 1996 Winter Simulation Conference '
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner. and J. J. Swain

PRINCIPLES OF CONSERVATIVE PARALLEL SIMULATION

David M. Nicol

Department of Computer Science
Dartmouth College
Hanover, NH 03755

ABSTRACT

This tutorial describes considerations in writing par-
allelized discrete-event simulations. We identify key
principles behind various synchronization methods tai-
lored to simulate complex systems.

1 INTRODUCTION

The use of parallel computers to execute discrete-
event simulations has been a topic of active research
interest for the last fifteen years. The seminal work
by Chandy and Misra was done well before parallel
computers were in common use, and (perhaps surpris-
ingly), was principally motivated by concerns other
than performance. What has become known as the
“null-message” algorithm (Chandy and Misra, 1979)
was developed as an example of a distributed algo-
rithm to be validated; Chandy and Misra’s later work
on detecting and breaking deadlock also retained a
strong flavor of algorithm validation. Jefferson’s sem-
inal Time Warp paper (Jefferson, 1985) had interests
in proving the correctness of the method, but im-
portantly was proposed as a way to avoid “blocking”
inherent in the Chandy and Misra work, so as to im-
prove upon available parallelism and possibly improve
performance.

Since these early times, a great deal of research
has gone into new algorithms for synchronization and
optimizations for the old ones. So-called “conserva-
tive” algorithms have their philosophical base in the
Chandy and Misra approach. A defining character-
istic of a conservative approach is that no computa-
tion is ever done that might possibly be incorrect.
A defining characteristic of so-called “optimistic” ap-
proaches is that some incorrect computations may be
done, but the synchronization system is capable of
automatically detecting and correcting such errors.
Reynolds made a number of important refinements
to this classification (Reynolds, 1988), for our pur-
poses two stand out. Optimism has the components

128

of aggressiveness—doing computations that may turn
out to be incorrect—and risk—exporting the results
of an incorrect computation on one processor to other
processors. As we will see, it is possible, even desir-
able, to use a protocol where there is aggressiveness
but not risk.

As medium-scale parallel processors become com-
mon, it is natural for a simulationist to ask “Should I
use parallel simulation?”, and if the answer is yes, to
ask just how that simulation ought to be constructed.
One option is to use a parallel simulation package, the
other is to handle the synchronization issues yourself,
in your own code. One principle disadvantage of using
a package is that it may not work on the architectures
available to you. Another is that these (few) pack-
ages are products of universities, so you cannot expect
much support as you encounter difficulties or discover
that the package does not allow you to to model quite
the way you had intended. The principle advantage
of parallel simulation packages is that the details of
synchronization are largely hidden from you. The ad-
vantage of writing your own simulator from scratch
is that you are fully aware of all the details, and can
optimize the synchronization to the problem you are
simulating. The disadvantage is that it is definitely
more work to build your own synchronization mech-
anisms, and, depending on the type of synchroniza-
tion you use, as your model evolves you made need
to alter the synchronization strategy. Nevertheless,
home-grown parallel simulators are viable for target
applications where the semantics are well understood
and unlikely to change, e.g., queueing networks, Petri
nets.

There is an extremely important application area
for roll-your-own parallel simulations emerging, the
“High Level Architecture” (HLA) specifications that
will determine how to construct a federated distributed
simulation from cooperating simulators. The HLA
specs principally call for conservative synchronization
between individual simulators, and explicitly provide
a mechanism for a simulator to report its “lookahead”



Principles of Conservative Parallel Simulation 129

to the controlling agent. Consequently, understand-
ing the principles of conservative synchronization for
that context will be quite important.

The purpose of this tutorial is to provide those
who would build their own simulators with the con-
cepts necessary to approach such a task.

2 DISCRETE EVENT SIMULATION

2.1 The DES Paradigm

Discrete-event simulation is a algorithmic paradigm
that is suitable for emulating complex systems whose
“state” is discrete, and which changes at discrete in-
stants in time. Queueing networks or Petri nets are
examples—their states are vectors of queue lengths
or place markings, the state-vector changes when a
job departs or a transition fires. It may happen that
other information is also needed in the state, e.g., if
a queue does not have exponential service then some
record of residual service time must be part of the
state information.

The key idea behind discrete-event simulation is
to focus the computational effort of the program on
only those instants where the state changes, and only
at those portions of the state that change. This of-
fers large computational savings over “time-stepping”
methods that advance the entire state-vector at each
of many small time-increments. Some sort of time-
stepping is generally required to simulate so-called
“continuous systems” whose state evolution behav-
ior is described using differential equations. Whether
one uses discrete-event or continuous simulation tech-
niques depends entirely on the nature of the model.
It is worth noting in this discussion that continuous
simulation models frequently admit to parallelization
in a much more straightforward fashion than discrete-
event simulations, because the synchronization struc-
ture is much simpler.

2.2 World Views

Simulation modelers frequently describe models as
having an “event” world view, or a “process” world
view. In the event world view the behavior of the
model is described in terms of how the simulation
model changes when an event is processed. For in-
stance, the code for an event-oriented queueing sim-
ulator will identify events such as DepartQueue, Ar-
riveQueue and with each event will proscribe code
that affects the simulation state as a result of the
event occurring.

A process-oriented view expresses the logic of the
simulation at a higher level of abstraction. In the
case of the queueing network it might describe the

simulation from the point of view of a job—join a
queue, wait for service, join another queue, and so
on. The critical difference is that the job’s behav-
ior can generally be expressed without reference to
the state of the queue, something that is not possi-
ble in an event-oriented simulator. Details concerning
contention resolution are buried—from the modeler’s
point-of-view—in what ever process-oriented simula-
tion package is being used.

The choice of world view does have a significant
impact on parallelization. By its nature, implement-
ing process orientation is a delicate business. Process-
oriented simulations are almost exclusively developed
using software packages; to go parallel with a process-
oriented view means either to parallelize these pack-
ages or write one’s own parallelized process-oriented
system. The later task can be quite daunting if one
is to use optimistic synchronization. Such simula-
tors need to be able to save and restore the state of
the simulator, as well as the simulation model state.
We have had success using conservative techniques
with existing process oriented simulators, but in ways
limited by the need to not change the base process-
oriented simulator.

Most simulations written from scratch are event-
oriented. This makes the simulator easier to write,
but makes the development of simulation models some-
what more difficult. If one is tailoring the synchro-
nization protocol to the simulation problem, then an
event oriented view will almost certainly be the view
of choice.

3 SYNCHRONIZATION

Fundamentally, the heart of a discrete-event simu-
lation is an event-list (even process-oriented simula-
tors use these in their internal structure). Causal-
ity is maintained in a serial simulator because the
next event executed is always the one with least time-
stamp in the entire simulation model. This ensures
that any event that might alter state information
upon which the next event depends has already been
executed. A useful way to view a parallel simula-
tion is as a set of cooperating serial simulators, each
with its own event list. Now, however, an event exe-
cuted by one simulator may change model state upon
which events in another simulator depend, which is
tantamount to one simulator changing the event list
of another. One way to ensure causality is to pro-
hibit a simulator from executing its next event until
it is sure that no other simulator will cause an earlier
event to be inserted, or the next event to be removed.
Such an approach is said to be conservative. An op-
timistic method will not block a simulator; instead
it goes ahead and executes the next event, but first



130

saves enough state information so that it can return
(“rollback”) to that point again if it needs to. An op-
timistic system detects when a “straggler” event (one
with a time-stamp that is smaller than the current
simulation clock) is received, does a rollback to that
time and undoes the effects of wrong computations it
might have performed at times larger than that of the
straggler message. Another important distinction is
that it is possible to have one simulator execute op-
timistically but temporarily withhold affecting other
simulators with its results until it is certain that its
inter-processor interactions are correct. Such an ap-
proach is said to be “aggressive” but “risk-free”.

The main question for a conservative method is
how a simulator can determine if its next event is
safe to process. There is no single answer, it depends
on the simulation model. The general label for one’s
ability to extract such information from a model is
called lookahead. The advantage to an aggressive but
risk free approach is that it avoids the necessity for
explicitly computing lookahead—it allows the com-
putation to observe lookahead (in a way we’ll make
clear later)—but avoids disseminating incorrect infor-
mation.

4 LOOKAHEAD

Lookahead is the key ingredient for all conservative
synchronization methods. A loose definition is that it
is the ability of a simulator to predict future behav-
ior with respect to modifying the event lists of other
simulators. More precisely, a process p has looka-
head with respect to process g if p’s simulation clock
is at time s, and yet p can determine that under no
circumstances will it insert or delete an event from
process ¢’s event list with time-stamp t > s. Even
so, this definition does not capture the many aspects
of lookahead, knowledge of which is important when
developing a synchronization strategy for a given sim-
ulation problem. We now explore these aspects.

4.1 Subtleties of Lookahead

To help motivate a classification of lookahead, we first
look at some situations that illustrate different facets
of lookahead.

Models of just about any kind of network involve
movement of objects (e.g., packets, jobs, parts, pa-
tients, vehicles, etc.) and contention among these
objects for network resources. The way one process
typically affects another is by sending it an object, af-
ter that object has acquired and used some resource.
A concrete example of this is a queueing network.
The network is partitioned among processors; a job
contends for service, and after receiving it is routed to

Nicol

another another queue, possibly to one on a different
processor.

Consider a resource mapped to process p, such
that after an object uses that resource it migrates
to contend for a resource that is mapped to a differ-
ent process ¢. The nature of the resource allocation
scheme affects p’s lookahead. If allocation is non-
preemptive (that is, once a resource is allocated to
an object it is not released until that object has com-
pleted its service), then p knows that an object in
service will remain in service without the possibil-
ity of another object acquiring that same resource,
and possibly releasing it and migrating to ¢ sooner
than would the original process. Another factor is
the mechanism by which the resource is released and
the object migrates. In a queueing network, a job fre-
quently receives a known amount of service, and its
departure time is known at the point the job enters
service. In other models it is possible that the object
holds the resource until told to release it. p’s abil-
ity to look ahead relies then on being able to predict
when such release directives are issued.

There are further complications. It might be that
an object does not know where it is migrating until
its point of departure. This happens, for instance, if
a job leaves one queue and joins the shortest queue
from among a set, at the point of departure. It might
be that at the point the object begins its service p
knows what the state of the object will be when it
migrates, it might be that it does not (for instance, if
the object carries with it information relating to the
simulation state at the time of departure).

Another type of lookahead arises when prior to
simulating the timing of activities, certain measure-
ments are made that yield lower bounds on delays
until those activities occur. For example, in the trace-
driven simulation of a shared memory multiprocessor,
one can analyze an individual processor’s trace file to
determine the numbers of local references between lo-
cal references. By assuming that each local reference
is resolved as quickly as possible one can compute a
lower bound on inter-global-reference delays. As a
process simulates the memory behavior described by
a trace, it can look ahead over the remaining local ref-
erences until the next global one (which presumably
affects another simulation process).

As a final example of the subtleties of lookahead,
we observe that lookahead may be “sampled”, in the
sense of generating random numbers in order to ob-
tain lookahead, and “observed”. An example of the
former type arises in stochastic simulations, where
random variables may be sampled before they are
actually needed, for the purpose of computing looka-
head. A common instance of this is to sample the ser-
vice time of the next job to receive service at a queue,



Principles of Conservative Parallel Simulation 131

before the job actually arrives. If the queue is non-
preemptive, we know that at least the pre-sampled
service time must elapse before the next job departs
the queue. A case of observed lookahead occurs in
the parallelized direct-execution simulation of com-
puter programs. The program is executed between
points where it interacts with other simulators, and
the number of instructions executed in such an inter-
val are measured. To exploit this we can interleave
execution of the computer program to get the mea-
surements, and the timing simulator.

4.2 Dimensions of Lookahead

We now classify dimensions of lookahead, knowledge
of which will prove useful when we develop synchro-
nization protocols.

4.2.1 Time / Content Lookahead

Our informal definition of lookahead focuses on the
temporal aspect, and has nothing to say about the
content of the next event p may send to ¢. Consider:
p may know simply that it will not affect ¢ at a time
less than t, or, it may know that it will affect ¢ at
time ¢, and it knows how it will do so. The latter
case is what we call “content” lookahead; its presence
clearly indicates that p has a better ability to predict
future behavior. Intuitively, process ¢ may be able to
use content lookahead in a more advanced way than
purely time lookahead.

Another possibility is that p knows that it will af-
fect ¢ at time ¢, but will not know exactly how it will
do so until later—perhaps only at time ¢. From ¢’s
perspective, knowledge that something specific will
occur at time ¢t may be handled differently from knowl-
edge that nothing will happen before time ¢. The dif-
ference is subtle, but may have an impact on how ¢
is implemented.

4.2.2 Bounded / Exact Time Lookahead

There is a difference between p knowing that it will
not affect ¢ before time ¢, and p knowing that it will
not affect ¢ before time ¢ and that it will affect ¢ at
time t. The former case is “bounded-time lookahead”
and the latter case “exact-time lookahead”. The dis-
tinction has an effect on the way that ¢ deals with
the information. In fact, if p has content lookahead
and exact-time lookahead, then the lookahead infor-
mation suffices to actually deliver the forecast event
to gq.

4.2.3 Directed / Semi-directed / Undirected
Lookahead

Our loose definition of lookahead was given in terms
of p knowing how it might affect ¢ in the future. This
is an example of what we’ll call “directed” lookahead.
It might be the case that p knows that it will not affect
some set of processes before time ¢t. For instance, if a
server routes a job to the queue with shortest length
among a subset of queues at the instant of departure,
then its lookahead is limited to that set of queues.
This we call “semi-directed” lookahead. Finally, if p
knows only that it will not affect any process before
time t, we say that it has “undirected” lookahead.

4.2.4 Conditional / Unconditional Lookahead

An important class of methods rely on exploiting some-
thing called “conditional lookahead”. The idea is that

at time s, process p knows that it will not affect pro-

cess ¢ before time t, provided that the state of p does

not change before time . An example is a job in a

preemptive queue, nominally scheduled to depart at

time t. If no other higher priority job enters before

time ¢t and interrupts it, the lookahead is to t. The

lookahead in this case is unconditional if the queue is

non-preemptive.

5 USING LOOKAHEAD

Synchronization protocols vary in how they use the
lookahead that applications provide. One distinction
is whether a protocol is synchronous or asynchronous
(or both). This distinction is drawn based on how
the lookahead is used and distributed. In an asyn-
chronous protocol, when process ¢ is specifically told
that p might affect it at time ¢, process ¢ then blocks
at t until told otherwise. A synchronous protocol in-
volves some sort of global reduction synchronization.
Processes that participate in the reduction provide
lookahead values to it; the result of the reduction
governs how far a process may advance before block-
ing. Synchronous protocols find a way to combine
lookahead information from multiple sources.

Some synchronous protocols use the notion of con-
ditional lookahead. For instance, the YAWNS (Nicol
et al. 1989, Nicol 1993) protocol works using two
principle ideas. First, that every message sent by
one process to another is pre-sent in time and con-
tent. For instance, if a job enters service at a non-
preemptive queue and we know its service time and
routing destination, then at the point it enters service
its arrival at the next queue may be reported. The
second idea is that a process be able to examine its
state and determine a lower bound on the time of the



132

next message it sends, conditioned on the assumption
that no further messages are received. Each process
is thus computing conditional lookahead. Each offers
that conditional lookahead to a global min-reduction.
The value produced by the reduction is a simulation
time up to which all processes may advance asyn-
chronously of all others, without concern for receiving
a message in its past.

Another way lookahead is combined is through
“lookahead propagation networks”. This can be ef-
fective when the underlying simulation model is of
a network where one can view the nodes as adding
delay to received objects, then propagating the ob-
jects. The fundamental idea is best described with
an example. Say we have a queueing server that is
presently idle but has pre-sampled the service time
of the next arrival. If the server has no idea of when
next an arrival might occur, it must assume the worst,
that an arrival will come immediately. That estimate
can obviously be improved if a way is found to bound
the arrival time of the next arrival. The lookahead
propagation network does this. The idea is to com-
pute minimal length paths through a network that
has the topology of the simulated network; nodes in
the lookahead propagation network are weighted with
the value of the service time to be given to the next
arrival. Receiving a lower bound on the arrival time
of a job from any source, an idle node adds to this
bound its presampled service delay and offers to its
successors the sum as a bound on when next it will
propagate a job to them.

6 PROTOCOLS

As a concrete application of these ideas, we now look
at some synchronization protocols and observe how
they differ in their use and requirements of lookahead.

6.1 Null Message Protocol

The original protocol (Chandy and Misra, 1979) (dis-
covered independently by Byrant, 1977) describes a
distributed simulation in terms of “logical processes”
(LPs), and “channels” between those processes. It
is assumed that the channels are static; one might
imagine a directed graph where LPs are nodes and
channels are edges. One LP affects another by send-
ing it a message over a channel. The message has
a time-stamp on it, the time at which it affects the
receiver. All such communication is point-to-point.
It is assumed that messages from one LP to another
appear at the receiver in the order they were sent. A
distinction is made between having the message show
up at the receiver, and having that LP “accept” the
message, e.g., pull it out of the channel and incorpo-

Nicol

rate it into its own state. An LP can detect when an
input channel is empty.

An LP can be certain that it does not execute
an event out of order so long as it never accepts a
message with a time-stamp less than that of the next
internal event the LP has to perform. Consequently,
if any of its input channels are empty, the LP must
block. Without further structure, this blocking rule
makes it quite easy to deadlock; consider—a channel
may be declared between two LPs, but through the
vagrancies of random sampling no message is ever
sent through that channel. To avoid this specific
problem one may use so-called “null-messages”. The
rule becomes that when an LP accepts a message of
any kind with time-stamp t, it posts a null-message
on each of its output ports for which the next mes-
sage time is not known. One might naively put time-
stamp ¢ on such null-messages, so that a null-message
is interpreted as a declaration from sender to receiver
that the sender has advanced to time ¢ and so implic-
itly will send no subsequent message with time-stamp
less than ¢. This is still not enough to avoid deadlock,
lookahead needs to be incorporated. The net effect is
that the null-messages sent in response to an accepted
message have time-stamps greater than the accepted
message. The increase in time-stamps, say v, reflects
how good the lookahead is at the LP. The value v
depends, of course, on the model under simulation.
Intuitively, the increase in time-stamp value reflects
a priori knowledge that any response by the LP to
any accepted message will require at least v units of
simulation time to “propagate” through the LP. As
we have discussed earlier, that value may be derived
from pre-sampling random variables or by knowledge
that any such delay (even stochastic) exceeds some
fixed value v.

Now consider our earlier classifications of looka-
head. Null-message type protocols are seen to use
time-lookahead as only the message time-stamps are
involved in the sequencing. These protocols also use
bounded-time-lookahead in that the values placed on
null-messages are only bounds. The protocols use
semi-directed lookahead, provided that the LP-channel
graph is not a complete graph—a null message is sent
to all receivers of output channels from an LP, but it
is sent only to those receivers. Finally, null-message
type protocols use unconditional lookahead.

6.2 Appointments

Imagine a simulation with the same type of static
LP-channel structure as is assumed by null-message
protocols, but with additional assumed intelligence
on the part of LPs. We now require an LP to main-
tain on each of its output channels an “appointment”



Principles of Conservative Parallel Simulation 133

time (Nicol and Reynolds, 1984; Nicol 1988). One
can think of the transferral of an appointment from
sender to receiver as a null-message, but with some
critical differences. First, the semantics of message
acceptance becomes different from null-messages. In
the null-message approach a message is not accepted
from a channel before the LP is prepared to process
that null-message, at its posted time-stamp. In an
appointment-based protocol the receiver understands
the appointment as a promise by the sender not to
transmit any message with larger time-stamp. For
its part the receiver tacitly promises not to advance
its simulation clock beyond any appointment. Con-
sequently the receiver may accept the appointment
at any time, and bases its blocking decisions on ac-
cepted appointment values rather than unaccepted
null-message times. The practical import of this is
that at the point it accepts an appointment, the in-
formation there contained may allow the receiver to
improve upon an appointment it provides to yet an-
other LP. For example, suppose process p gives pro-
cess ¢ an appointment with time-stamp ¢. Process ¢ is
a stochastic queueing server, and knows that it routes
all jobs accepted from p to some other process r. p’s
knowledge of a lower bound on the arrival time of the
next job from p may allow it to immediately improve
its appointment with 7, even if the appointment time
lies far into the future.

Whereas (Nicol and Reynolds, 1984) introduced
the concept of appointments, it was only later in
(Nicol, 1988) where they were actually used. The
proposed appointments calculation procedure also in-
troduced the idea of using a “shadow network”, or as
we have termed it here, a lookahead propagation net-
work. Shortest-path computations on the the shadow
network were used to push lookahead forward across
LPs.

According to our classification, appointment-based
protocols differ from null-message-based protocols in
their ability to use content-lookahead (if available),
and directed lookahead. A very important differ-
ence is that the null-message protocol can be im-
plemented using very little model-specific informa-
tion. An aggressive appointment protocol may in-
volve some complex calculations and logic on the part
of the LPs. The tradeoff is increased protocol com-
plexity in exchange for sometimes markedly increased
performance.

6.3 PUCS

The PUCS protocols (Parallel Uniformized Contin-
uous time Simulator) were developed specifically for
simulating continuous-time Markov chains (CTMC)
(Heidelberger and Nicol, 1993). These protocols are

essentially appointment-based; their appointments ex-
ploit the mathematically structure of CTMCs.

The simplest form of PUCS requires that each
sending process identify for each process to which it
may send messages a maximum “rate” at which those
messages may be dispatched.

A typical example is a queue p with n servers,
each with service rate 4. Jobs leaving p are routed to
queue g with probability . The fastest possible rate
at which p routes jobs to ¢ is when all of its servers
are busy; that rate is n x a x p.

Using uniformization, the mathematical structure
of CTMCs allow the simulation to be performed (at
least conceptually) in two phases. In the first phase,
each process generates a synchronization schedule for
all other processes it may affect, and conveys that
schedule to them. If the maximum rate at which p
affects ¢ is Apq, then the spacing of synchronization
points from p to ¢ is random, with an exponential
distribution having rate A,,. These schedules govern
synchronization in the second phase, for the synchro-
nization points are appointments. When process p
reaches an appointment time ¢ that it sent to process
¢, p randomly decides to actually affect ¢, or not. It
does so by measuring the actual transition rate at
which it dispatches messages to ¢, given p’s state at
t, call this rate ap,. Then, with probability ap,/Ap,
it chooses to undergo a state transition that affects
¢; with complimentary probability it does not, and
merely sends ¢ a message reporting a “pseudo” event
instead. In the example of a multi-server given ear-
lier, if & out of n servers are busy at time ¢, then
an actual state transition occurs at ¢t with probability
k/n.

From the point of view of the lookahead classi-
fication scheme, PUCS has bounded-time-lookahead,
and directed lookahead. It is properly seen as a spe-
cific way to generate and manage appointments, for
a specific problem class.

6.4 TNE

The Time-of-Nezt- Event-Algorithm protocols (Groselj
and Tropper, 1988) compute “link times” between
LPs, a link time being a lower bound on the time
of the next message sent from one LP to another.
A link time is clearly an appointment. It computes
link times using (i) knowledge of the time of the next
event in each LP, (ii) knowledge of a minimum delay
added by an LP to any message that it processes, (iii)
knowledge of existing link times, (iv) a shortest path
algorithm. Variants of TNE have focused on how to
propagate shortest path information across proces-
sors. The TNE algorithms are thus seen to comput-
ing appointments based on the topology of the LP



134

network and the lookahead of minimum delays across
LPs. With respect to our classifications, TNE algo-
rithms have bounded-time lookahead, directed looka-
head, and do not have content lookahead. The looka-
head computed is unconditional.

6.5 Bounded Lag

Like the other conservative mechanisms described so
far, the Bounded Lag protocol (Lubachevsky,1989)
assumes a static LP interconnection topology. Like
some of the other conservative mechanisms, it relies
upon a lookahead propagation network. Two things
distinguish the Bounded Lag algorithm from others.
First, it is synchronous. It does a global lookahead
calculation, involving all processors, to identify for
each LP a point in simulation time up to which it
may safely execute events. That point is identified
through analysis of the lookahead propagation net-
work to identify for each LP the earliest time at which
it might be affected in the future by another LP, OR,
a lower bound on that time, the “bounded-lag”. The
key idea here is that for any LP, given some lag B,
an analysis of the LP interconnection network and
lookahead at each of the LPs can determine a sphere-
of-influence, a set of LPs that might possibly affect
the LP within B simulation time units. If none can,
then B units from the present time serves as the LPs
upper limit. What is critical here is that the lag al-
lows one to bound the effects of all LPs outside of
the sphere-of-influence, without explicitly considering
them.

The lookahead discussed in the Bounded Lag pa-
pers focuses on minimum propagation delays between
LPs (equivalent to minimum service times at queues),
and so-called opaque periods which are localized pe-
riods during which the time of an LP’s next action
is insensitive to the receipt of any further messages.
This is like a non-preemptive server.

This protocol has bounded-time lookahead, both
directed and undirected lookahead (the lag is undi-
rected). Like the appointments protocol it does not
specify precisely how the opaque periods or through-
LP lookaheads are defined, so content-lookahead might
be exploited (although no examples of that have have
appeared in the bounded lag literature). Applica-
tions of the bounded-lag algorithm have always used
unconditional lookahead, but the method is robust
enough that conditional lookahead can be transformed
into unconditional lookahead in the course of the looka-
head phase.

Nicol

6.6 Conditional Events

The “Conditional Events” paper (Chandy and Sher-
man, 1989) recognized that in ordinary discrete-event
simulation, without knowledge of model-specific in-
formation, all events on the event-list are “condi-
tional” in the sense that any one of the ezcept the
one with least time-stamp might be removed as a
consequence of executing an event with smaller time-
stamp. Of course, with more model specific informa-
tion we might identify events on the event list that
are unconditional, and we might identify events that
do not affect existing events on the event list.

In a parallel simulation context a process has a
set of events; some are known to be unconditional,
some are known not to affect existing events on this
processor’s event list, some are conditional. However,
the one with least time-stamp is not unconditional,
at least not before we can establish that the process
will not be affected by another at an earlier time.

Chandy and Sherman showed how to transform
unconditional events into conditional events. Each
process offers to a global min-reduction the least time-
stamp among all its conditional events. The reduc-
tion delivers the least such to all processes, and this
defines a simulation time up to which all processes
may simulate concurrently.

Details of how one identifies conditional or uncon-
ditional events are model dependent. The next pro-
tocol we examine, YAWNS, gives some refinement to
the concept.

The conditional events approach is synchronous;
its lookahead is bounded, conditional and undirected.
Content-lookahead might be employed in identifying
unconditional events on a model specific basis.

6.7 YAWNS

The YAWNS (Yet Another Windowing Network Sim-
ulator) protocol (Nicol et al., 1989; Nicol, 1993) is an
application of conditional event approach. Its prin-
ciple contribution is to show by mathematics and
implementation the utility of a simple conservative
tightly synchronized approach in situations where there
is ample parallel workload, and lookahead of a specific
type.

The key ideas behind YAWNS were described ear-
lier. The specific resolution YAWNS provides to the
conditional event proposal is identification of uncon-
ditional events (service completions), and conditional
events (next messages out from a process).

6.8 The Event Horizon

As a final topic we examine an approach that resem-
bles the YAWNS approach, except that the method



Principles of Conservative Parallel Simulation 135

is not completely conservative. The concept of “event
horizon” (Steinman, 1991) codifies the logic behavior
conditional events: given all processes are synchro-
nized at ¢, the event horizon is the simulation time
stamp of the next message to pass between any two
processes. Strictly conservative applications of con-
ditional event approaches compute lower bounds on
the event horizon. Yet, as pointed out in (Steinman,
1991) that isn’t necessary. So long as one saves state
and withholds sending messages until it is certain that
they should be sent, one can compute up to the event-
horizon. From a synchronization point, each process
executes events (saving state) up to the point where
its time of next event exceeds the time-stamp on any
message the process generated but hasn’t yet deliv-
ered. That time-stamp is the processes local event
horizon. A min-reduction on all local event horizons
yields the global event horizon. All messages gener-
ated by events with time-stamps no greater than the
horizon are delivered; as a result, a processor may re-
ceive a message with a time-stamp smaller than its
local event horizon; that process will roll back. But,
importantly, such rollbacks are entirely local to the
process. They do not propagate. Construction of a
simulation using this technique is considerablely sim-
pler than one that goes fully optimistic.

While the event horizon idea is not strictly con-
servative, it is a natural and useful extension to ideas
explored in the conservative context. It should be
considered in cases where predicted lookahead is dif-
ficult to acquire.

7 SUMMARY AND CONCLUSIONS

This tutorial has highlighted key ideas useful for writ-
ing one’s own parallel discrete-event simulation.

REFERENCES

Bryant, R.E. 1977. Simulation of packet communi-
cation architecture computer systems. MIT-LCS-
TR-188, Massachusetts Institute of Technology.

Chandy, K.M. and J. Misra. 1979. Distributed sim-
ulation:a case study in design and verification of
distributed programs. IEEE Trans. on Software
Engineering, 5, 440-452.

Chandy, K.M. and Sherman, R. 1989. The condi-
tional event approach to distributed simulation.
In: Proceedings of the 1989 Conference on Paral-
lel and Distributed Simulation, 93-99, SCS Simu-
lation Series.

Groselj, B. and Tropper, C. 1988. The time of next
event algorithm. In: Proceedings of the 1988 Con-
ference on Parallel and Distributed Simulation,
25-29, SCS Simulation Series.

Heidelberger, P. and D.M. Nicol. 1993. Conserva-
tive parallel simulation of continuous time Markov
chains using uniformization. IEEE Trans. on
Parallel and Distributed Systems 4.

Jefferson, D.R. 1985. Virtual time. ACM Transac-
tions on Programming Languages and Systems, 3,
404-425.

Lubachevsky, B.D. 1989. Efficient distributed event-
driven simulations of multiple-loop networks. Com-
munications of the ACM, 32, 111-123.

Nicol, D.M. and Reynolds, P.F. Jr. 1984. Problem
oriented protocol design. In: Proceedings of the
the 1984 Winter Simulation Conference, 471-474.

Nicol, D.M. 1988. Parallel discrete-event simulation
of FCFS stochastic queueing networks. In: Pro-
ceedings of the ACM/SIGPLAN PPEALS 1988.
Parallel Programming: Ezperiences with Appli-
cations, Languages and Systems, 124-137. ACM
Press.

Nicol, D.M., Micheal C., and Inouye, P. 1989. Ef-
ficient aggregaton of multiple LP’s in distributed
memory parallel simulations, In: Proceedings of
the 1989 Winter Simulation Conference, 680-685.

Nicol, D.M. 1993. The cost of conservative synchro-
nization in parallel discrete-event simulations. Jour-
nal of the ACM, 40, 304-333.

Reynolds, P.F. Jr. 1988. A spectrum of options for
parallel simulation. In: Proceedings of the 1988
Winter Simulation Conference, 325-332.

Steinman, J.S. 1991. SPEEDES: synchronous paral-
lel environment for emulation and discrete event
simulation, In: Proceedings of the 1991 Confer-
ence on Parallel and Distributed Simulation, 95-
103, SCS Simulation Series.

AUTHOR BIOGRAPHY

DAVID M. NICOL received the Ph.D. in Com-
puter Science from the University of Virginia in 1985
and is presently an Associate Professor of Computer
Science at Dartmouth College. He is an area editor
for the ACM’s Transactions on Modeling and Com-
puter Simulation and an associate editor for the IN-
FORMS Journal on Computing. He has served as the
1989 Program Chairman and the 1990 General Chair-
man of the Workshop on Parallel and Distributed
Simulation (PADS), has served on the PADS Steering
Committee, and in 1996 was the Program Chairman
for the ACM Sigmetrics Conference. His interests are
in parallel simulation, performance analysis, and al-
gorithms for mapping parallel workload.



